medRXxiv preprint doi: https://doi.org/10.1101/19001875; this version posted March 29, 2020. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It Is made available under a CC-BY-NC-ND 4.0 International license .

. Earliest infections predict the age distribution

. of seasonal influenza A cases
s> Philip Arevalo!, Huong Q. McLean?, Edward A. Belongia?, Sarah Cobey'

+ For correspondence:
s Philip Arevalo, parevalo@uchicago.edu

s !Department of Ecology and Evolution, University of Chicago, Chicago, United States; > Center for Clinical
7 Epidemiology and Population Health, Marshfield Clinic Research Institute, Marshfield, United States

s Abstract

o Seasonal variation in the age distribution of influenza A cases suggests that factors other than age shape susceptibility to
10 medically attended infection. We ask whether these differences can be partly explained by protection conferred by childhood
11 influenza infection, which has lasting impacts on immune responses to influenza and protection against new influenza A
12 subtypes (phenomena known as original antigenic sin and immune imprinting). Fitting a statistical model to data from studies
13 of influenza vaccine effectiveness (VE), we find that primary infection appears to reduce the risk of medically attended
14 infection with that subtype throughout life. This effect is stronger for HIN1 compared to H3N2. Additionally, we find evidence
15 that VE varies with both age and birth year, suggesting that VE is sensitive to early exposures. Our findings may improve
16 estimates of age-specific risk and VE in similarly vaccinated populations and thus improve forecasting and vaccination

17 strategies to combat seasonal influenza.

1z Introduction

10 Seasonal influenza is a serious public health concern, resulting in approximately 100,000-600,000 hospitalizations and
20 5000-27,000 deaths per year in the United States despite extensive annual vaccination campaigns (Reed et al., 2015). The
21 rapid evolution of the virus to escape preexisting immunity contributes to the relatively high incidence of influenza, including
22 in previously infected older children and adults. How susceptibility arises and changes over time in the host population has
23 been difficult to quantify.

24 A pathogen’s rate of antigenic evolution should affect the mean age of the hosts it infects, and differences in the rate
2s  of antigenic evolution have been proposed to explain differences in the age distributions of the two subtypes of influenza
26 A. Compared to H3N2, HIN1 disproportionately infects children (Gagnon et al., 2018b; Caini et al., 2018; Khiabanian
27 etal., 2009). It also evolves antigenically more slowly (Bedford et al., 2015). Thus, compared to H3N2, HIN1 is slower to
28 escape immunity in individuals who have experienced prior infection (namely older children and adults), making them less
20 susceptible to reinfection (Bedford et al., 2015; Beauté et al., 2015; Caini et al., 2018; Khiabanian et al., 2009). H3N2, in
30 contrast, exhibits well known changes in antigenic phenotype that are expected to drive cases toward adults (Smith et al., 2004;
31 Cobey and Koelle, 2008). Under this simple model, hosts previously infected with a subtype face equal risk of reinfection (on
32 challenge) with an antigenic variant of that subtype.

33 The age distributions of influenza cases in exceptional circumstances—pandemics and spillovers of avian influenza—have
3a  shown unexpected variation that suggests important effects of prior infection. Excess mortality in some adult cohorts during
35 the 1918 and 2009 HIN1 pandemics correlates with childhood infection with other subtypes (Gagnon et al., 2013; Worobey
ss etal., 2014; Gagnon et al., 2018a). In the post-2009 pandemic period, excess mortality and hospitalization were observed
sz among cohorts first exposed to H2N2 or H3N2 during HIN1pdm-dominated seasons (Budd et al., 2019). Similarly, the
3s  subtypes circulating in childhood predict individuals’ susceptibility to severe zoonotic infections with avian HSN1 and H7N9,
30 regardless of later exposure to other seasonal subtypes (Gostic et al., 2016). These patterns suggest that early influenza
40 infections, and not prior infection per se, strongly shape susceptibility.

a1 Early infections might also affect the protection conferred by influenza vaccination. Foundational work on the theory of
42 original antigenic sin demonstrated that an individual’s immune response to influenza vaccination is biased toward antigens

43 similar to those encountered in childhood (Davenport and Hennessy, 1956, 1957). In some cases, this may result in a narrow
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4a antibody response focused on a single epitope (Davis et al., 2018). This phenomenon has been suggested to explain an
a5 unexpected decrease in vaccine effectiveness (VE) in the middle-aged in the 2015-2016 influenza season (Skowronski et al.,
a6 2017b; Flannery et al., 2018). More generally, it has been hypothesized that biases in immune memory can arise from both
a7 past infections and vaccinations and lead to variation in VE that is sensitive to the precise history of exposures (Smith et al.,
4 1999; Skowronski et al., 2017a).

a9 To measure the effect of early exposures on medically attended infection risk and VE, we fitted statistical models to 3493
so PCR-confirmed influenza cases identified through seasonal studies of influenza VE from the 2007-2008 to 2017-2018 seasons
s1  in the Marshfield Epidemiologic Study Area (MESA) in Marshfield, Wisconsin (Belongia et al., 2009, 2011; Griffin et al.,
sz 2011; Treanor et al., 2012; Ohmit et al., 2014; McLean et al., 2014; Gaglani et al., 2016; Zimmerman et al., 2016; Jackson
sz etal., 2017; Flannery et al., 2018, Figure 1-Supplement 1). Each influenza season, individuals in a defined community cohort
sa were recruited and tested for influenza when seeking outpatient care for acute respiratory infection. Eligibility was restricted
ss to individuals >6 months of age living in MESA who received routine care from the Marshfield Clinic and who presented in
s6 an outpatient setting.

57 We sought to explain the variation in the age distribution of these cases by subtype and over time. Our model predicted
ss the relative number of cases of influenza in each birth year each season as a function of the age structure of the population,
so age-specific differences in the risk of medically attended influenza A infection, early influenza infection, and vaccination.
s0o Despite the extensive antigenic evolution in both subtypes over the study period, we found strong evidence of protection from
61 the subtype to which a birth cohort was likely first infected (the imprinting subtype) and variation in VE by birth cohort.

= Materials and Methods

es Study cohort

es Cases of PCR-confirmed, medically attended influenza were identified from annual community cohorts based on residency
es in MESA. MESA is a contiguous geographic area surrounding Marshfield, Wisconsin, where nearly all 61,000 residents
es receive outpatient and inpatient care from the Marshfield Clinic Health System (Kieke et al., 2015). For each influenza season
sz from 2007-2008 through 2017-2018, we identified MESA residents >6 months of age who received routine care from the
e Marshfield Clinic. These individuals were eligible for recruitment into that season’s VE study if they sought care for acute
6o respiratory infection. Trained research coordinators recruited patients during clinical encounters in primary care departments,
7o including urgent care, pediatrics, combined internal medicine and pediatrics, internal medicine, and family practice. Patients
71 were enrolled on weekdays, evenings, and weekends when clinical services were provided. Research staff used an electronic
72 appointment system to screen the chief complaints for respiratory or febrile illness. Patients were then approached in-person
73 to assess eligibility based on specific respiratory symptoms and duration of illness. The proportion of patients with medically
74 attended acute respiratory infection (MAARI) who were screened for enrollment varied by season and was largely determined
75 by the volume of patients each day and staffing capacity. Only symptoms and illness duration were used to determine eligibility
76 among those patients who were in the predefined cohort. Patients were also assessed for the presence of medical conditions
77 that put them at high risk for complications from influenza infection, as defined by the Advisory Committee on Immunization
7s  Practice (Smith et al., 2006). These conditions included cardiovascular disease, diabetes, pulmonary disease, cancer, kidney
7o disease, liver disease, blood disorders, immunosuppressive disorders, metabolic disorders, and neurological/musculoskeletal
so disorders. We considered subjects vaccinated if they received that season’s influenza vaccine >14 days before enrollment. For
s1  the 2009-2010 season, we only considered receipt of the 2009 monovalent vaccine. The Marshfield Clinic generally does
s2 not capture MAARI in nursing facilities with dedicated medical staff, causing undersampling of the oldest age groups. We
sz adjusted for this (Appendix 1: "Age-specific rates of approachment, enrollment, and nursing home residence").

84 Each season, recruitment began when influenza activity was detected in the community and usually continued for 12-15
ss  weeks. Symptom eligibility criteria varied by season but included fever/feverishness or cough during most seasons. We
ss retroactively standardized symptom eligibility criteria to only require cough as a symptom. Individuals with illness duration
sz >77 days or presenting in an inpatient (hospital) setting were excluded. After obtaining informed consent, a mid-turbinate
ss swab was obtained for influenza detection. RT-PCR was performed using CDC primers and probes to identify influenza cases,
so including type and subtype.

o0 Calculating differences in the age distribution between seasons
o1 We defined the age distribution of each season as the number of cases of the dominant (more common) subtype in each of nine
o2 age groups (0-4 year-olds, 5-9 year-olds, 10-14 year-olds, 15-19 year-olds, 20-29 year-olds, 30-39 year-olds, 40-49 year-olds,
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o3 50-64 year-olds, and >65 years old). We excluded the subdominant subtype in each season due to concerns that short-term
94 interference between the subtypes (Laurie et al., 2015; Goldstein et al., 2011) would affect the age distribution of the rarer
os  subtype. The G-test of independence was used to measure differences in seasons’ age distributions.

o6 Calculating relative risk

o7 To evaluate relative infection risk in different age groups, we measured their relative risk of infection in the first versus second

o8 half of each season. This risk is a combination of the chance of infection, conditional on infection (susceptibility), and the rate

90 of contact with infected people. Attack rates should be higher in populations that experience more risk, and therefore these
100 populations should be infected earlier in the epidemic (Worby et al., 2015). To calculate relative risk we used an approach
101 similar to Worby et al., 2015. We defined the midpoint of each season as the week in which the cumulative number of cases
102 of the dominant subtype among all people exceeded half the total for that season. Weeks before and after this point were
103 assigned to the first and second half of the season, respectively. We assigned each case to one of the five age groups used by
10 Worby et al., 2015 (0-4 year-olds, 5-17 year-olds, 18-49 year-olds, 50-64 year olds, and >65 years old). For each age group g,
105 we defined relative risk as

Cﬁrst,r,g
T
C

second,?,g

ey

16 Where Gy, and C

second,r,g &€ the fraction of cases of the dominant subtype during influenza season ¢ that occurred during

107 the first or second half of the season, respectively. A relative risk >1 indicates that cases in an age group were more likely to
10s  occur during the first half of the season.

