1	A systematic review and meta-analysis on the effectiveness of an
2	invasive strategy compared to a conservative approach in elderly
3	patients with non-ST elevation acute coronary syndrome
4	
5	Joan Dymphna P. Reaño, MD ¹ , Maria Grethel C. Dimalala, MD ² , Louie Alfred B. Shiu, MD ³ ,
6	Karen V. Miralles, MD ³ , Noemi S. Pestaño, MD ³ , Felix Eduardo R. Punzalan, MD ³ , Bernadette
7	Tumanan-Mendoza, MD ³ , Michael Joseph T. Reyes, MD ^{3,4} , Rafael R. Castillo, MD ^{3,5,6}
8	
9	¹ Fellow in Adult Cardiology, Manila Doctors Hospital, Manila, Philippines
10	² Fellow in Interventional Cardiology, Manila Doctors Hospital, Manila, Philippines
11	³ Consultant in Adult Cardiology, Manila Doctors Hospital, Manila, Philippines
12	⁴ Consultant in Interventional Cardiology, Manila Doctors Hospital, Manila, Philippines
13	⁵ Professor in Cardiovascular Medicine, Adventist University of the Philippines, Silang, Philippines
14	⁶ Dean Emeritus, FAME Leaders Academy, Makati, Philippines
15	
16	Correspondence to:
17	Dr. Joan Dymphna P Reaño, Manila Doctors Hospital, 667 United Nations Avenue, Ermita, Manila,
18	Philippines
19	Email address: jdp.reano@gmail.com; medicalfiles.inquirer@gmail.com
20	Mobile tel. no.: +63 917 5089 757
21	
22	Short/running title: Management strategies in elderly with NSTEMI
23	
24	
25	
26	

27 ABSTRACT

- 28 Background: Elderly patients, 65 years old and older, largely represent (>50 %) of hospital-
- admitted patients with acute coronary syndrome (ACS). Data are conflicting comparing efficacy
- 30 of early routine invasive (within 48-72 hours of initial evaluation) versus conservative
- 31 management of ACS in this population.
- 32 **Objective:** We aimed to determine the effectiveness of routine early invasive strategy compared to
- 33 conservative treatment in reducing major adverse cardiovascular events in elderly patients with
- 34 non-ST elevation (NSTE) ACS.

35 Data Sources: We conducted a systematic review of randomized controlled trials through PubMed,

36 Cochrane, and Google Scholar database.

37 Study Selection: The studies included were randomized controlled trials that evaluated the 38 effectiveness of invasive strategy compared to conservative treatment among elderly patients ≥ 65 39 years old diagnosed with NSTEACS. Studies were included if they assessed any of the following 40 outcomes of death, cardiovascular mortality, myocardial infarction (MI), stroke, recurrent angina, 41 and need for revascularization. Five articles were subsequently included in the meta-analysis.

42 **Data Extraction:** Three independent reviewers extracted the data of interest from the articles using

a standardized data collection form that included study quality indicators. Disparity in assessment
was settled by an independent adjudicator.

Data Synthesis: All pooled analyses were based on fixed effects model. A total of 2,495 patients
were included, 1337 in the invasive strategy group, and 1158 in the conservative treatment group.
Results: Meta-analysis showed less incidence of revascularization in the invasive (2%) over
conservative treatment groups (8%), with overall risk ratio of 0.31 (95% CI 0.16-0.61, I² =0%).
There was also less incidence of stroke in the invasive (2%) versus conservative group (3%) but
this was not statistically significant. A significant benefit was noted in the reduction of all-cause

51 mortality (RR 0.63, 95% CI 0.55-0.72, I²=84%) and myocardial infarction (RR 0.62, 95% CI 0.49-

52 0.79, I²=63%) but with significant heterogeneity.

53 Conclusion: There was a significantly lower rate of revascularization in the invasive strategy group 54 compared to the conservative treatment group. In the reduction of all-cause mortality and MI, there 55 was benefit favoring invasive strategy but with significant heterogeneity. These findings do not 56 support the bias against early routine invasive intervention in the elderly group with NSTEACS. 57 However, further studies focusing on the elderly with larger population sizes are still needed. 58

- *Keywords:* Elderly, non-ST Elevation myocardial infarction, acute coronary syndrome, invasive strategy,
 conservative treatment, coronary artery disease, ACS MACE, CVD in Philippines
- 61

