Five dominant dimensions of brain aging are identified via deep learning: associations with clinical, lifestyle, and genetic measures
Zhijian Yang, Junhao Wen, Guray Erus, Sindhuja T. Govindarajan, Randa Melhem, Elizabeth Mamourian, Yuhan Cui, Dhivya Srinivasan, Ahmed Abdulkadir, Paraskevi Parmpi, Katharina Wittfeld, Hans J. Grabe, Robin Bülow, Stefan Frenzel, Duygu Tosun, Murat Bilgel, Yang An, Dahyun Yi, Daniel S. Marcus, Pamela LaMontagne, Tammie L.S. Benzinger, Susan R. Heckbert, Thomas R. Austin, Shari R. Waldstein, Michele K. Evans, Alan B. Zonderman, Lenore J. Launer, Aristeidis Sotiras, Mark A. Espeland, Colin L. Masters, Paul Maruff, Jurgen Fripp, Arthur Toga, Sid O’Bryant, Mallar M. Chakravarty, Sylvia Villeneuve, Sterling C. Johnson, John C. Morris, Marilyn S. Albert, Kristine Yaffe, Henry Völzke, Luigi Ferrucci, Nick R. Bryan, Russell T. Shinohara, Yong Fan, Mohamad Habes, Paris Alexandros Lalousis, Nikolaos Koutsouleris, David A. Wolk, Susan M. Resnick, Haochang Shou, Ilya M. Nasrallah, Christos Davatzikos
medRxiv 2023.12.29.23300642; doi: https://doi.org/10.1101/2023.12.29.23300642