100 Calculating imprinting probabilities

110 We hypothesized that the subtype of a person’s first influenza A infection affects their future susceptibility to that subtype.
111 Testing this hypothesis requires knowing the probability that a person’s primary influenza A infection was with a particular
12 subtype. To calculate these probabilities, we emulated the approach of Gostic et al., 2016, which assumes these probabilities
13 are determined by a person’s year of birth and subsequent exposure to each subtype.

114 First, we calculated the probability that an individual born in year y received their first influenza A exposure in influenza
115 season . Assuming a constant per-season rate of infection i, the probability of infection in one season (i.e., the attack rate) is

16  given by

Pr(infection in single season) = 1 — e/, )

117 By assuming that the average probability that a naive individual is infected in a single season is 0.28 (Bodewes et al., 2011;

1s  Gostic et al., 2016), we calculated the expected per-season infection rate (i) as

0.28=1-—e,
3)
iy = —In(0.72).
110 However, because the intensity of epidemics varies between seasons (I,, Appendix 1: "Seasonal intensity") and the fraction

120  of the epidemic experienced by a person depends on their birth year (y,,, Appendix 1: "Fraction of season experienced"), we

121 considered the time-varying per-season infection rate,

iy,t = iOIIyy,t‘ (4)
122 Therefore, the probability that a naive individual born in year y is infected in season 7 is
a,=1- e v, )

123 We used a,,, to calculate the fraction of a birth cohort y that received their first influenza A infection in season 7. Let
124 U, be the fraction of people born in year y who were unexposed at the beginning of season # (Appendix 1: "Calculating the

125 fraction unexposed"). The probability that a person born in year y has their first infection in season 7 is

Pr(first exposure in season f) = Pr(infected|unexposed) Pr(unexposed) = a, U, (6)
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126 We calculated m_, , the probability that a person born in year y had their first influenza A infection with subtype s in

s.ty?
127 season £, by multiplying a, U, , by the frequency of subtype s in season 7, [, , (Figure 3-Supplement 1),

My = L@y, Uy @)

128 Modeling approach
120 We aimed to predict p,, , ,, the fraction of cases of subtype s in season ¢ among people born in year y with vaccination status
130 ». Our models assume that this is proportional to a combination of the following factors:

131 1. Demography. The age distribution of our study cohort is not static over the study period. All models adjusted for the
132 changing fractions of the population in each birth cohort and season (Figure 1-Supplement 2; Mathematical expressions
133 for model components: "Demography").

134 2. Age-specific effects. We considered that age itself may be associated with differences in medically attended influenza A
135 infection risk stemming from differences in susceptibility and/or rates of contact with infectious people. Additionally,
136 we expect that age groups may intrinsically differ in their healthcare-seeking behaviors. These factors are inseparable in
137 our data, and all models represent their combined effects with a static age-specific parameter shared by both subtypes
138 that describes the risk of age-specific medically attended influenza A infection (Mathematical expressions for model
130 components: "Age-specific factors"). We assumed no intrinsic differences in the age-specific virulence of the two
140 subtypes. These age-specific parameters were fitted. We also adjusted for other potential sources of age-specific bias,
141 including age-specific differences in study approachment and enrollment rates (Appendix 1: "Age-specific rates of
142 approachment, enrollment, and nursing home residence").

143 3. Imprinting. We tested several hypotheses of how primary exposures could affect the risk of medically attended infection
144 with HIN1 and H3N2. In each version, we estimated fractional reductions in risk of medically attended HIN1 and
145 H3N?2 infection due to primary (i.e., imprinting) exposure to the same type:

146 o Subtype-specific imprinting: Influenza has two main antigens, hemagglutinin (HA) and neuraminadase (NA).
147 Imprinting could in theory derive from responses to either or both antigens. Because HIN1 is the only seasonal
148 subtype of influenza with N1, we cannot separate the effects of initial N1 exposure from initial H1 exposure.
140 However, since N2 appears in both H3N2 and H2N2 viruses, we can estimate protection against H3N2 infection
150 from initial N2 exposure separately from protection from initial H3 exposure (Mathematical expressions for
151 model components: "HA subtype imprinting" and "N2 imprinting").

152 e Group-level imprinting: Influenza A viruses fall into two groups (I and II) corresponding to the two phylogenetic
153 clades of HA. Gostic et al., 2016 found that primary infection by a virus belonging to one group protected against
154 severe infection by another subtype in the same group. If group-level imprinting were influential, we would
155 see primary infection with H2N2 conferring protection against HIN1, another group I virus, as well as HIN1
156 protecting against HIN1, and H3N2 against H3N2. We considered a separate class of models that assumes
157 group-level protection instead of subtype-specific protection (Mathematical expressions for model components:
158 "HA group imprinting").

150 4. Vaccination. Approximately 45% of the MESA population was vaccinated against influenza each year (Figure 1-
160 Supplement 3; Appendix 1: "Vaccination coverage"). We estimated cases in vaccinated and unvaccinated individuals
161 of each birth year separately. Naively, we expect that vaccinated individuals should seek medical attention for acute
162 respiratory infection proportionally to the fraction of their cohort vaccinated that season. However, vaccinated
163 individuals may seek medical attention for acute respiratory infection more frequently than non-vaccinees due to
164 correlations between the decision to vaccinate, healthcare-seeking behavior, and underlying medical conditions (Jackson
165 et al., 2005a,b; Belongia et al., 2009). Indeed, we generally observed higher rates of high-risk medical conditions
166 among vaccinated people compared to unvaccinated people (Figure 1-Supplement 4). We attempted to adjust for this by
167 calculating the fraction of vaccinated people among those who had MAARI and tested negative for influenza (i.e., the
168 test-negative controls, "Mathematical expressions for model components: Vaccination"). We found that the vaccinated
160 fraction exceeds vaccination coverage for most age groups, suggesting vaccinated individuals are overrepresented
170 among cases for reasons unrelated to influenza (Figure 1-Supplement 5). We also assumed that vaccination is not
171 perfectly effective, and defined VE as the fractional reduction in cases expected in vaccinated compared to unvaccinated
172 individuals after controlling for the effects described above. We estimated subtype-specific VE under five scenarios:
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173 (i) constant across age groups and seasons; (ii) constant across age groups but season-specific; (iii) age-specific but
174 constant across seasons; (iv) imprinting-specific; and (v) birth-cohort-specific. We assumed that vaccination affects risk
175 only in the current season, i.e., vaccination in a prior season confers no residual protection (Mathematical expressions
176 for model components: "Vaccination"; Ohmit et al., 2014, 2015; Jackson et al., 2017; Skowronski et al., 2016; Pebody
177 et al., 2013; McLean et al., 2018).

178 We defined models as specific combinations of the above factors. We tested a set of 10 models by pairing each of the

17e  possible implementations of HA imprinting with each implementation of VE (Figure 1). Demography, age-specific effects,
1s0  and N2 imprinting were included in all these models. To test whether more complex models truly improved model fit, we also
181 tested a simple model with constant VE and no effect of imprinting. We evaluated these 11 models by maximum likelihood and
182 compared their performance using the corrected Akaike information criterion (cAIC, "Model likelihood") and leave-one-out

183 cross-validation.

[ Demography Age N2 imprinting}

HA
imprinting

Vaccine
effectiveness

Constant btype

Figure 1. Summary of models tested. Ten different models result from considering different combinations of HA imprinting and VE. We
also tested one additional model excluding the effects of N2 and HA imprinting (Materials and Methods: "Modeling approach").

1. Mathematical expressions for model components
1ss  Demography
186 We expect that the fraction of cases in each birth cohort should be proportional to the underlying demographic birth year
187 distribution of the population. To calculate the demographic birth year distribution, we used MESA-specific data on the
1ss  age distribution for each season (Kieke et al., 2015). Because people >90 years old were grouped into a single age class,
180 we estimated the number of people in each age >90 years old by assuming a geometric decline in population with age. We
100 converted the age distribution for each season into a distribution by birth year by assigning people of a specific age into the
101 two possible birth years of that age (Appendix 1: "Birth year distribution of the study population"). Therefore,

Pstyo & Dyys ®)

102 where D, , is the fraction of the population in season # who were born in year y .

103 Age-specific factors

104 We modeled intrinsically age-specific differences in medically attended influenza A infection risk and healthcare-seeking
105 behavior by using parameters that represent the relative risk of medically attended influenza A infection in each age group.
106 These parameters combine the effects of underlying age-specific differences in influenza A medically attended infection
107 risk as well as age-specific differences in healthcare-seeking behavior. We considered the same age groups as before (0-4
108 year-olds, 5-9 year-olds, 10-14 year-olds, 15-19 year-olds, 20-29 year-olds, 30-39 year-olds, 40-49 year-olds, 50-64 year-olds,
100 and >65 years old). We chose 20-29 year-olds as our reference age group. All age groups g aside from 20-29 year-olds had an
200  associated parameter (A,) that scaled their risk of medically attended influenza A infection relative to 20-29 year-olds. These
201 parameters can take on any positive value.

202 Since our models describe the distribution of cases by birth year and not by age, we mapped the age-group-specific
203 parameters (A,) to birth cohorts in each season 7 (4, ). We considered that each birth cohort has two possible ages in each

204 season (al and a2). Let G(a) be a function that specifies the age group g of a given age a. Then A, , the age-specific relative

1y’
20s risk in season ¢ of medically attended influenza A infection for a person born in year y, is

At,y = al,t,yAG(al) + fa2,t,yAG(a2)7 (9)
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200 where f,;, and f,,,  are the fractions of birth cohort y who are age al or a2 in influenza season 7 (Appendix 1: "Fraction of

Lty
207 birth cohort with specific age"), and Ag(,, and Ag,,, are the age-group-specific parameters for al and a2.

’
approach,t,y

200 enrollment (k, ) as covariates, all of which bias the age distribution of medically attended influenza infections (Appendix 1:

/

), enrollment rates (x
enroll,t,y,v

208 Our models also included age-specific approachment rates (x ), and nursing home
210 "Age-specific rates of approachment, enrollment, and nursing home residence"). The combination of estimated age-specific
211 effects and age-specific covariates was modeled as

x A, x x! (1 —k,,). (10)

ps.f.yA,U .y approach,t,y”" enroll,t,y,v

212 HA subtype imprinting
213 We considered that imprinting to HA reduces a birth cohort’s risk of future infection from the same HA subtype. Therefore,

«1-hm,,, (11

DPstyv

214 where A is the strength of HA imprinting for subtype s and m, , is the imprinting probability in season ¢ of birth cohort y to
215 subtype s ("Calculating imprinting probabilities").