62 I. INTRODUCTION

Based on the World Health Organization's Global Burden of Disease report, ischemic heart disease (IHD) is the overall leading cause of death worldwide.¹ Although the annual number of hospital discharges for acute coronary syndromes (ACS) in developed countries has declined slowly over the past two decades, the number has increased in developing countries.² In the Philippines, cardiovascular disease (CVD) remains the leading cause of mortality.³ The Philippine Heart Association ACS registry reported that ACS is prevalent in the age range 51-70, with mean age group of 66 years old. ³

The most recent American College of Cardiology/American Heart Association (ACC/AHA 2014) and the European Society of Cardiology (ESC 2015) guidelines for non–ST segment elevation ACS (NSTEACS) reflect medical advancements in therapeutics and strategies of care leading to improved survival in ACS, but this was mainly observed in relatively younger individuals (<65 years of age) and in men. These guidelines emphasize intensive and early medical and interventional therapy, particularly for those at high risk.^{4,5,6}

76 The 2014 AHA/ACC NSTEACS Guidelines generally recommend that older patients with 77 NSTEACS should be treated with goal-directed medical therapy, together with an early invasive strategy, and revascularization as appropriate.⁵ The 2015 ESC Guidelines for the Management of 78 79 ACS, on the other hand, recommend that decisions on elderly patients with NSTEACS should be 80 based on ischemic and bleeding risks, estimated life expectancy, comorbidities, quality of life, 81 patient values and preferences, and the estimated risks and benefits of revascularization.⁶ Despite 82 the guidelines, older patients are less likely to undergo procedures after an NSTEACS than younger 83 patients due in part to patient and practitioner concerns about the increased risk of 84 complications.7,8,9

Due to conflicting results of studies, lack of specific recommendations from the abovementioned guidelines, and the paucity of data on early invasive strategy versus conservative treatment for NSTEACS in elderly patients, this meta-analysis was conducted to focus on this special population to compare benefits and risks of early invasive therapy versus conservative management.

90

91 II. RESEARCH QUESTION

Among elderly patients aged ≥ 65 years old with NSTEACS, how effective is invasive
 strategy compared to conservative treatment in preventing major adverse cardiovascular events
 (MACE)?

95

96 III. OBJECTIVES

97 *General:* To determine the effectiveness of invasive strategy compared to conservative treatment

98 in reducing MACE among elderly patients with NSTEACS.

99

101 Specific:

- 102 Among elderly patients with NSTEACS, to determine the effectiveness of invasive strategy
- 103 compared to conservative treatment, in 6 months (short-term) to 3 years (long-term), in reducing:
- a. Death or all-cause mortality;
- b. Cardiovascular mortality;
- 106 c. Myocardial infarction (MI);
- 107 d. Stroke;
- 108 e. Recurrent angina;
- 109 f. Need for revascularization.

110

111 IV. METHODOLOGY

112 Study Registration

Prior to the conduct of the research, the study was registered and approved by theCommittee on Research (CORES) of Manila Doctors Hospital.

115 Criteria for considering studies for this review

116 The studies included were randomized controlled trials that evaluated the effectiveness of 117 invasive strategy compared to conservative treatment among elderly patients \geq 65 years old 118 diagnosed with NSTEACS. Studies were included if any of the outcomes assessed were: death, 119 cardiovascular mortality, MI, stroke, recurrent angina, and need for revascularization.

120

121 Definition of terms:

Invasive strategy or early invasive strategy –Routine early (within 48-72 hours of initial
 evaluation) cardiac catheterization, followed by PCI, CABG, or continuing medical
 therapy, depending on the coronary anatomy.

125 2. Conservative treatment - Initial optimal medical management, with cardiac 126 catheterization reserved for patients with recurrent ischemia at rest or after a non-invasive 127 stress test, followed by revascularization if the anatomy is suitable. 128 3. Elderly patients - Patients aged 65 years or older (WHO, 2000), with or without 129 comorbidities. 130 4. Non-ST elevation acute coronary syndrome (NSTEACS) – Unstable angina, with or 131 without ST segment depression on electrocardiogram with normal or raised blood 132 concentration of troponin T or I. Elevated troponin was defined as a value exceeding the 133 99th percentile of a normal population at the local laboratory at each participating site.

134

135 Search methods for identification of studies

Systematic computerized search (APPENDIX A) was performed using the Pubmed and
Cochrane databases. MESH and free text of the following main key terms were used: "randomized
controlled trials", "elderly", "non-ST elevation acute coronary syndrome", "invasive strategy",
"conservative management", "invasive strategy versus conservative strategy", "major adverse
cardiovascular events", "all-cause mortality", "cardiovascular mortality", "myocardial infarction",
"stroke", "recurrent angina", "need for revascularization". The last search was done on 10 August
2017.

