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Abstract 

Objectives:  

To evaluate proton density fat fraction (PDFF) and T2* measurements of the liver 

with combined parallel imaging (sensitivity encoding, SENSE) and compressed 

sensing (CS) accelerated chemical shift encoding-based water-fat separation.  

Methods:  

Six-echo Dixon imaging was performed in the liver of 89 subjects. The first 

acquisition variant used acceleration based on SENSE with a total acceleration factor 

equal to 2.64 (acquisition labeled as SENSE). The second acquisition variant used 

acceleration based on a combination of CS with SENSE with a total acceleration 

factor equal to 4 (acquisition labeled as CS+SENSE). Acquisition times were 

compared between acquisitions and proton density fat fraction (PDFF) and T2*-

values were measured and compared separately for each liver segment.  

Results:  

Total scan duration was 14.5 sec for the SENSE accelerated image acquisition and 

9.3 sec for the CS+SENSE accelerated image acquisition. PDFF and T2* values did 

not differ significantly between the two acquisitions (paired Mann-Whitney and paired 

t-test P>0.05 in all cases). CS+SENSE accelerated acquisition showed reduced 

motion artifacts (1.1%) compared to SENSE acquisition (12.3%).    

Conclusion:  

CS+SENSE accelerates liver PDFF and T2*mapping while retaining the same 

quantitative values as an acquisition using only SENSE and reduces motion artifacts.  

 

Strengths of this study: 

• Compressed sensing allows accelerated imaging with reduction of motion 

artifacts without alteration of quantitative measurements 

• Robust results in fat and iron quantification in a heterogeneous patient cohort 

 

Limitations of this study: 

• No histopathological validation of the MR findings was performed 

• The study was not performed at different field strengths 
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Introduction 

The non-invasive quantification of fat and iron content in liver tissue is of high clinical 

significance. For example, Non-Alcoholic Fatty Liver Disease (NAFLD) is the most 

common cause of chronic liver disease worldwide 1, with a prevalence of 

approximately 30% in adults in the western world 2. In patients with NAFLD, liver 

damage results in hyperferritinemia and hepatic iron accumulation 3 4. Both hepatic 

iron overload and steatosis can result in fibrosis, progress to cirrhosis and therefore 

carry an increased risk for the development of hepatocellular carcinoma 5. Despite 

availability of non-invasive imaging methods for quantification of hepatic fat and iron 

content, invasive tissue biopsy and histopathologic visualization of the fat deposition 

remains the gold standard in detection and quantification of hepatic steatosis and 

iron overload 6-12. 

 

Magnetic resonance imaging (MRI) provides tools for fast, non-invasive quantitative 

imaging. Specifically, multi-echo gradient-echo acquisitions enable the simultaneous 

spatially-resolved mapping of the proton density fat fraction (PDFF) and T2*. Liver 

PDFF has emerged as a method for quantification of intrahepatic fat 13-17 with high 

sensitivity and specificity of 95.0% and 100.0% for the detection of histologic 

steatosis 13. Due to its high diagnostic performance, PDFF is used as a reference 

modality for other methods of image-based fat quantification like computed 

tomography 18. Likewise, liver T2* mapping has emerged as a method for 

quantification of intrahepatic iron content 19. Chemical shift encoding-based water-fat 

separation by multi-echo gradient echo acquisition enables the simultaneous 

accurate and precise quantification of liver PDFF and T2*. 

 

Parallel imaging has been traditionally used to reduce acquisition times, enabling 

chemical shift encoding-based water-fat separation measurements in a single breath-

hold. However, further reduction of the breath-hold duration is highly desirable to 

avoid motion artefacts and thus improve accuracy of non-invasive fat and iron 

quantification, especially in patients with difficulty holding their breath. Compressed 

sensing (CS) allows for acceleration of MRI sequences and has been successfully 

utilized in various applications 20-22. Some methodological works have employed CS 

for PDFF mapping and applied the technique in small volunteer or patient samples 23-
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26. However, few studies exist on the performance of CS for simultaneous PDFF and 

T2* mapping in larger patient cohorts. 

 

Therefore, the purpose of this study was the evaluation of the robustness of an CS-

accelerated multi-echo gradient echo acquisition for the quantification of hepatic fat 

and iron content compared to a standard parallel-imaging-accelerated multi-echo 

gradient echo acquisition in a larger patient cohort.   

 

Material and Methods 

Approval by the institutional ethics committee (180/17S, Ethikkommission der 

Fakultät für Medizin der Technischen Universität München) was received for the 

study. The requirement to obtain written informed consent for retrospective data 

analysis was waived. All analyses were carried out in compliance with the pertinent 

regulations and requirements. 