216 HA group imprinting
217 We considered that imprinting to HA reduces a birth cohort’s risk of future infection with viruses from the same HA group.

218 Therefore,

PuiNtye < 1= &1 (MyiNy + Mionay ) 12)

PusN2ty0 & 1- E2My3Na.rys (13)

220 where g, is the strength of HA imprinting for group 1 viruses; g, is the strength of HA imprinting for group 2 viruses; and

221 MyNg .y MioNg,ys @0d My, ., are the imprinting probabilities in season 7 of birth cohort y to HINT, H2N2, and H3N2.

222 N2 imprinting
223 We considered that imprinting to N2 reduces a birth cohort’s risk of H3N2 infection. Therefore,

Psnzye & 1= (Mo, + Miono ) (14)

224 where n,, is the strength of N2 imprinting, and my;y,, , and my,y, , , are the imprinting probabilities of birth cohort y in
225 season 7 to H3N2 and H2N2.

226 Vaccination

227 We assumed that vaccination decreases the risk of medically attended infection. However, vaccinated individuals may seek
228 healthcare for symptomatic influenza at a different rate than unvaccinated individuals. Moreover, because vaccines are
220 routinely recommended for individuals with underlying health conditions, pre-existing susceptibility to MAARI among
230 vaccinated individuals may also differ from unvaccinated individuals. Let R, , represent the fraction of vaccinated individuals
231 in age group g in season ? that present with MAARI. We use test-negative controls to estimate this as

UI
=" (15)

TR

232 where v, and 47 are the number of vaccinated or unvaccinated individuals born in year g presenting with MAARI and
233 testing negative for influenza in season 7. We converted R, , to R, , (i.e., to a covariate indexed by birth cohort) using the
23a  same method described in "Age-specific factors." We tested five different VE schemes: subtype-specific VE that remained
235 constant across seasons and cohorts (2 parameters), subtype-specific VE that varied between the age groups described above
236 (18 parameters), VE that varied between seasons (12 parameters), VE for each possible imprinting subtype (6 parameters), and
237 birth-cohort-specific VE (18 parameters). These VE parameters (V') reduced the probability of medically attended influenza
238 A infection among vaccinated individuals in a birth cohort, i.e.,

xR, ,(1-V) (16)

p s,t,y,vac.
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239

Ps .y unvac. & (l - Rt,y)’ (17)
220 where V' depends on the specific implementation of VE used.
241 Constant VE only varies with the infecting subtype, thus
V =v,. (18)
242 Season-specific VE varies with subtype and season, thus
V=uv,. 19)
243 For age-specific VE, we used the same age classes described above for "Age-specific factors" but did not consider a

244 reference age class, so that each age group had an associated VE for each subtype. We used these age-specific VE parameters
245 to calculate the VE against subtype s in birth cohort y during season 7 using the same procedure described in "Age-specific

246 factors" (Equation 9). Therefore,

V = fariyVeans t faziyVca).se (20)
2a7 Where vg,) ; and vg ) ; are age-specific VE parameters for al and a2.
248 For imprinting-specific VE, we used the imprinting probabilities for each birth cohort described in "Calculating imprinting
249 probabilities” to scale V such that
V=1- II (1-v,m,,), 21

z€{HIN1, H2N2, H3N2}
250 Where v, is the VE among people imprinted to subtype z against infection by dominant subtype s, and m, , is the imprinting
251 probability for subtype z in season ¢ for birth cohort y.

252 For birth-cohort-specific VE, we defined nine birth cohorts corresponding to the nine age groups we used for the 2017-2018
253 season: 1918-1952, 1953-1967, 1968-1977, 1978-1987, 1988-1997, 1998-2002, 2003-2007, 2008-2012, and 2013-2017. Let
254 Q(y) be the birth cohort of people born in year y. Then

V = 0g4).s 22)

285 where v, ; is the VE among people in cohort O(y) against infection by dominant subtype s.

256 Model likelihood

257 Recall that our aim is to predict p,, , ,, the fraction of all PCR-confirmed influenza cases of dominant subtype s in influenza
258 season t among people born in year y with vaccination status v. These fractions can also be interpreted as multinomial
250  parameters that describe the probability that in season #, a medically attended influenza infection of subtype s occurs among
260 people born in year y with vaccination status v. Each model M assumes that p,, , , is proportional to a collection of model
261 components j described above (demography, age, imprinting, and vaccination). Thus,

pM,s.t,y,U & H ¢M,j7’j,s,t,y,u’ (23)
J

262 where p,, ., is a multinomial probability under model M, ¢,, ; indicates whether model M contains component j,
263 and 7, is the mathematical expression for model component j given s, 7, y, and v (e.g., for HA subtype imprinting,
sty = 1- hxm

265 To obtain proper multinomial probabilities, we calculated a normalizing constant for each season ¢ such that all probabilities

s,t,y)’

266  in that season sum to 1. For convenience, let p;\“‘[‘yyu =11 7 P11 5.1y, bE the unnormalized multinomial probability for

267 model M. Then for a specific season ¢, the normalized multinomial probability is

/
pM,s.t.yA,v

24

Pumstyo = ZYmax.t ’ + Z."max.r ’
y'=1918 pM,s,t,y’,unvacA y'=1918 pM,:,r,y’,vacA

268 where y, . ; is the maximum birth year possible for a specific season z.
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260 To calculate the likelihood of a given model, we used the multinomial probabilities and the observed birth year distribution

270 of cases. Let n,

sy D€ the number of PCR-confirmed cases of dominant subtype s in influenza season # among people born in

271 year y with vaccination status v. The total number of PCR-confirmed cases of dominant subtype s in season  is

Ymax,t Ymax,t
Ns,t = z ns,t,y,unvacA + Z ns,t,y,vac.' (25)
y=1918 y=1918

272 For models fitted to a restricted set of ages, we limited the cases for each season to the birth cohorts that were guaranteed to

273 meet the age requirements in that season.

274 Then, the likelihood of model M in season # is given by the multinomial likelihood,
N 715.1,1918,unvac. g 11918, vac. L. TSt yma g unvac, "5, ymax t-vac.
St M s5,6,1918,unvac.t” M ,s,t,1918,vac. M 5., Ymax,unvac.t” M st ypax 1,vac.
Luy= [ [ ! [ > (26)
ns,l,lQlS,unvac. 'nx,t,l‘)l&vac. L ns,t,ymax_,,unvac. 'ns,t,ymaxv,.vz\c. .

275 Finally, the full model likelihood for model M over all observed seasons is

2017-2018
cy= [ £u. @7

1=2007-2008
276 We fitted the model to case data using the L-BFGS-B algorithm implemented in the R package optimx. We estimated 95%

277 confidence intervals for parameters of the best-fitting model by evaluating likelihood profiles at 14 evenly spaced points and

278 interpolating the entire profile using a smoothing spline.

270 Code and data availability
280 The code and data used to perform the analyses for this project are available at https: //github. com/cobeylab/FluAImprinting.

221 Results

2s2  The age distribution of cases varies between seasons and subtypes

283 The age distribution of cases varies between subtypes. The relative burden of cases is consistently higher in people >65 years
284 old during H3N2-dominated seasons compared to HIN1-dominated seasons (Figure 2). The age distribution tends to vary
285 more between subtypes than within either over time (Figure 2-Supplement 1, off-diagonal quadrants). This is consistent with
286 recent work showing that the ratios of H3N2 to HINT cases differ between age groups (Gagnon et al., 2018b).

287 The age distribution also varies within subtypes over time (Figure 2-Supplement 1, diagonal quadrants). The seven
288 H3N2-dominated seasons display three types of age distributions (Figure 2-Supplement 1, clusters of lighter-colored cells in
280 the upper left-hand quadrant), and two correspond to major antigenic clusters (2007-2008, Fonville et al., 2015; 2010-2012,
200 Ann et al,, 2012). These differences sometimes coincide with significant shifts in the age distribution between seasons. For
201 instance, the highest fraction of H3N2 cases occurs in 20-29 year olds in the 2007-2008 season, but this age group has the
202 lowest fraction of cases in the next H3N2-dominated season (2010-2011, Figure 2C). In HIN]1, the shift from seasonal to
203 pandemic strains is associated with large changes in the age distribution (Figure 2-Supplement 1, lower right-hand quadrant).
204 We found further evidence that age groups differed in their susceptibility across seasons by examining the relative risk of
205 infection during the first versus second half of each epidemic period (Materials and Methods: "Calculating relative risk").
206 Individuals at greater risk of infection should be infected disproportionately early rather than late in an epidemic (Worby
207 et al.,, 2015). We confirmed that an age group’s relative risk correlates with the fraction of cases within that age group in
208 the same season (Pearson’s r=0.58, 95% CI 0.38-0.73; Figure 2-Supplement 2A; Appendix 1: "Correlation of relative risk
200 and fraction of cases"). This trend is evident for HIN1 (Pearson’s r=0.73, 95% CI 0.45-0.88; Figure 2-Supplement 2A) and
300 H3N2 seasons separately (Pearson’s r=0.52, 95% CI 0.30-0.69; Figure 2-Supplement 2A). The positive correlation in all
so1  seasons is robust to undersampling of cases at the start and end of seasons (Appendix 1: "Sensitivity to sampling effort",
so2  Figure 2-Supplement 2B). This provides supporting evidence that the different numbers of cases in each age group reflect
sos  underlying differences in infection risk.

304 Just as the age distribution of cases varies over time, the age groups with high relative risks of infection change over time.
sos  If people contact one another similarly from one season to the next, these shifting relative risks imply that age groups’ relative
306  susceptibilities change over time. For instance, 5-17 year olds had the highest relative risk of early infection in the 2008-2009

so7  season, whereas 50-64 year-olds had the highest relative risk in the 2013-2014 season (Figure 2-Supplement 3). Relative
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sos  risks in MESA vary more than national estimates, which show that 5-17 year-olds had the highest relative risk in all but one
300 season from the 2009 pandemic to 2013-2014 (Worby et al., 2015). These differences may partly be due to the fact that our
310 measurements of relative risk use outpatient visits, whereas the national estimates use hospitalizations.

311 Taken together, these findings suggest that the risk of influenza infection is not a simple function of age alone. Other

a1z factors, such as past influenza infections and vaccination, might explain the changing age distributions of cases in time.
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Figure 2. The age distribution of cases. A. The age distributions of cases from the 2007-2008 through the 2017-2018 influenza seasons in
MESA. Dark lines with open circles indicate the average fraction of cases in each age group. Lighter-colored lines show the age distribution
for individual seasons. B. The age distribution of cases in HIN1-dominated seasons. C. The age distribution of cases in H3N2-dominated
seasons.