Eligibility assessment was performed independently in an unblinded standard manner by three reviewers. The literature search identified 322 possible articles. Of these, 69 were relevant, particularly they involved studies related to ACS. Prospective cohort studies and post hoc analyses were excluded. Of the 69 articles, 55 were excluded due to different intervention since they did not involve comparing invasive versus conservative management in ACS. After assessing 14 articles for eligibility, 8 articles with different population and methods were excluded (details for the titles of the studies and reasons for exclusion are listed in APPENDIX D). One article was possibly

- 150 eligible but did not report the event rates per treatment group. To access needed data in this
- 151 particular study, correspondence with the author via email was done, but with no reply from the
- author until the time of writing. Five articles were subsequently included in the meta-analysis
- 153 (Figure 1).

Figure 1. Search strategy for identification of studies

156

154

155

157 Assessment of risk bias of included trials:

Three independent reviewers extracted the data of interest using a standardized data collection form and individually appraised each trial. The reviewers discussed the quality of included trials, outcomes to be collected, and risks of bias. Disparity in assessment was settled by an independent adjudicator. The assessment of random sequence generation, allocation concealment, incomplete outcome data, blinding of participants and personnel, blinding of outcome

assessment, and intention-to-treat analysis was done using the quality scale for meta-analyticreview, the Cochrane Collaboration Tool for Risk of Bias.

165

166 Data analysis

167 Review Manager 5.3 was used to analyze the data. Analysis of dichotomous data was done
168 using risk ratio, 95% confidence interval, and Mantel-Haenszel method with fixed effects model.

169 Heterogeneity between trials was tested using a standard Chi-square test and I² statistics. The p-

170 value of <0.10 was considered to be statistically significant and I^2 of \ge 50% is considered to have

- 171 high heterogeneity.
- 172

Description of studies

Five randomized controlled trials involving a total of 2,495 patients met the inclusion criteria. The data on population characteristics, intervention type, and measured outcomes were extracted from each trial (Table 1). Four of the trials included elderly patients with NSTEACS aged \geq 70 years while one trial included patients \geq 65 years old.¹⁰ The studies compared the effectiveness of early invasive strategy (treatment group) versus optimum medical treatment (control group) in the management of NSTEACS in elderly patients.

180

181 Table 1. Characteristics of included trials

Study ID	Pop	ulation	Intervention	Outcome	Methods
Sanchis et	Inclusion: Exclusion:		Treatment Group:	Primary:	Open label
al., 2016	Patients ≥ 70	1) Dynamic ST-	Routine cardiac	Composite of all-	multicenter
	years old with	segment changes;	catheterization	cause mortality,	randomized
N=106	significant	2) Prior known non	within 72 h of	recurrent myocardial	controlled
	comorbidities	revascularizable	admission	infarction and	trial
		CAD;			

	diagnosed with	3) Concomitant	Control Group:	readmission for	(Follow-up of
	NSTEMI	heart disease	Only medical	cardiac cause	3 to 36
		different than	treatment, although		months)
		ischemic heart	cardiac	Secondary:	
		disease; and	catheterization was	All-cause mortality,	
		4) Life expectancy	allowed in the case	Reinfarction or	
		<u>≤</u> 1 year.	of poor in-hospital	Post-discharge	
			outcome	revascularization,	
				and bleeding	
				episodes	
Tegn et. al,	Inclusion:	Exclusion:	Treatment Group:	Primary:	Open label
2016	Patients ≥ 80	1) Clinically	Early coronary	Composite of MI,	multicenter
	years old with	unstable;	angiography (within	need for urgent	randomized
N=457	NSTEMI or	2) Cardiogenic	24 hours) with	revascularization	controlled
	Unstable Angina	shock;	immediate	stroke and death	trial
		3) Continuing	assessment for		(Follow-up of
		bleeding problems;	adhoc PCI, CABG,	Secondary:	3 years)
		or	or optimum medical	Death from any	
		4) Short life	treatment	cause	
		expectancy.			
			Control Group:		
			Optimum medical		
			treatment alone		
Puymirat et	Inclusion	Exclusion:	Treatment Group:	Primary:	Open label
al., 2012	criteria:	1) Iatrogenic MI;	Early coronary	Mortality, Minor	multicenter
N=1,645	Men or women	2) ACS diagnosis	angiography	bleeding, and Major	randomized
(total	aged over 18	invalidated in favor		bleeding	controlled
population)	years (Includes		Control Group:		trial