 

Patient and Public Involvement.  

We did not involve patients or the public in our work 

 

Patient cohort 

We considered 217 datasets of patients who underwent routine clinical liver MRI 

examination from January 2018 until August 2018 for inclusion in the study. Datasets 

of patients with primary or secondary/metastatic liver tumors (N=128) were excluded. 

The final patient cohort consisted of 89 patients (39 males and 50 females). Average 

patient age was 62.6±16.9 years (range 19-86 years). MRI was performed for the 

following indications: evaluation of focal pancreatic lesions (n=57), pancreatitis 

(n=15), evaluation of biliary lesions (n=9) and suspected liver lesions (n=8). 

 

Data acquisition 

Two variants of multi-echo gradient-echo imaging for performing chemical shift 

encoding-based water-fat separation were performed sequentially on each patient at 

a 3 T MRI scanner (Philips Ingenia Elition X; Philips Medical Systems, Best, The 

Netherlands). The two acquisitions were based on a spoiled gradient echo sequence 

using bipolar gradient readouts. The first acquisition variant used acceleration based 

on SENSE with a total acceleration factor equal to 2.64 (acquisition labeled as 
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SENSE). The second acquisition variant used acceleration based on a combination 

of CS with SENSE with a total acceleration factor equal to 4 (acquisition labeled as 

CS+SENSE). The relevant scan parameters are listed in Table 1. 

The CS+SENSE technique used in the present work was based on the combination 

of SENSE and CS, labelled as Compressed SENSE or C-SENSE. The technique 

uses the coil sensitivity information from a SENSE calibration scan and randomly 

undersamples both the central and outer part of k-space, following a smooth 

sampling density as moving from the center to outer parts of k-space. The acquisition 

and reconstruction were based on the vendor’s implementation (Compressed 

SENSE, Philips Healthcare). A single CS acceleration factor was defined for the 

CS+SENSE acquisition variant and the sampled k-space pattern (central and outer 

part) was defined based on the vendor’s implementation. In order to maintain a 

balance between noise reduction and data consistency for CS, an iterative L1-

minimization reconstruction technique, forcing data fidelity, and image sparsity in the 

wavelet domain, was used. 

Complex multi-echo gradient-echo images were generated after the SENSE and 

CS+SENSE reconstructions and provided as input to the fat quantification routine 

provided by the vendor (mDixon Quant, Philips Healthcare). Specifically, after phase 

correction, a complex-based water-fat decomposition was performed using a single 

T2* correction and a pre-calibrated fat spectrum accounting for the presence of the 

multiple peaks in the fat spectrum. A seven-peak fat spectrum model was employed 
27. The PDFF map was computed as the ratio of the fat signal over the sum of fat and 

water signals.  

 

Image analysis 

Images were reviewed by two abdominal radiologists under standardized radiological 

reporting room conditions. Circular regions of interest (ROI) with a diameter of 15mm 

were manually drawn in each liver segment in consensus, avoiding large portal vein 

and hepatic vein branches (Figure 1). T2* and PDFF maps were reviewed and mean 

ROI values and standard deviations were extracted. The software used was Sectra 

IDS7 (Linköping, Sweden). Motion artifacts were rated using a 4-point Likert scale 

as 1=image not diagnostic because of artifacts; 2=major artifacts; 3=minor artifacts; 

4=no artifacts.  
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Statistical analysis 

Variables were tested for normal distribution using the D’Agostino-Pearson omnibus 

K2 test. Student’s t-test was used for mean comparisons of normally distributed 

variables. The Wilcoxon test was used for mean comparisons of variables without 

normal distribution. All analyses were performed using Prism Version 7 (GraphPad 

Software). A two-tailed P-value below 0.05 was considered statistically significant. 

 

Results 

The use of CS+SENSE accelerated image acquisition by 35% compared to the 

SENSE acquisition (from 14.5 to 9.3 seconds). Mean PDFF values ranged from 4.94 

± 5.8% (liver segment IVb) to 6.37 ± 6.65% (liver segment VII) in the acquisition with 

SENSE and from 5.00 ± 6.32% (liver segment IVb) to 6.28 ± 6.10% (liver segment 

VII) in the acquisition with CS+SENSE. Results did not differ significantly between 

the two acquisitions. All values are shown in Table 2. Mean PDFF was significantly 

higher in the right liver lobe compared to the left in both acquisitions (right lobe: 6.04 

± 6.36%; left lobe: 5.24 ± 5.69%; P=0.03; acquisition with SENSE and right lobe: 5.96 

± 6.30%; left lobe: 5.16 ± 5.74%; P=0.02; acquisition with CS+SENSE).  