;13 Imprinting probabilities of age groups change over time

s1a  We hypothesized that variation in the age distribution of cases could be explained by the aging of birth cohorts with similar
a1s  early exposure histories. This would cause the early exposure history of an age group, and thus potentially its susceptibility, to
s16  change in time. To calculate the probability that people in a particular age group had their first influenza A infection with a
a1z particular subtype, we adapted the approach from Gostic et al., 2016. Briefly, we calculated the probability that an individual
s1s  born in a specific year had a primary infection with HIN1, H2N2, or H3N2 using data on relative epidemic sizes and the
s10  frequencies of circulating subtypes (Figure 3-Supplement 1; Materials and Methods: "Calculating imprinting probabilities").
320 As expected, age groups’ early exposures are not static and change over time (Figure 3). Older people nonetheless tend to
s2z1  be imprinted to HIN1 or H2N2, whereas younger people have higher probabilities of imprinting to H3N2. The effects of the
322 2009 HIN1 pandemic are evident in the three youngest age groups as a transient increase (from 2009 to approximately 2013)
323 in their HIN1 imprinting probability. These imprinting probabilities are relatively well-constrained even after for accounting
324 for uncertainty in epidemic size (Figure 3-Supplement 2; Appendix 1: "Sensitivity to uncertainty in ILI and the frequency of
325 influenza A").
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Figure 3. Imprinting probabilities by age group across seasons. Each panel shows the imprinting probabilities of an age group from the
2007-2008 season through the 2017-2018 season. The color of each bar corresponds to the imprinting subtype or naive individuals, who have
not yet been infected.
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326 Age-specific differences in medically attended influenza A infection risk affect epidemic patterns

32z We fitted models to estimate the underlying effects of age, early infections, and vaccination on the age distributions of cases.
a2 As expected, the cases reveal age-specific differences in the risk of medically attended influenza A infection (Figure 4;
320 Figure 4-Supplement 1; Appendix 2: Table 1). This risk is roughly threefold higher among children <4 years old compared
330 to adults 20-29 years old, after adjusting for other effects (Figure 4). The decline in risk through middle age is generally
331 consistent with attack rates estimated from serology (Monto et al., 1985; Bodewes et al., 2011; Wu et al., 2010; Huang et al.,
332 2019) and clinical infections (Wu et al., 2017). We recently observed smaller differences in the attack rates of school-aged
333 children and their parents when estimating infections serologically (Ranjeva et al., 2019). We hypothesize that the attack rates
s3a  estimated from clinical infections might show larger differences by age due to age-related changes in infection severity and
33s  healthcare-seeking behavior. Indeed, rates of healthcare-seeking behavior have been shown to decline with age before rising
336 in adults >65 years old (Biggerstaff et al., 2014; Brooks-Pollock et al., 2011; Van Cauteren et al., 2012), consistent with our
a3z results. Finally, the increased risk of medically attended influenza A infection among people > 65 years old compared to

33s  other adults may be related to the increasing prevalence of high-risk medical conditions with age (Figure 1-Supplement 4).

Age group (years)
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2 (o)
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Relative age-specific medically attended
influenza A infection risk, A

Figure 4. Estimates of relative age-specific medically attended influenza infection risk. Open circles represent the maximum likelihood
estimates of parameters describing age-specific differences in the relative risk of medically attended influenza A infection. Lines show the
95% confidence interval.

330 Initial infection confers long-lasting, subtype-specific protection against future infection

3a0  Our best-fitting model supports subtype-specific imprinting for HIN1 and H3N2 (Figure 5, top row; Appendix 2: Table 1).
sa1  This model also provides the best predictive power compared to other models in a leave-one-out cross-validation analysis
saz  (Figure 5-Supplement 1; Figure 5-Supplement 2; Appendix 1: "Evaluation of predictive power"). The risk of future medically
3a3  attended infection by HINI1 is reduced by 66% (95% CI 53-77%) in people imprinted to HIN1, whereas the risk of future
3aa  medically attended infection by H3N2 is reduced by 33% (95% CI 17-46%) in people imprinted to H3N2. We found no
a5 evidence of a protective effect from imprinting to N2 (0%, 95% CI 0-7%). These estimates of imprinting protection are

346  Insensitive to

347 e uncertainty in imprinting probabilities due to uncertainty in past epidemic sizes (Figure 3-Supplement 2; Appendix 1:
348 "Sensitivity to uncertainty in ILI and the frequency of influenza A"; Appendix 2: Table 3),

349 e choice of age groups for medically attended influenza A infection risk and VE (Appendix 1: "Sensitivity to age groups";
350 Appendix 2: Table 4), and

351 e undersampling of influenza cases in some seasons (Figure 5-Supplement 3).

352 In theory, the estimated protective effects of imprinting could be influenced by cross-protection rather than the impact of

ss3  first infection per se. Because first infections are also recent infections in children, we reasoned that the observed imprinting
ssa  effects might arise from confounding with recent infections in these ages. Based on an estimated 7-year half-life of homologous
sss  protection after HIN1pdm infection in children (Ranjeva et al., 2019) and the fact that most children experience primary
sse influenza A infection by 5 years of age (Bodewes et al., 2011), we reasoned that excluding children <15 years old would
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357 diminish the impact of protection from recent infection on our results. When we excluded the youngest age groups, our
sss  estimates of HIN1 imprinting protection decreased while H3N2 imprinting protection increased (Figure 5, second row).
3o However, initial infection by HIN1 was still more protective than initial infection by H3N2, both imprinting effects remained
se0  positive, and there was no significant change in the values of other estimated parameters (Appendix 2: Table 1 and Table 2).
361 The effects of recent infection should also manifest in the difference between the observed and estimated numbers of cases
se2  (i.e., the excess cases, Appendix 1: "Calculating excess cases"), since unlike typical transmission models, our model does not
363 take prior-season infections into account when estimating cases for the current season. More infections in a birth cohort in
sea  one season should reduce susceptibility in that birth cohort at the start of the next season. We thus expect that excess cases in
3es one season will be followed by missing cases in the next season dominated by that subtype (i.e., a negative correlation in
se6  excess cases). Instead, we observed that excess cases for each birth cohort are weakly positively correlated from season to
367 season, suggesting that immunity from recent infections is not a major driver of temporal variation in the age distribution of
ses  cases (Figure 5-Supplement 5).

360 Since older adults have the highest probability of primary infection with HIN1, we also reasoned that older adults might
szo  disproportionately drive the strong protection from HIN1 imprinting we observe. People born before 1947 were likely exposed
s71 to HINI strains that are antigenically similar to the post-pandemic HIN1 strains that comprise most of our HINT1 infection
372 data (Manicassamy et al., 2010; O’Donnell et al., 2012), creating the possibility that strain-specific cross-immunity drives
a7z the pattern we attribute to subtype-specific imprinting. These people nearly all fall into the >65 year-old age group in the
sza  study period. The study also underenrolled medically attended infections among people in nursing facilities, which would
s7s  artificially lower the case count in this age group and may affect estimates of imprinting protection. Therefore, we excluded
sze adults >65 years old and refitted our models. Excluding the oldest adults does not significantly change estimated imprinting
377 protection or other parameters (Appendix 2 Table 1 and Table 2).

378 When we exclude both the youngest and oldest age groups, initial infections by HIN1 and H3N2 have similar protective
szo  effects (Figure 5, bottom row). This shows that the combined effects of cross-protection in both the youngest and oldest
sso  individuals contribute to the signal of imprinting protection we observe, but they are not its sole drivers.
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Figure 5. Estimates of imprinting strength. Imprinting is more protective against HIN1 infection than H3N2 infection. Open circles
represent the maximum likelihood estimates of imprinting parameters from the model including HA subtype imprinting and age-specific VE
fitted to the indicated age group (y-axis). Black lines show 95% confidence intervals.

ss1  VE varies by birth cohort in older children and adults

ss2 The best-fitting model includes age-specific VE (Figure 4-Supplement 1; Appendix 2: Table 2). While serological responses
ss3  to influenza vaccination are weakest in the young (Englund et al., 2005; Neuzil et al., 2006) and old (Lee et al., 2018;
ssa DiazGranados et al., 2014), it is unclear what age-related factors would drive variation in VE in other age groups. We

sss  hypothesized that VE in these ages varies with early exposure history, which correlates with birth year, rather than age.
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386 To test this hypothesis, we fitted a model with birth-cohort-specific VE to the cases, excluding either children <15 years
ss7  old or adults >65 years old. We chose birth cohorts that corresponded to the age groups of the original model in 2017-2018
sss  (Materials and Methods: "Vaccination"), keeping the number of parameters the same (e.g., VE in the 20-29 age group became
sso  VE in the 1988-1997 birth year cohort). We find that age-specific VE still outperforms all other models after we exclude the
300 oldest age group (>65 years old). In contrast, birth-cohort-specific VE performs better when we exclude children <15 years
so1  old (Figure 6-Supplement 1). Estimates of imprinting protection and age-specific risk of medically attended influenza in the
302 birth-cohort-specific VE models are not significantly different from estimates from the best-fitting model fitted to all ages
so3  (Appendix 2: Table 1). Taken together, these results suggest that birth-cohort-specific VE best explains the case distribution
304 in older children and adults, who have likely experienced their first influenza infection, whereas age-specific VE best explains
ses  cases in younger children, who have less influenza exposure.

396 VE differs between birth cohorts that have similar imprinting by subtype (Figure 6; Appendix 2: Table 5). For example,
307 the 1968-1977 and 1988-1997 cohorts have similar probabilities of primary exposure to HIN1 and H3N2, but they differ
ses  substantially in their VE to both subtypes (Figure 6). The 1988-1997 and 1998-2002 cohorts also have similar probabilities
300 of primary exposure to each subtype and have similar HIN1 VEs, but have significantly different H3N2 VEs (Figure 6).
s00 Antigenic differences within each subtype might explain this variation.
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Figure 6. Estimates of birth-cohort-specific VE. Birth-cohort-specific VE differs significantly between subtypes and birth cohorts. The
location of each pie chart represents the H3N2 (x-axis) and HIN1 (y-axis) VE estimates for a birth cohort (indicated by text) obtained from
our model fitted to people >15 years old. Pie charts are colored by the probability of first infection by each subtype (i.e., imprinting
probability). 95% confidence intervals of the VE estimates are indicated by light grey solid lines. The dashed grey line shows the diagonal
where the VE estimate for HINT1 is equal to the VE estimate for H3N2.