	Elderly Subgroup	of another	Received only		(Follow-up of
n= 658	> 75 years old),	diagnosis; and	medical therapy		3 years)
(elderly	who were	3) Patients with			
subgroup)	admitted within	unstable angina and			
	48 h after	no increase in			
	symptom onset	cardiac biomarkers.			
	for an acute MI				
Savonnito, et	Inclusion:	Exclusion:	Treatment group:	Primary:	Open
al, 2012	Patients <a>275	1) Secondary causes	Coronary	Composite of all-	randomized
	years old,	of myocardial	angiography within	cause mortality,	controlled
	assessed to have	ischemia;	72 h and, when	non-fatal MI,	trial
N=313	NSTEACS with	2) Ongoing	indicated, coronary	disabling stroke, and	(Follow-up of
	cardiac ischemic	myocardial ischemia	revascularization by	repeat hospital stay	1 year)
	symptoms at rest	or heart failure	either PCI or CABG	for cardiovascular	
	within 48 h	despite optimized		causes or severe	
		therapy;	Control Group:	bleeding within 12	
		3) PCI or CABG	Initially	months	
		within 30 days	conservative therapy		
		before	and coronary		
		randomization;	angiography during		
		4) Serum creatinine	index hospital stay		
		>2.5 mg/dl;	was allowed in the		
		5) Cerebrovascular	case of refractory		
		accident within the	ischemia,		
		previous month;	myocardial		
		6) Recent	(re)infarction, heart		
		transfusions;	failure of ischemic		
			origin, or malignant		

		•		•	
		7) Gastrointestinal	ventricular		
		or genitourinary	arrhythmias		
		bleeding within 6			
		weeks before			
		randomization;			
		8) Platelet count			
		<90,000 cells/ul			
		9) Ongoing oral			
		anticoagulation			
		10) Severe			
		obstructive lung			
		disease			
		11) Malignancy;			
		12) Neurological			
		deficit limiting			
		follow-up.			
Bach et al.,	Inclusion:	Exclusion:	Treatment Group:	Primary:	Open
2004	Patients older	1) Persistent ST-	Coronary	Rates of 30-day and	randomized
N=2, 220	than 18 years of	segment elevation;	angiography 4 to 48	6-month mortality,	controlled
(total	age (with	2) Secondary	hours after	nonfatal MI,	trial
population)	subgroup of ≥ 65	angina;	randomization	rehospitalization,	(Follow-up of
	years old) with	3) Percutaneous		stroke, and	6 months and
n=962	episode of angina	coronary	Control Group:	hemorrhagic	1 year)
(elderly	in the preceding	revascularization or	Medical treatment;	complications	
subgroup)	24 hours;	coronary bypass	Coronary		
	Candidates for	surgery within the	angiography was		
	coronary	previous 6 months;	reserved for patients		
	revascularization		who had certain		

	1	r	1	
	4) Unstable	high-risk		
	comorbidities;	characteristics		
	5) Left bundle-	consistent with		
	branch block or	failure of medical		
	paced rhythm;	therapy or stress-		
	6) Severe congestive	induced ischemia		
	heart failure or			
	cardiogenic shock;			
	7) Clinically			
	important systemic			
	disease;			
	8) Serum creatinine			
	concentration			
	greater than 220			
	umol/L (>2.5			
	mg/dL);			
	9) Treatment with a			
	glycoprotein IIb/IIIa			
	antagonist within			
	the past 96 hours; or			
	10) Ongoing long-			
	term treatment with			
	ticlopidine,			
	clopidogrel, or			
	warfarin.			

182

183 In the treatment arm, four trials specified the time to intervention (4-72 hours) ^{10,12,13,14}.
184 Only one study did not specify the time to intervention but only mentioned "during initial

admission".¹¹ Two out of the five trials included CABG as part of the intervention when
 indicated.^{12,13} In the control group all the trials used standard medical treatment .¹⁰⁻¹⁴

All trials assessed the outcome of all-cause mortality. All trials except one reported the outcome of myocardial infarction.¹¹ All trials except two assessed the outcome of stroke.^{11,14} The outcomes of revascularization were reported by all except by two studies.^{10,11} Lastly, the events of cardiovascular death and recurrent angina were assessed only by one study.¹³

191 The Cochrane collaboration tool was used to assess the risk of bias. The random sequence 192 generation, allocation concealment, incomplete outcome data, blinding of participants and 193 personnel, blinding of outcome assessment, and intention-to-treat analysis were evaluated for each 194 trial. All included trials were assessed to have low risk for bias (Table 2).