Mean T2* values ranged from 20.54±7.05 ms (liver segment II) to 23.42±7.43 ms 

(liver segment V) in the acquisition with SENSE and from 21.29±8.24 ms (liver 

segment II) to 23.30±8.60 ms (liver segment IVb) in the acquisition with CS+SENSE. 

T2* values did not differ significantly between the two acquisitions. T2* values with 

inter-patient standard deviation and results of the mean comparison are shown in 

Table 3. T2* values showed no significant difference between the right and left liver 

lobe in both acquisitions (right lobe: 22.60 ± 7.28ms; left lobe: 21.70 ± 7.14ms; 

P=0.08 in the acquisition with SENSE; right lobe: 22.65 ± 7.31ms; left lobe: 22.14 ± 

7.94ms; P=0.35; in the acquisition with CS+SENSE). Images acquired with SENSE 

showed minor motion artifacts in 10.1% (n=9) and major motion artifacts in 2.2% 

(n=2) of the cases. Images acquired with CS+SENSE showed minor motion artifacts 

in 1.1% (n=1) of all cases. One exemplary case with hepatic steatosis, sparing 

segment I is shown in Figure 2. Figure 3 shows a patient with segmental steatosis. A 

T2 weighted image and a CT-image, acquired in the portal venous phase are shown 

as a comparison. Figure 4 shows a case of a patient with hepatic iron overload due 

to hemosiderosis. 
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Discussion 

The data presented in this study show comparability of quantitative PDFF and T2* 

measurements acquired with compressed sensing (CS)-accelerated chemical shift 

encoding-based water-fat separation. Our results demonstrate a significantly higher 

PDFF in the right lobe of the liver, which is in accordance with other studies 28 29, and 

no spatial dependence of liver T2* values. 

The most important finding of the presented data is the agreement of the quantitative 

PDFF and T2* imaging results between the two acquisitions. Several studies have 

shown high accuracy of MRI-based imaging techniques for the non-invasive 

quantification of fat and iron content of the liver 13 14 29. Due to their widespread 

availability, chemical shift encoding-based water-fat separation techniques can be 

used as a fast screening for NAFLD or disorders of iron metabolism. Given the 

increase of medical imaging in the last years 30, the acquisition time is an essential 

factor. In our study, CS+SENSE was able to accelerate image acquisition of liver 

PDFF and T2* mapping by 35% to a scan time of only 9.3 seconds. In a liver 

segment-based comparison between the acquisition with CS+SENSE and the 

acquisition with SENSE, no significant differences were detected in the quantitative 

parameters PDFF and T2*. Thus, reduction of scan time lead to a reduction of motion 

artifacts and did not lead to changes in quantitative parameters, rendering the 

presented chemical shift encoding-based water-fat separation technique combined 

with CS+SENSE a sequence with an excellent applicability in routine MRI liver 

examinations. The widespread availability could allow an application for large studies 

on hepatic steatosis. 

Previous methodological works applied CS for the joint problem of image 

reconstruction and water-fat separation 23-25. The present work estimates the PDFF 

and T2* maps in two steps: it first applies the CS+SENSE reconstruction for the 

reconstruction of the multi-echo complex images and then applies water-fat 

separation on the reconstructed water-fat images, as also previously performed 26 31. 

Although higher acceleration factors can be achieved by solving the joint step instead 

of solving the problem in two steps, the present study shows that a prospective 

CS+SENSE accelerated acquisition using the two-step approach already results in 

reliable PDFF and T2* maps in the presently studied patient cohort. 
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Our study has some limitations. First, the study was only performed in one center 

and on one scanner to show the feasibility of the accelerated acquisition with 

CS+SENSE. We did not test the two acquisitions at different field strengths. Second, 

histologic correlation was not performed. However, this was not within the scope of 

the current study that aimed at showing robustness of quantitative parameters when 

using CS acceleration. In addition, several previous studies have already shown high 

sensitivity and specificity in liver quantitative imaging with chemical shift encoding 

based water-fat separation techniques accounting for the same confounding factors 
13 32.  