«01 Discrepancies partly explained by antigenic evolution
a2 The best-fitting model accurately reproduces the age distributions of vaccinated and unvaccinated cases of each subtype,
a3 aggregated across seasons (Figure 7A). The only exception is that it underestimates aggregate HIN1 cases in unvaccinated

a4 5-9 year-olds. By examining the differences between predicted and observed cases for each season, we see that this is largely
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s0s driven by infection during the 2009 HIN1 pandemic (Figure 7B). Such a large antigenic change may have negated any
a06  protection from previous infection in 5-9 year-olds and made them particularly susceptible to pandemic infection.

407 The model underestimates cases in unvaccinated individuals who were 30-39 years old and over 50 years old in the
a8 2013-2014 season (Figure 7B), as indicated by the many excess cases in these age groups in that season. This is further
s00 evidence that subtype-specific imprinting cannot explain all age variation. As mentioned before, this season provided one of
410 the first examples that original antigenic sin could affect protection: middle-aged adults had been targeting a familiar site on
a1 the pandemic strain that then mutated, rendering them susceptible. Other age groups were effectively blind to these changes,
a1z owing to their different exposure histories (Linderman et al., 2014; Huang et al., 2015; Arriola et al., 2014; Dévila et al., 2014;
413 Petrie et al., 2016).

sia  Discussion

a1s  The distribution of influenza cases by birth year is consistent with subtype-level imprinting, whereby initial infection with a
a16  subtype protects against future medically attended infections by the same subtype. The stronger protective effect observed
a17  from primary HINT1 infection compared to primary H3N2 infection may be caused by stronger cross-protective responses to
a1 conserved epitopes in the more slowly evolving HIN1 (Bedford et al., 2015). This is in line with previous work showing
s10 that protection conferred by HIN1 infection lasts longer than protection conferred by H3N2 infection (Ranjeva et al., 2019).
a20  Another recent study found stronger imprinting protection from primary HIN1 compared to primary H3N2 infection (Gostic
a21  etal., 2019). Subtype-specific protection observed in seasonal influenza is narrower than the previously reported HA-group-
422 level imprinting protection against avian influenza (Gostic et al., 2016), but in both cases, the protection correlates strongly
423 with primary infection rather than any prior exposure.

424 Examining cases of seasonal influenza over a 20-year period in Arizona, Gostic et al., 2019 find evidence of imprinting
425 protection not only from HA but also NA, which we do not. We speculate that this discrepancy may be due to increasing
426 vaccination coverage over time in middle-aged adults. During the period of the Arizona study (1993-1994 through 2014-
a2z 2015), vaccination coverage in U.S. adults increased most rapidly in this age group (NHIS, 2009), which corresponds to the
a2 H2N2-imprinted cohorts near the end of the study. Without adjustment for vaccination, the apparently increased protection in
a20 the middle aged might resemble N2 imprinting. Accounting for vaccination in the MESA population, including the relatively
430 stable vaccination coverage in each age group over time (Figure 1-Supplement 3), suggests imprinting protection is driven by
a1 HA.

432 In contrast to the clear role of the imprinting subtype in protection against medically attended infection, the model
a3z implicates the imprinting strain or other attributes of early exposure history in VE. We expect that people born around the
a3a  same time were likely exposed to similar strains, not just subtypes, of influenza A early in life, and our results support the idea
435 that biases in immune memory from these early exposures (i.e., original antigenic sin; Davenport and Hennessy, 1957; Francis,
ase  1960; Groth and Webster, 1966) influence VE. Specifically, we observe that our model is consistent with previous suggestions
437 of birth-cohort-specific VE. The model with birth-cohort-specific VE better estimates cases in vaccinated 50-64 year-olds
438 (born 1953-1967) in the 2015-2016 season than the model with age-specific VE, as indicated by the fewer excess cases
430 predicted in that age group and an improved fit of 1.1 log-likelihood units (Figure 6-Supplement 2; Appendix 1: "Calculating
aa0  excess cases"). Reduced VE in this group during the 2015-2016 season has been attributed to the exacerbation of antigenic
4a1  mismatch by the vaccine in adults whose antibody responses were focused on a non-protective site (Skowronski et al., 2017b;
aa2  Flannery et al., 2018). The improved performance of birth-cohort-specific VE relative to age-specific VE suggests other
4a3  seasons and age groups where original antigenic sin might have influenced VE, such as 20-29 year-olds in the 2007-2008
sas influenza season.

445 Although seasonal estimates of VE routinely stratify by age, shifts in VE from one season to the next might thus be easier
ass to interpret in light of infection history (e.g., Skowronski et al., 2017b; Flannery et al., 2018). The results suggest this effect
aa7  may be subtle, i.e., influenced by strains’ specific identities rather than merely their subtype. Our model cannot distinguish
ass  between the possibility that the precise identity of the imprinting strain primarily determines later VE, or if individuals’
aa0  responses to vaccination are shaped by a particular succession of exposures, which would be common to others in the same
aso  birth cohort. Regardless, variation in VE between birth cohorts appears substantial and presents a challenge for vaccination
as1  strategies (Erbelding et al., 2018).

452 The use of different influenza vaccines in MESA during this period is unlikely to affect the results. Most people enrolled
as3  in the study received the standard-dose inactivated influenza vaccine (IIV-SD) (Figure 1-Supplement 7). However, between
asa 9-26% of vaccinated children <18 years old received the live attenuated influenza vaccine (LAIV) between the 2008-2009


https://doi.org/10.1101/19001875
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRXxiv preprint doi: https://doi.org/10.1101/19001875; this version posted March 29, 2020. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

S
=}

Cases
(unvaccinated)
- N w
o o
o o o
P

300 A
200 1~ 0O

100

300

200 A
100 4
0 — T

H PN O P S ‘*@‘* >‘°‘*‘°
G X s Rk
'9\”'@@@@*’ &

o
k=)

Cases
(vaccinated)
o
o o

D D O H X

VAN SR )
ST ©
Age group (years) Age group (years)

O Cases

Best-fitting model

2007-2008 2008-2009 2009Pan

10 50 A
[Mls1s
0
T
M .%...'.l...

2009-2010 2010-2011 2011-2012

25

Excess
cases
o
o

2.5 A
0.0 A
-25

Excess
cases

51

2012-2013 2013-2014 2014-2015

-10
-10

Excess
cases
1
N
o o
-—
o O
-
o o
]ﬁiéggégé;J

2015-2016 2016-2017 2017-2018

-10

-10

Excess
cases
I
g O O
=N
o o
3 IEE%;{iézi}
6\
N
o O

I H1N1 unvaccinated I H3N2 unvaccinated
[ H1N1 vaccinated [ H3N2 vaccinated

Figure 7. Model predictions compared to observed case counts. A. The model including age-specific VE and subtype-specific HA
imprinting accurately predicts the overall age distribution of cases across seasons and age groups. Each row depicts the age distribution of
cases among unvaccinated (top) and vaccinated (bottom) individuals over all sampled seasons (2007-2008 through 2017-2018). Each column
indicates HIN1 cases (left, blue) and H3N2 cases (right, red). Open circles represent observed cases, solid lines represent the predicted
number of cases from the best-fitting model, the shaded area represents the 95% prediction interval of the best-fitting model. B. Excess cases
of dominant subtype for each season. Excess cases are defined as the predicted number of cases from the best-fitting model - observed cases
(Appendix 1: "Calculating excess cases"). Each panel shows the excess cases of the dominant subtype for each season for each age group
among unvaccinated (dark bars) and vaccinated (light bars) individuals. Grey error bars show the 95% prediction interval.
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ass  and 2015-2016 seasons (Figure 1-Supplement 7B). A separate study of LAIV VE in the United States found that LAIV and
as6  1IV-SD recipients who were repeat vaccinees (as most children were) had similar VE, and thus we do not expect that LAIV
as7  receipt should affect VE estimates (McLean et al., 2018). Similarly, 1-15% of adults >65 years old received the high-dose
a5 inactivated influenza vaccine (IIV-HD) between 2009-2010 and 2017-2018 (Figure 1-Supplement 7C). This vaccine is 20%
as0  more effective than IIV-SD (Lee et al., 2018). Therefore, the changing ratio of IIV-HD to IIV-SD recipients over time might
460 bias results toward cohort-specific VE in models that include people >65 years old. However, when we fitted to cases between
a61  15-64 years old, we found that cohort-specific VE still performed best. Thus, we conclude that changes in IIV-HD coverage
s62  do not substantially influence results.

463 Potential methodological biases and the vaccination history of the study population nonetheless suggest caution in
sea interpreting VE estimates. Selection and misclassification biases can arise when using influenza test-negative controls to
a6s  control for differences in healthcare-seeking behavior (Lewnard et al., 2018; Sullivan et al., 2016). Because we also use
466 test-negative controls to set our null expectation for the distribution of cases among birth cohorts, our VE estimates are
467 subject to these biases as well. Moreover, since 45% of the study population is vaccinated, and most participants are frequent
aes  vaccinees (Figure 1-Supplement 6), we are limited in our ability to generalize the VE results to populations with much
460 lower vaccination coverage and/or a shorter history of vaccination. Frequent vaccination has been associated with reduced
a70  VE (McLean et al., 2014; Saito et al., 2018; Skowronski et al., 2016). Therefore, the model may underestimate VE in less
a71 vaccinated populations. Underestimation of VE could also occur if unvaccinated people are protected by vaccination in
a72  the preceding season. Inference might also be distorted if vaccination has large indirect effects, which our model does not
473 consider. Finally, our analysis is worth repeating in a larger population to reduce stochastic influences. We observed an
a7a  unusually high HIN1 VE in the 1998-2002 birth cohort. Because we restricted cases in this analysis to people >15 years old,
a7s  this VE estimate included data from only the 2013-2014 and 2015-2016 influenza seasons. No HIN1 cases among vaccinated
a76  oOr unvaccinated individuals were observed in this birth cohort in those seasons, which led to the high VE. This might have
477 been due to particular epidemic dynamics in MESA.