195

Study ID	Method of	Method of	Incomplete	Blinding of	Blinding of	Selective
	Random	Allocation	Outcome	Participants	Outcome	Reporting/
	Sequence	Concealment	Data/Loss of	and	Assessment	Intention
	Generation	(Selection	participants	Personnel	(Detection	to treat
	(Selection	Bias)	to follow up	(Performance	Bias)	analysis
	Bias)		(Attrition	Bias)		(Reporting
			Bias)			Bias)
Sanchis et	Low Risk	Low Risk	Low Risk	Low Risk	Low Risk	Low Risk
al., 2016						
Tegn et.	Low Risk	Low Risk	Low Risk	Low Risk	Low Risk	Low Risk
Al, 2016						

Table 2. Quality assessment table

Puymirat	Low Risk					
et al.,						
2012						
Savonnito,	Low Risk					
et al, 2012						
Bach et	Low Risk					
al., 2004						

197

198

199 V. RESULTS

200 Effects of intervention on outcomes of interest

- 201 *A. All-cause mortality*
- A total of 242 among 1338 (18 %) elderly patients with NSTEACS died in the Invasive Strategy Group; while 296 died among 1158 (26 %) patients in the Conservative Group (Figure 2). The pooled analysis of all-cause mortality showed statistically significant benefit of invasive over conservative strategy with an overall risk ratio of 0.63 (95% CI 0.55 to 0.72) but with significant heterogeneity (p value of 0.0001, $I^2 = 84\%$).

	Invasive St	ategy	Conservative Manag	jement		Risk Ratio		Risk Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl		M-H, Fixed, 95% Cl	1, 95% Cl	
Bach 2004	25	491	28	471	8.5%	0.86 [0.51, 1.45]				
Puymirat 2012	119	412	158	246	58.9%	0.45 [0.38, 0.54]				
Sanchis 2016	22	52	26	54	7.6%	0.88 [0.58, 1.34]				
Savonitto 2012	19	154	22	159	6.4%	0.89 [0.50, 1.58]				
Tegn 2016	57	229	62	228	18.5%	0.92 [0.67, 1.25]				
Total (95% CI)	1338			1158	100.0%	0.63 [0.55, 0.72]		•		
Total events	242		296							
Heterogeneity: Chi² = 24.58, df = 4 (P < 0.0001); I² = 84%									10	100
Test for overall effect: Z = 6.60 (P < 0.00001)							0.01	Favours Invasive Strategy Favours	Conservative Mgt	100

- 208 Figure 2. Comparison between invasive and conservative strategy with the outcome of all-
- 209 cause mortality
- 210
- 211

212 B. Myocardial infarction

In the Invasive Strategy Group, there were 89 events of MI among a total of 926 (10 %) patients; while there were 142 among 912 (16 %) patients in the Conservative Group (Figure 3). The pooled analysis showed that invasive strategy is beneficial over conservative treatment in preventing MI with an overall risk ratio of 0.62 (95% CI 0.49 to 0.79) but with significant heterogeneity (p value of 0.0001, $I^2 = 63\%$).

	Invasive Strategy		rategy Conservative Management		Risk Ratio			Risk Ratio		
Study or Subgroup	Events Total		al Events Total Weight M-H, Fixed, 95% Cl			M-H, Fixe	ed, 95% Cl			
Bach 2004	23	491	45	471	32.2%	0.49 [0.30, 0.80]				
Sanchis 2016	16	52	11	54	7.6%	1.51 [0.78, 2.94]		-		
Savonitto 2012	11	154	17	159	11.7%	0.67 [0.32, 1.38]			+	
Tegn 2016	39	229	69	228	48.5%	0.56 [0.40, 0.80]		+		
Total (95% CI)		926		912	100.0%	0.62 [0.49, 0.79]		•		
Total events	89		142							
Heterogeneity: Chi ² = 8.08, df = 3 (P = 0.04); l ² = 63%		; I² = 63%					01	1 10	100	
Test for overall effect: Z = 3.82 (P = 0.0001)							0.01	Favours Invasive Strategy	Favours Conservative Mgt	100

- 218
- 219 Figure 3. Comparison between invasive and conservative strategy with the outcome of
- 220 myocardial infarction
- 221
- 222 *C. Stroke*

Among the five trials, Savonitto et al. (2012), Tegn (2016), and Bach (2004) reported the outcomes of stroke (Figure 4). In the Invasive Strategy Group, there were 13 events of stroke among 874 (2%) patients; while there were 24 among 858 (3%) patients in the Conservative Group. The pooled analysis showed that early invasive strategy was favored over conservative treatment in preventing stroke but no statistically significant benefit with overall risk ratio of 0.53 (95% CI 0.27-1.03, $I^2 = 0\%$).