In conclusion, the acceleration of chemical shift encoding-based water-fat separation 

using compressed sensing results in comparable quantitative measurements of 

hepatic fat and iron content with reduced breath-hold intervals, leading to reduced 

motion artifacts and making chemical shift encoding-based water-fat separation a 

fast and precise non-invasive tool in quantitative liver imaging.  
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Tables 

 

 

 
Acquisition 
with SENSE 

Acquisition with 
CS+SENSE 

Gating Breath-hold Breath-hold 

Acquisition duration (s) 14.5 9.3 

Acceleration factor 2.2 x 1.2 = 2.64 4 

FOV (mm) FH; RL; AP 150; 400; 300 150; 400; 300 
Acquisition voxel size (mm) FH; RL; AP 6; 3; 2 6; 3; 2 
Reconstruction voxel size (mm) 
FH/RL/AP 6; 1.14; 1.14 6; 1.14; 1.14 

Fast imaging mode none none 
TEeff /TEequiv (ms)   
Act. TR (ms) 7.8 7.8 
Act. TE (ms) 1.35 1.35 
Flip angle (°) 3 3 

 
Table 1: Scan parameters  
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Table 2: 
PDFF mean values in % with standard deviation, no significant differences were seen 
between the two acquisitions. Wilcoxon test (no normal distribution); Patients: n=89 
 
 
 
 
 
 
 
 
 
Liver 
Segment 

T2* (ms) in acquisition with 
SENSE 

T2* (ms) in acquisition with 
CS+SENSE 

p 

I 22.25±7.70 23.04±7.67 0.1578 
II 20.54±7.05 21.29±8.24 0.2096 
III 20.96±6.98 21.38±7.85 0.3541 
IVa 21.59±6.48 21.68±7.22 0.8428 
IVb 23.15±7.30 23.30±8.60 0.7841 
V 23.42±7.43 23.15±7.46 0.3549 
VI 22.91±6.94 22.97±7.21 0.8399 
VII 22.05±7.38 22.18±7.34 0.7391 
VIII 22.05±6.76 22.32±7.31 0.4264 
 
Table 3: 
T2* mean values in ms with standard deviation no significant differences were seen 
between the two acquisitions. Paired t test (normal distribution); Patients: n=89 
 
 
 
 
 
 
 
 
 

 

Liver 
Segment 

PDFF (%) in acquisition with 
SENSE 

PDFF (%) in acquisition 
with CS+SENSE 

p 

I 5.36±4.97 5.11±4.61 0.1624 
II 5.53±6.23 5.31±5.90 0.6088 
III 5.29±5.83 5.28±6.03 0.9100 
IVa 5.08±5.68 5.12±5.79 0.5262 
IVb 4.94±5.80 5.00±6.32 0.8236 
V 5.53±6.73 5.50±6.73 0.6557 
VI 6.19±5.93 6.05±5.76 0.1847 
VII 6.37±6.19 6.28±6.10 0.7536 
VIII 6.05±6.65 6.00±6.66 0.9425 

All rights reserved. No reuse allowed without permission. 
certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprint (which was notthis version posted July 3, 2019. ; https://doi.org/10.1101/19000927doi: medRxiv preprint 

https://doi.org/10.1101/19000927


 12

Figure legends 
 
 
Figure 1: 
MRI was performed for evaluation of cystic pancreatic lesion. Exemplary region of 
interest is drawn in segment VII (1.5cm).  
PDFF: acquisition with SENSE 11.1±2.4% (A); acquisition with CS+SENSE 
10.8±1.5% (B);  
T2*: acquisition with SENSE 9.35±0.6ms (C); acquisition with CS+SENSE  
9.28±0.5ms (D) 
 
 
Figure 2: 
Patient with hepatic steatosis with focal fatty sparing of Segment I. 
Exemplary region of interest are drawn in Segments I and VII (1.5cm).  
PDFF Segment I: acquisition with SENSE 25.9±3.8% (A); acquisition with 
CS+SENSE CS4 25.8±4.5% (B) 
PDFF Segment VII: acquisition with SENSE 32.2±2.0% (A); acquisition with 
CS+SENSE 33.2±1.6% (B) 
 
 
Figure 3: 
Patient with segmental hepatic steatosis. 
Exemplary regions of interest are drawn in segments IVa and V (diameter 1.5cm). 
PDFF Segment IVa: acquisition with SENSE 25.7±1.5% (A); acquisition with 
CS+SENSE 26.9±2.0% (B) 
PDFF Segment V: acquisition with SENSE 31.6±1.8% (A); acquisition with CS+ 
SENSE 32.6±2.2 (B) 
A T2-weighted image (C) and a CT image in the venous contrast phase (D) are 
shown for comparison. 
In CT Hounsfield units are 87±13 in Segment IVa and 42±16 in Segment V 
 
 
Figure 4: 
Patient with hemosiderosis and severe reduction of T2* 
Exemplary region of interest is drawn in segment VII (1.5cm).  
T2*: acquisition with SENSE 4.03±0.8ms (A); acquisition with CS+SENSE 
5.56±1.0ms (B) 
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