478 Incorporating differences in susceptibility based on early exposures might improve methods to forecast influenza seasons.
a7o  The analysis of the relative risk of infection during the first half of each season shows more variation in the susceptible age
as0  groups from season to season than previously estimated (Worby et al., 2015). While the smaller sample sizes in MESA
ss1  introduce uncertainty, the correlation between the relative risk and total fraction of cases indicates that the age groups
as2  driving epidemics indeed change from season to season. Because the contact structure of the population is probably constant
ss3  over influenza seasons, variation in the driving age group may be determined by fluctuating susceptibility, which is partly
4sa  determined by early infections. Therefore, incorporating information on early exposure history into epidemic models may
ass  allow for more accurate identification of at-risk populations and fine-scale epidemic timing.

486 While the rate of antigenic evolution affects the rate at which different populations become susceptible to infection,
as7  we propose that the heterogeneity in susceptibility observed here may also drive antigenic evolution. Heterogeneity in
ass  susceptibility implies that influenza viruses face different selective pressures in groups with different exposure histories (Cobey
480 and Hensley, 2017; Nakajima et al., 2000). Recent research consistent with this hypothesis has shown that sera isolated from
a0 different individuals can select for distinct escape mutants (Lee et al., 2019). More careful study of how immune memory to

s01 influenza evolves from infection and vaccination might improve understanding of influenza’s evolution.
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0 Appendix 1: Supplementary methods

710 Vaccination coverage

711 Seasonal influenza vaccination coverage for MESA was collected by age in the 2007-2008 through 2017-2018 seasons using a
712 regional immunization registry (Irving et al., 2009). Monovalent vaccination coverage for the 2009-2010 season was obtained
713 by directly measuring monovalent vaccination coverage in enrolled individuals and fitting a smoothing spline to the data
71 (Figure 1-Supplement 3). We also calculated the fraction of people who received different vaccination formulations, and
715 found that most people received IIV-SD (Figure 1-Supplement 7).

716 Correlation of relative risk and fraction of cases

71z To assess whether an age group’s relative risk correlates with the fraction of cases of that age group in the same season, we
71 performed a rank correlation analysis. For each season, we ranked each age group based on its relative risk and the fraction of
710 cases within that age group. If age groups were tied in either relative risk or fraction of cases, we assigned them the average
720 rank they spanned. We then calculated the Pearson’s correlation coefficient for these two rankings. A positive correlation
721 indicates that an age group with a large relative risk compared to other age groups will also make up a large proportion of

722 cases compared to other age groups.

723 Seasonal intensity
724 We defined the intensity of an influenza season as the product of the mean fraction of patients with influenza-like illness (ILI)

725 and the percentage of specimens testing positive for influenza A that season,
= ILLF,

t N,
726 where ILI, is the mean fraction of all patients with ILI in season t adjusted for differences in state population size (CDC,

; (28)

72z 2018), F, is the number of respiratory specimens testing positive for influenza A in season 7, and N, is the total number of
728 respiratory specimens tested in season ¢. For seasons 1997-1998 through 2017-2018, these data were obtained from the U.S.
720 Outpatient Influenza-like Illness Surveillance Network (ILINet) and the World Health Organization/National Respiratory
730 and Enteric Virus Surveillance System (WHO/NREVSS) Collaborating Labs (CDC, 2018). For seasons 1976-1977 through
731 1996-1997 when seasonal ILI data were not available, we assumed that the mean ILI was equal to the mean of mean ILI
732 for seasons 1997-1998 through 2017-2018. We obtained data on F, and N, for these seasons from Thompson et al., 2003.
733 We then normalized the intensity of each season by dividing I, by the mean of I, from the 1976-1977 through 2017-2018
73a  seasons. For all seasons before 1976-1977, for which no seasonal intensity data were available, we assumed that the intensity

735 of influenza A equalled the mean intensity of seasons 1976-1977 through 2017-2018.

73¢  Fraction of season experienced

737 We defined the fraction of a given influenza season f,,, occurring in week w of season ¢ as

ILL, F,,

N wy Ly Fy,’
wit Doty TN
5 w'=wqy Nw’,l

Juwr = (29)
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738 where ILI,, is the weighted fraction of all patients with ILI in week w of season ¢, F,,, is the number of respiratory specimens
730 testing positive for influenza A in week w of season 7, and N, is the number of specimens tested in week w of season

) ILI F,, . . .. . .
740 1. ZZ,’W —wli7w't s the product of ILI and the fraction of positive influenza A specimens summed over all weeks of the
=%0

Nt 4 )
7a1  influenza season f, where wj, is the first week of the season and wy is the final week of the season. We defined the start of
7a2 the influenza season as week 40 of the calendar year, which usually falls at the beginning of October. For seasons before

7a3 1997-1998, where weekly data is unavailable, we assumed that the fraction of the influenza season experienced in week w was

fuos = Fuoss (30)

e where f,,, is the mean fraction of the influenza season experienced at week w for all seasons after 1997-1998.

745 We used f,,, to calculate the fraction of an influenza season experienced by an individual born in year y. We assumed
7a6  that people born in year y were born uniformly throughout the year. We also assumed that due to maternal immunity, infants
7az  did not experience immunizing exposure to influenza until they were at least 180 days old. Let p,,, be the proportion of
7as  individuals born in year y that are over 180 days old in week w of season 7 and y,, be the fraction of individuals born in year

7a9  y exposed to influenza season r. Then

M)f

Vi = 2 FuiPyuos 3D
w=wy

7s0  Calculating the fraction unexposed

7s1 When calculating imprinting probabilities, we used an iterative approach to calculate U, the fraction of people in birth cohort
752y who were unexposed at the start of season ¢. First, we assumed that in the first year of life (i.e., when t = y), the entire
753 population was unexposed. For seasons where ¢ > y, the fraction unexposed depends on the fraction unexposed at the start of

7sa  the previous season (U,,_;) and the attack rate in the previous season (a,,_;). Thus,

1 t=y
U, = 32)
Uy,H(l - ay’H) t>y

zss  Birth year distribution of the study population

7s6  In order to convert the demographic age distribution to a birth year distribution, we assumed that people were born uniformly
757 throughout the year. We defined a breakpoint date prior to the start of the enrollment period based on when the the 6 month-old
7ss  age limit cutoff was set (e.g., if the breakpoint date was Ocotober 1, then infants had to be 6 months old by that date to be
750 eligible for enrollment). We used this date to calculate the fraction of people of age a in season t who were born in year f — y
760 (d al, 1y

761 dg o=y — 1. Breakpoint dates ranged from September 1 through January 1 with the exception of the pandemic season

762 which had a breakpoint date of May 1, 2009. The start of the enrollment period ranged from December to January with the

Joryeart —y—1 (di z,y)' A fraction d al iy of the total population of age a in season ¢ was assigned to birth year # — y and

763 exception of the 2009 pandemic season, when enrollment began in May 2009.

7ea Fraction of birth cohort with specific age

7es  When converting an age-specific parameter to a birth-cohort-specific parameter as in Materials and Methods "Age-specific
766 factors", we considered that each birth cohort had two possible ages (al and a2) in a given season . We assumed that people
767 were born uniformly throughout the year and used the same breakpoint dates described above in "Birth year distribution of
7es  the study population." Then, f(al,t,y), the fraction of people born in year y who were age al in season ¢, is the fraction of
760 people born in year y who were born on a date prior to the breakpoint date for season ¢. Finally, f(a2,1, y), the fraction of
770 people born in year y who were age a2 in season ¢, is 1 - f(al,t, y).

71 Age-specific rates of approachment, enrollment, and nursing home residence

772 The relative rates at which different age groups were approached for study enrollment (the approachment rate, x ,) varied

approac]
773 between seasons. Similarly, the relative rates at which different age groups enrolled in the study after being approached
774 (the enrollment rate, x, ;) also varied between seasons. Enrollment rates also varied between vaccinated and unvaccinated

77 individuals.
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776 We defined the approachment rate of an age group g in season # as

N,

approached,t,g

x , (33)

approach,t,g = NMAAR]
1.8

777 where N is the number of people in age group g during season  who were approached for enrollment, and Nyjaagy,

approached,t,g
77s  is the total number of people in the MESA cohort who presented with MAARI regardless of whether they were approached

770 for enrollment.

780 We defined the enrollment rate of age group g in season ¢ with vaccination status v as
N, enrolled,t
— 1.8,V
xenroll,t,g,u - N (34)

approached.t,g,v

781 Where Nenrolled,t,gA,v

N ypproached.sg,0 1S the number of people in age group g with vaccination status v who were approached for enrollment in season

7e3  t. Due to differences in data collection for the 2007-2008 and 2008-2009 seasons, complete vaccination records for eligible

is the number of people in age group g with vaccination status v who enrolled in the study in season ¢, and

7sa  unenrolled individuals were not available, so we assumed that the enrollment rates by age group and vaccination status in
7es  those seasons were equal to the mean enrollment rate for each age group and vaccination status across all other seasons.
786 We normalized x,

by the value of x for the reference age group (i.e., 20-29 year-olds) in each season.

approach,t,g approach,t,g

7e7  Similarly, we normalized Xy, , tO the value of Xy ., fOr unvaccinated members of the reference age group for each

7ss  season. This yielded the relative approachment and enrollment rates x/ . and x/ . We converted both x’
approach,t,g enroll,t,g,v approach,t,g

780 and x/ to birth-year specific covariates (i.e. covariates by y instead of g) using the same procedure described in

enroll.t,g,v
700 Materials and Methods: "Age-specific factors" (Equation 9).
791 Finally, the study did not enroll residents of skilled nursing facilities with dedicated medical staff. To account for this, we

702 estimated the proportion of the population in nursing facilities within the study area. We obtained the total number of beds in
7o3  nursing facilities within MESA in 2018 from the Wisconsin Department of Health Services (WDHS, 2018). We assumed that
794 the total number of beds did not change between 2007-2008 and 2017-2018. We also used data from the Centers for Medicare
7os and Medicaid Services (CMS, 2015) to calculate the percent of beds occupied in Wisconsin nursing facilities by age for 2011
796 through 2014 and the fraction of people in a nursing facility by age group. We used a smoothing spline to obtain the fraction
797 of people of a given age in a nursing facility. For seasons before 2010-2011 and after 2013-2014, we assumed that the fraction
708 of people of a given age in a nursing facility was the average value for 2011-2014. Given the total population of the study area
7e0 by age and season, we calculated the fraction of people in a given age a and season ¢ who are in nursing facilities (k, ,). We
soo  converted this to a covariate by birth year (k, ) using the same procedure described in Materials and Methods: "Age-specific
so1 factors" (Equation 9).

s Evaluation of predictive power

sos To evaluate the predictive power of each model, we performed leave-one-out cross-validation. We excluded data from each
sos season and fitted our models to the remaining seasons. Because our goal was to evaluate how well our models predict seasonal
sos epidemics, we excluded the 2009 pandemic season from all cross-validation analyses. We also did not test seasonal VE
sos models with cross-validation since estimation of seasonal VE requires data from the excluded season.