- 230
- Figure 4. Comparison between invasive and conservative strategy with the outcome of stroke
- 232
- 233

234 D. Need for revascularization

In elderly patients with NSTEACS, there were a total of 10 patients among 435 (2%) who needed revascularization in the Invasive Group while there were 34 patients among 441 (8%) in the Conservative Group (Figure 5). The pooled analysis for need for revascularization showed statistically significant benefit with an overall risk ratio of 0.31 (95% CI 0.16 to 0.61) with no significant heterogeneity (p value of 0.0006, $I^2 = 0\%$).

240

Invasive Strategy			Conservative Manag	ement		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	I M-H, Fixed, 95% Cl
Sanchis 2016	0	52	1	54	4.3%	0.35 (0.01, 8.30)]
Savonitto 2012	5	154	9	159	25.8%	0.57 [0.20, 1.67]	Ŋ ∎
Tegn 2016	5	229	24	228	70.0%	0.21 [0.08, 0.53]	ıj — — — —
Total (95% CI)		435		441	100.0%	0.31 [0.16, 0.61]	1 🔶
Total events	10		34				
Heterogeneity: Chi ² = 1.97, df = 2 (P = 0.37); I ² = 0%		; ² = 0%					
Test for overall effect: Z = 3.41 (P = 0.0006)							Favours Invasive Strategy Favours Conservative Mot

241

Figure 5. Comparison between invasive and conservative strategy with the outcome of need

243 for revascularization

244 E. Outcomes for cardiovascular mortality and recurrent angina

Among the five trials, only one trial assessed the outcomes of cardiovascular mortality and recurrent angina.¹³ The cardiovascular mortality incidence in the invasive versus the control group was 10% and 11 %, respectively, showing a non-statistically significant benefit of invasive over conservative treatment (RR 0.87, 95% CI, 0.49-1.56, p=0.65). Likewise, an invasive strategy showed a non-statistically significant benefit over conservative treatment in reducing recurrent angina (RR 0.81, 95% CI 0.45–1.46, p=0.49).

251

252 VI. DISCUSSION

253 Meta-analysis of data from the five trials included in this study showed that an early 254 invasive strategy appears to be beneficial in suitable elderly patients > 65 years old with NSTEACS. 255 There was significantly less need for revascularization in the invasive strategy group compared to 256 the conservative treatment group. This finding implies that more patients in the conservative group 257 clinically worsened during their course in the ward, requiring revascularization. It is also possible 258 that early anatomic definition of the diseased coronaries may help the attending physician optimize 259 an appropriate evidence-based management of the patient. The studies that evaluated the outcomes 260 of revascularization stated that the indications for revascularization in the conservative group were: 261 positive pre-discharge stress test, poor in-hospital outcomes, recurrent ischemia, reinfarction, 262 malignant ventricular arrhythmias, refractory angina, and heart failure.¹²⁻¹⁴ Some patients who 263 subsequently required revascularization could have probably been better off with an early invasive 264 approach.

For the outcomes of death and MI, an invasive strategy showed a statistically significant benefit over conservative treatment but with significant heterogeneity. The possible sources of heterogeneity for the outcomes of death and MI may be the small number of events and sample sizes. In two studies, the elderly population was just a subgroup analysis of the total population.¹⁰⁻

¹¹ Hence, the population in the subgroup analysis may not be powered enough to detect the 269 270 differences in the intervention and outcomes of interest. Furthermore, there were differences in age cutoffs and follow-up period. Two studies had age cutoffs of 75 years^{11,13} while the other three 271 studies had age cutoffs of 65, 70, and 80 years.^{10,12,14} Possible clinical differences in outcomes may 272 273 exist in these age brackets of the elderly population. In terms of follow-up periods, two studies had follow-up of 3 years^{11,12}; one had follow-up period of 3 months to 3 years¹⁴; one had follow-up of 274 1 year¹³; while one had follow-up of 6 months and 1 year¹⁰. However, despite the heterogeneity, 275 276 data from these studies clustered on the direction towards benefit favoring invasive over 277 conservative strategy.

In the reduction of stroke, invasive strategy showed benefit over conservative treatment but this was not statistically significant. The outcomes for cardiovascular mortality and recurrent angina were assessed only in one study¹³, which showed also a non-statistically significant benefit of invasive strategy over conservative treatment among elderly NSTEACS patients.

282 Overall, this study does not support the relatively conservative tendency when dealing with 283 elderly patients with NSTEACS in real-life clinical setting. The elderly population is considered a 284 high-risk group wherein more than half the mortality in NSTEACS occur⁵ and a more aggressive 285 approach in suitable patients may be more appropriate and beneficial. Among people who die of 286 ischemic heart disease, 83% were >65 years of age.¹ This mortality rate is expected to increase in 287 the forthcoming decades due to improving life expectancy of the elderly. Age is one of the most 288 important predictors of risk in NSTEACS. Each 10-year increase in age results in a 75% increase in hospital mortality in ACS patients.¹⁵ Despite the relatively higher risk in this age group, elderly 289 290 ACS patients are under-represented in clinical trials such that subjects older than 75 years of age 291 account for less than 10%, and those older than 85 years account for less than 2% of all NSTEACS 292 subjects.⁷ This highlights the need for more clinical trials and studies in this age group.

Data from the CRUSADE (Can Rapid Risk Stratification of Unstable Angina Patients
Suppress Adverse Outcomes with Early Implementation of the American College of

Cardiology/American Heart Association Guidelines) registry showed that NSTEMI patients aged ≥ 65 years who experienced an in-hospital major bleed had a 33% increased risk of 30-day mortality.¹⁶ However, the advancement of equipment and technique has made PCI safer for even very elderly patients (≥ 90 years of age) with high success rates and declining major bleeding risk.¹⁷

299

300 VII. SUMMARY AND CONCLUSION

Results of this meta-analysis suggest some benefits with an early invasive strategy compared to a conservative treatment approach in the management of elderly patients with NSTEACS. There was a significantly lower rate of revascularization in the invasive strategy group compared to the conservative treatment group. A statistically significant benefit favoring invasive strategy was also noted in the reduction of death and myocardial infarction but with significant heterogeneity. These findings do not support the bias against early routine invasive intervention in the elderly group with NSTEACS.

308 Although an early invasive strategy may be favorable among elderly patients presenting 309 with NSTEACS, the certainty of benefit versus risk still needs to be supported by larger clinical 310 trials and registries with uniform age cutoff for elderly, particularly > 65 years old, to provide high generalizability and statistical power. Current risk scoring systems such as the GRACE (Global 311 312 Registry of Acute Coronary Events) Score, TIMI (Thrombolysis in Myocardial Infarction) Risk 313 Score, and CRUSADE Bleeding Score are recommended in the initial evaluation of elderly patients 314 presenting with NSTEACS. A special risk scoring may be developed to more accurately identify 315 those who are suitable for an early invasive strategy, with an expected larger outcome and survival 316 benefit.

- 317
- 318
- 319
- 320

321 VIII. ACKNOWLEDGEMENT

- 322 The authors would like to thank God; other consultants in the Section of Cardiology,
- 323 Department of Internal Medicine, Manila Doctors Hospital; family, and friends for their support
- and patience in making this meta-analysis possible.
- 325

326 IX. DECLARATION OF CONFLICT OF INTEREST

327 RRC: member of advisory board or speakers' pool of Servier, Boehringer Ingelheim,

328 Menarini, LRI-Therapharma, Sanofi, UAP Pharma, Unilab; MTR: member of speakers' pool of

- 329 Novartis, Servier, Astra Zeneca; the rest declare no conflict of interest.
- 330

331 X. REFERENCES

- Murray CJ and AD Lopez. Measuring the Global Burden of Disease. *New England Journal of Medicine*. 2013;369:448-57. DOI: 10.1056/NEJMra1201534
- Rosamond, WD, LE Chambless, G Heiss, TH Mosley, J Coresh, E Whitsel, et al: Twenty-twoyear trends in incidence of myocardial infarction, coronary heart disease mortality, and case fatality in 4 US communities, 1987-2008. Circulation 125: 1848, 2012.
- 3. Lazaro, Victor. 2014 PHA Clinical Practice Guidelines for the Diagnosis and Management of
- 338 Patients with Coronary Heart Disease. ASEAN Heart Journal. Vol. 24, no.1, 27 78 (2016)
- 339 4. American Heart Association. Older Americans and cardiovascular diseases— statistics. Available
 340 at: http://www.americanheart.org/presenter.
- 341 5. Amsterdam, EA, NK Wenger, RG Brindis, DE Casey, TG Ganiats, DR Holmes, et al. 2014
 342 AHA/ACC Guideline for the Management of Patients With Non–ST-Elevation Acute Coronary
 343 Syndromes. *Circulation*. 2014;130:e344-e426
- 6. Roffi, M., C. Patrono, JP Collet, C Mueller, M Valgimigli, F Andreotti, et al. 2015 ESC
- 345 Guidelines for the management of acute coronary syndromes in patients presenting without
- 346 persistent ST-segment elevation. European Heart Journal doi:10.1093/eurheartj/ehv320