807 Letn be the number of observed cases of subtype s in season # among people born in year y with vaccination status v.

REARY

sos Let ), o1~y D€ the multinomial probability of a case of subtype s in season ¢~ among people born in year y with vaccination

WU

soe  status v under model M fitted to all seasons except ¢~. Let N,

;. be the total number of cases of subtype s in season ¢~. Then,

si0 the predicted number of cases of subtype s in season t~ among people born in year y with vaccination status v under model

si1 M fitted to all seasons except ¢~ is

-
pM,s,t‘,y.UNSyf ‘ (35)
s1i2 The sum squared prediction error for model M in season ¢~ is given by
Ymax.t Ymax.t
_ 1~ 2 1~ 2
SSEM.F = Z (nx,t’,y,unvac - pM,g,;—,y,unw\c,Ns,r’) + Z (ns,r,y,vac. - pM,S,;—,y,Vac,Nx.t*) ’ (36)
y=1918 y=1918

s1s  where y_. . is the maximum possible birth year in season .
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s14 We evaluated each model M by its mean-squared prediction error across all excluded seasons ¢~. Let T~ be the set of all
s1s  seasons left out and X be the size of T~. Then the mean-squared prediction error for model M is

MSE,, = Zrer- SSEw, 37

X

s Sensitivity to uncertainty in ILI and the frequency of influenza A
s1iz  Because of the lack of ILI data prior to the 1997-1998 season and the lack of data on the frequency of influenza A prior to
s1is  the 1976-1977 season, we used simulated datasets to test the robustness of our results. We randomly assigned ILI values
s10  from the 1997-1998 through 2017-2018 seasons to every season which did not have a measured ILI value. Similarly, we
s20 randomly assigned values of the frequency of influenza A from the 1976-1977 through 2017-2018 seasons to every season
s21  which did not have a measured value for the frequency of influenza A. We created 10000 simulated datasets using this
s22 procedure and recalculated imprinting probabilities for each dataset (Figure 3-Supplement 2). In the period of HIN1 and
s2s  H3N2 co-circulation, the maximum HI1N1 imprinting probability for a particular birth cohort corresponds to the minimum
s22  H3N2 imprinting probability for that cohort and vice-versa. Therefore, to generate datasets representing the upper and lower
s2s  bounds of imprinting probabilities, we assigned imprinting probabilities from the simulation with either the lowest or highest
s2¢ HIN1 imprinting probability to each birth cohort in each season. We then fitted our models to these two datasets and evaluated

s2z model fit using cAIC.

s2s  Sensitivity to age groups
s20 To test whether our models were sensitive to our choice of age groups, we fit revised versions of all our models with different

830  age groups:

831 o 0-4 years, 5-17 years, 18-49 years, 50-64 years, and >65 years
832 o (-4 years, 5-17 years, 18-64 years, and >65 years
833 These models with alternate age groupings were fitted to case data to determine whether our findings on the strength

s3a  of protection from initial HIN1 and H3N2 infection were altered compared to fits using the higher-resolution age grouping
s3s  described above (Appendix 2: Table 4).

s3s  Sensitivity to sampling effort

s3z  Sampling effort was not even across seasons, and analysis of the number of influenza cases per sampling day suggested that a
s3s  significant number of cases may have been missed at the beginning or end of a specific seasons (Figure 5-Supplement 3). As
s30  our analysis of relative risk indicates, different age groups are more susceptible during different points in the influenza season,
sa0 and therefore missing data from the beginning or end of a season could introduce bias in the observed age distribution of
8a1  Cases.

842 To adjust for this, we simulated cases for seasons which did not have sufficient sampling of the start or end of the epidemic
sa3  period. We considered a season sufficiently sampled if the sampling period spanned the start and end of the epidemic. We
saa expect that the start and end of the epidemic have few cases per sampling day, and we therefore defined sufficiently sampled

sas  Seasons as seasons where

846 o the number of cases per sampling day in the first week of the enrollment period is <1 and
847 o the number of cases per sampling day in the last week of the enrollment period is <1.
848 To extrapolate the start of a season, we linearly regressed the number of cases of the dominant subtype per sampling day

sao for each week of the first half of the season and identified the week of the season where the number of cases per sampling
sso day fell below 1 (7). For each week from ¢, to the first week of the enrollment period, we used the regression of cases per
ss1  sampling day to calculate the number of cases we expected to see in each week. Summing these yields the total number of
ss2 unsampled cases at the beginning of the season. We used a similar approach to extrapolate the number of unsampled cases at
ss3  the end of a season by instead regressing cases per sampling day for each week of the latter half of the season. We did not
ssa  extrapolate cases for the 2010-2011 season for this analysis since the observed number of cases per sampling day did not
sss  follow a typical epidemic curve.

856 We stochastically assigned a birth year and vaccination status to these cases according to a multinomial distribution. The

ss7  success probabilities of this distribution were set using the age distribution of cases of the dominant subtype from the first two
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sss  weeks of the enrollment period (if extrapolating the beginning of a season) or the last two weeks of the enrollment period
sso  (if extrapolating the end of a season). Specifically, we calculated the distribution of observed cases in the first or last two
seo  weeks of the enrollment period among nine age groups (Materials and Methods: "Age-specific factors") with their associated
se1 vaccination status. We then assumed that cases were uniformly distributed among all birth years contained in an age group.
se2 This yielded a set of probabilities describing the probability of infection given birth year and vaccination status in a specific
863  S€ason.

864 We sampled from these multinomial distributions 1000 times to obtain augmented datasets that combined observed and
ses  extrapolated cases. For each replicate simulation, we calculated the age distribution of cases for the entire season as well as
ses the relative risk of each age group in the first versus the latter half of the season (Figure 2-Supplement 2B). We also fitted the
se7  best-fitting model to 100 of these datasets (excluding the 2010-2011 season) and recorded the estimated imprinting strength
ses for both HIN1 and H3N2 for each fit (Figure 5-Supplement 4).

seo Calculating excess cases

s7o  We defined excess cases for a given birth cohort or age group as the number of observed cases for that birth cohort or age group
s71  minus the number of predicted cases for that age group. Predictions were obtained by multiplying the multinomial probabilities
s72  produced by the model by the total number of cases of the dominant subtype in each season. A 95% prediction interval was
s73  obtained by simulating 10000 datasets using the multinomial probabilities from a specific model (Figure 6-Supplement 2,
s7a Figure 7).

875 To test whether recent infection might be confounding our estimates, we calculated the correlation between excess cases
s7e  in each birth cohort in each season with excess cases of the same birth cohort in the next season with the same dominant
s7z  subtype (Figure 5-Supplement 5).

szs  Appendix 2: Supplementary tables and figures
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Appendix 2 Table 3. Estimates of imprinting protection fitted to datasets representing upper and lower bounds of imprinting probabilities.

Dataset Best-fitting model H1 imprinting | H3 imprinting
protection (%, | protection (%,
95% CI) 95% CI)
Lower bound Demography, age, | 72 (57, 84) 32 (17,44)
HA imprinting, age-
specific VE
Upper bound Demography, age, | 61(48,72) 37 (20, 51)
HA imprinting, age-
specific VE

Appendix 2 Table 4. Estimates of imprinting protection for models with different age groups.

Age groups (years) Best-fitting model H1 imprinting | H3 imprinting
protection (%, | protection (%,
95% CI) 95% CI)
0-4, 5-17, 18-64, 65+ Demography, age, | 56 (40, 68) 36 (25, 46)
HA imprinting, age-
specific VE
0-8,9-17, 18-49, 50-64, | Demography, age, | 62(47,74) 35(21,48)
65+ HA imprinting, age-
specific VE

Appendix 2 Table 5. Estimates for VE from model with birth-cohort-specific VE fitted to people > 15 years old.

Birth cohort | HIN1 VE (%, MLE, 95% CI) | H3N2 VE (%, MLE, 95% CI)
1998-2002 100 (22, 100) 0 (0, 36)

1988-1997 89 (74, 93) 62 (45, 76)

1978-1987 59 (35, 76) 17 (0, 35)

1968-1977 23 (0, 47) 25 (2,44)

1953-1967 28 (4, 46) 43 (32, 53)

1918-1952 61 (38, 76) 45 (32, 55)
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Figure 1-Supplement 1. Sample collection and final study population. Flowchart of sample collection (A) and final study
population stratified by season, age, test status, and vaccination status (B). "Test-positive" is defined as testing positive for the

dominant circulating influenza A subtype in that season.
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Figure 1-Supplement 2. Birth year distribution of population. Each panel shows the population distribution of all
individuals in the study area who met the age criteria for study enrollment. People under 6 months old at the start of the

sampling period in a season were not eligible to participate.
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Figure 1-Supplement 3. Vaccination coverage. We estimated monovalent vaccination coverage in 2009-2010 by measuring

vaccination coverage among enrolled people and fitting a smoothing spline to the data (solid line).
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Figure 1-Supplement 4. Age distribution of high-risk medical status. High-risk medical status (Materials and Methods,
"Study cohort") varies with age and vaccination status but stays relatively consistent across seasons. Each plot shows the
fraction of enrolled people who had a high-risk medical condition for each season stratified by age, vaccination status, and

test status. High-risk medical condition data was not collected for the 2009 pandemic season.

32


https://doi.org/10.1101/19001875
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRXxiv preprint doi: https://doi.org/10.1101/19001875; this version posted March 29, 2020. The copyright holder for this preprint (which was

not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

2007-2008 2008-2009 2009-2010
1.01 ° /// 1.0 - ° /// 0.50 - ® ///
. /// . /// //
x 0.5 eQ” 0.5 °” . ,E?’d
<%// @, 0.25 Lo
b o P
0.0 17 . . 0.0 17 . . 0.00 17 . .
0.0 0.5 1.0 0.0 0.5 1.0 0.00 0.25 0.50
2010-2011 2011-2012 2012-2013
1.0 4 ’, 1.0 4 ’ 1.0 1 ’,
o, -~ o -~ o7
O.’/ O.// Q//
& 0.5 @/ 051 &7 051 oo’
® ®- 1
7’ 7’ /O
7’ 7’ 7’
0.017 . . 0.017 . . 0.0 17 . .
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
2013-2014 2014-2015 2015-2016
P 1.0 - 1.0 ’
9// o/// o///
(0Xs Q.7 0.”
& 05- Q- 0.5 - 9@/’ 0.5 - &/'
& ,
// // //
7’ 7’ 7’
0.0 1L . 0.01Z . . 0.0 17 . .
0.0 0.5 0.0 0.5 1.0 0.0 0.5 1.0
2016-2017 2017-2018 Vaccination coverage
’ 1.0 1 s
o-” o -~
O // //
m 05 n ?ﬁ',/ O 5 @e//
I ] 7
/// ///
0.017 i 0012 i i
0.0 0.5 0.0 0.5 1.0
Vaccination coverage Vaccination coverage
Age group (years)
© 04 o 1519 © 4049
© 59 O 20-29 O 50-64
o 10-14 O 30-39 O 65+

Figure 1-Supplement 5. Rate of MAARI in vaccinated and unvaccinated controls. Vaccinated individuals seek health-
care for MAARI at a higher rate than predicted by vaccination coverage. We measured the fraction of vaccinated people among

all who presented with MAARI and tested negative for influenza (R = Vacelnated lest negtive controls

Unvaccinated test-negative controls+Vaccinated test-negative controls ”
Materials and Methods: "Vaccination"). This is plotted against vaccination coverage by season for different age groups. The

dashed grey line shows where R and vaccination coverage are equal. Vaccination coverage for the 2009-2010 season uses
monovalent vaccination coverage estimated directly from all individuals with MAARI. We do not show the 2009 pandemic
season because the monovalent vaccine was not distributed until the second wave of the pandemic.
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Figure 1-Supplement 6. Repeat vaccination by age group and season. Each bar shows the fraction of individuals who
were vaccinated in that season who also received at least one influenza vaccination in the previous two seasons.
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Figure 1-Supplement 7. Vaccine type received. Most vaccinated study participants received the inactivated influenza
vaccine. The fraction of vaccinated people who received the standard-dose inactivated influenza vaccine (IIV-SD), the
high-dose inactivated influenza vaccine (IIV-HD), or the live attenuated influenza vaccine (LAIV) is shown for all participants
(A), children < 18 years old (B), and adults >65 years old (C).
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Figure 2-Supplement 1. Statistical analysis of age distribution of cases. Seasons differ in their age distributions. The
color intensity of each cell shows the observed G-test statistic, which measures how much the age distributions of two
seasons differ from the null expectation that they are drawn from the same distribution (Materials and Methods: "Calculating
differences in the age distribution between seasons."). The text in each cell shows the Bonferroni-corrected p-value for each
G-test. The dominant subtype of each season is indicated by the label color.
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Figure 2-Supplement 2. Correlation of relative risk and fraction of cases within an age group. A. Each point shows
the rank of an age group’s relative risk of infection during the first half compared to the second half of an epidemic period
(x-axis) and the rank of the fraction of cases belonging to that age group in the same epidemic period (y-axis) (Appendix 1:
"Correlation of relative risk and fraction of cases"). Points are colored by the dominant subtype of the season and x-axis
values are offset to facilitate visualization. Points with the same x and y values overlap and are indicated by darker shading. B.
To account for potential undersampling of cases at the beginning and end of specific seasons, we simulated 1000 replicate
epidemics (Appendix 1 : "Sensitivity to sampling effort") and calculated the same correlation as in panel A. The range is
indicated by a vertical line and the median by a square.
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Figure 2-Supplement 3. Relative risk among different age groups across seasons. Each panel shows the relative risk of
infection in the first versus the second half of an epidemic for different age groups in each season (Materials and Methods:
"Calculating relative risk"). Relative risk greater than 1 (indicated by the grey dashed line) means that an age group was
more likely to be infected at during the first rather than second half of an epidemic. Age groups with no cases in the latter
half of a season are indicated by asterisks and no bar. The dominant subtype of each subtype is indicated by the bar color.
95% binomial confidence intervals are indicated by grey vertical lines. Bars with asterisks over them indicate that the 95%
confidence interval includes the scenario where all cases occur in the first half of the season.
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Figure 3—-Supplement 1. Intensity and subtype frequencies of influenza A. The intensity (top panel) and subtype frequen-
cies (bottom panel) of influenza A seasons in the United States. Intensity is measured as the product of influenza-like illness
(ILI) and the fraction of respiratory specimens testing positive for influenza A in national surveillance data (Appendix 1:
"Seasonal intensity"). This is normalized to the average intensity value between 1977 and 2017-2018. Seasons before 1977
where United States ILI surveillance data are unavailable are assumed to have an intensity score of 1 (i.e., the average score
over all other seasons). Subtype frequencies were obtained from national surveillance data before the 2007-2008 season and
directly from the MESA studies afterwards.
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Figure 3—-Supplement 2. Imprinting probabilities with random sampling of seasonal intensity. Uncertainty in ILI and
the frequency of A have a small impact on imprinting probabilities. We simulated 10000 datasets to represent the range of
possible epidemic sizes for seasons where we did not have data on either ILI or the frequency of influenza A (Appendix 1:
"Sensitivity to uncertainty in ILI and the frequency of influenza A"). The vertical dashed line shows the point at which data
on ILI and the frequency of influenza A are available while the vertical dotted line shows the point at which data on only
the frequency of A is available. The median imprinting probabilities for those simulations is shown as a solid line with the
maximum and minimum imprinting probabilities shown by the bounds of the shaded area.
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Figure 4-Supplement 1. Ranking of models fitted to all ages. The best-fitting model includes age-specific risk of medically
attended influenza A infection, HA subtype imprinting, and age-specific VE. The 11 main models are shown as rows with
colored squares indicating whether that model included parameters indicated by the columns. Orange squares indicate
covariates that were not estimated. Light green squares mean that a given estimated parameter was supported. Dark green
squares mean that the model did not support the inclusion of the parameters indicated by the column (i.e., the CI includes 0).
Models are sorted by their cAIC relative to the best-fitting model.
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Figure 5-Supplement 1. Ranking of models by predictive power. The model which best-predicts excluded seasons
includes HA subtype imprinting and age-specific VE. Models are shown as rows with colored squares indicating whether that
model included parameters indicated by the columns. Orange squares indicate covariates that were not estimated. Light green
squares mean that a given estimated parameter was supported. Dark green squares mean that the model did not support the
inclusion of the parameters indicated by the column (i.e., the CI includes 0). Models are sorted by their MSE in predicting
excluded seasons (Appendix 1: "Evaluation of predictive power").

42


https://doi.org/10.1101/19001875
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRXxiv preprint doi: https://doi.org/10.1101/19001875; this version posted March 29, 2020. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

It is made available under a CC-BY-NC-ND 4.0 International license .

A
3 2007-2008 2008-2009 2009-2010
© M 4
§ 101 s 28 T TR
g 0 ¥ T T T T 0.0 - T T T
o]
E 2010-2011 2011-2012 2012-2013
£S o ISR T an il I W s 0
o]
3 2013-2014 2014-2015 2015-2016
T s
=R 5 T,
g 0°
> LSS %Q\Q
3 2016-2017 2017-2018 Birth year
% g 10 ) | 10 ;
@ T 3 o Oy
2° 0 e y 0
> PSS LSS ® LSS S (9\0
Birth year Birth year
—— Mean prediction »  Observed 95% prediction interval
B

893 o 2007-2008 2008-2009 2009-2010
24
8 e f
§ 8 0 . T T T T T T ’ﬁ;
>
3
g8
g8
>
B 2015-2016
g8 % Y 4
[SH R o aa o
§ o 0 et d

R q,Q\Q

- 2017-2018 Birth year
T o 10 |
£3 i "
g 8 0 Lgaeee® -
>

Birth year

O 0 D PN MO
57 2 07 D D N
B F S EFF S

Birth year

—— Mean prediction = Observed 95% prediction interval

Figure 5-Supplement 2. Model performance on excluded seasons. Each panel shows the number of observed and predicted
cases by birth year among unvaccinated (A) and vaccinated (B) study participants. Predictions and 95% prediction intervals
were generated by fitting the model including age-specific risk of medically attended influenza A infection, HA subtype
imprinting, and age-specific VE fitted to all seasons except the season in the panel (Appendix 1: "Evaluation of predictive

f)%)wer").
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Figure 5-Supplement 3. Cases per sampling day. Each panel shows the number of cases per sampling day (green circles).
We extrapolated cases at the start and end of the season (orange dashed line) if the observed number of cases per day exceeded

1 (black line) at the start and end of that season (Appendix 1: "Sensitivity to sampling effort").
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Figure 5-Supplement 4. Estimates of imprinting protection with added simulated cases. We fitted the model including
HA subtype imprinting and age-specific VE to simulated cases in seasons where the enrollment period does not fully overlap
the epidemic period and recorded the maximum likelihood estimates for HIN1 and H3N2 imprinting protection (Appendix 1:
"Sensitivity to sampling effort"). The distributions of these values are shown as violin plots and the medians are shown as

squares. Estimates of imprinting protection from the best-fitting model without simulated data with a 95% confidence interval
are shown as circles with error bars.
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Figure 5-Supplement 5. Correlation of excess cases between seasons. We tested whether excess cases in each birth cohort
were negatively correlated with excess cases in the same birth cohort in the next season of the same subtype (Appendix 1:
"Calculating excess cases"). We find a weak positive correlation for cases of HIN1 (Spearman’s p=0.12, 95% CI 0.02-0.22)
and H3N2 (Spearman’s p=0.05, 95% CI -0.03-0.14).
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Figure 6-Supplement 1. Ranking of models fitted to people >15 years old. A model including age-specific risk of
medically attended influenza A infection, HA subtype imprinting, and birth-cohort-specific VE best fits cases of people
>15 years old. The 11 main models are shown as rows with colored squares indicating whether that model uses parameters
indicated by the columns. Orange squares indicate covariates that were not estimated. Light green squares mean that a given
estimated parameter was supported. Dark green squares mean that the model did not support the inclusion of the parameters
indicated by the column (i.e., the CI includes 0). Models are sorted by their cAIC relative to the best-fitting model.
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Figure 6-Supplement 2. Excess cases for models using birth-cohort-specific VE and age-specific VE. The birth-cohort-
specific VE model predicts observed cases better than the age-specific VE model for people >15 years old. Bars show the
excess cases in vaccinated individuals relative to the birth-cohort-specific VE model (dark colors) and the age-specific VE
model (light colors) for age groups >15 years old. Colors indicate the dominant subtype of a given season. 95% prediction

intervals are shown as grey error bars.
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