347	7.	Lee PY. Alexande	r KP. H	ammill BG.	Paso	uali SK.	and Peterson	ED. Re	presentation	of elderly	ν
017	<i>.</i> .	Lee I I, I mentana			I GOG	CHAIL DIL		DD: 100	presentation	01 014011	

- persons and women in published randomized trial of acute coronary syndromes. *JAMA*.
- **349** 2001;286:708 –713.
- 8. Avezum A, Makdisse M, Spencer F, Gore JM, Fox KA, Montalescot G, Eagle KA, White K,
- 351 Mehta RH, Knobel E, Collet JP; GRACE Investigators. Impact of age on management and
- 352 outcome of acute coronary syndrome: observations from the Global Registry of Acute Coronary
- 353 Events (GRACE). Am Heart J. 2005;149:67–73.
- Mann, DL, DP Zipes, P Libby, and R Bonow. Braunwald's Heart Disease: A Textbook of
 Cardiovascular Medicine. 10th edition. 2015.
- Bach RG, Cannon CP, Weintraub WS, DiBattiste PM, Demopoulos, LA, Anderson HV, et al. The
 effect of routine, early invasive management on outcome for elderly patients with non-ST-segment
 elevation acute coronary syndromes. *Ann Intern Med.* 2004;141:186–95.
- Puymirat, E, Taldir G, Aissaoui N, Lemesle G, Lorgis L, Cuisset T, et al. Use of Invasive Strategy
 in Non-ST Segment Elevation Myocardial Infarction Is a Major Determinant of Improved Long-
- 361 Term Survival: FAST MI (French Registry of Acute Coronary Syndrome). JACC: Cardiovascular
- 362 Interventions, Vol. 5, No. 9. September 2012: 893-902
- 363 12. Tegn, N., Michael Abdelnoor, Lars Aaberge, K Endresen, P Smith, S Aakhus, et al. Invasive
- 364 versus conservative strategy in patients aged 80 years or older with non-ST-elevation myocardial
- 365 infarction or unstable angina pectoris (After Eighty study): an open-label randomised controlled
- 366 trial *The Lancet*. January 12, 2016 http://dx.doi.org/10.1016/S0140-6736(15)01166-6
- 367 13. Savonitto S, Cavallini C, Petronio AS, Murena E, Antonicelli R, Sacco A, et al.; Italian Elderly
- 368 ACS Trial Investigators. Early aggressive versus initially conservative treatment in elderly
- 369 patients with non-ST-segment elevation acute coronary syndrome: a randomized controlled trial.
- 370 JACC Cardiovasc Interventions. 2012;5:906–16.
- 371 14. Sanchis J, Nuñez E, Barrabes JA, Marin F, Consuegra-Sanchez L, Ventura S, et al, Randomized
 372 comparison between the invasive and conservative strategies in comorbid elderly patients with
- 373 non-ST elevation myocardial infarction, Eur J Intern Med (2016),
- 374 http://dx.doi.org/10.1016/j.ejim.2016.07.003

375	15. Xuming DAI, JB Whitehead, and KP Alexander. Acute coronary syndrome in the older adults. J
376	Geriatr Cardiol 2016; 13: 101 108. doi:10.11909/j.issn.1671-5411.2016.02.012
377	16 Long DD Subharwal S. Halmas DN Thamas I. Wang TV Bao SV at al. The association of in

- 377 16. Lopes RD, Subherwal S, Holmes DN, Thomas L, Wang TY, Rao SV, et al. The association of in-
- 378 hospital major bleeding with short-, intermediate-, and long-term mortality among older patients
- 379 with non-ST-segment elevation myocardial infarction. Eur Heart J 2012;33:2044-2053.
- 380 17. Dai, Xuming, J. Busby-Whitehead, and KP Alexander. Acute coronary syndrome in the older
- 381 adults. J Geriatr Cardiol 2016; 13: 101 108. doi:10.11909/j.issn.1671-5411.2016.02.012

382

383

384

385 XI. APPENDIX

386

APPENDIX A: PubMed Search Strategy

Recent queries			
in pubmed			
Search	Query	Items found	Time
#100	Search (#42 AND #66 AND #99 AND #20)	322	21:35:50
#99	Search (#92 OR #93 OR #94 OR #95 OR #96 OR #97 OR #98)	3218012	21:26:41
#98	Search (#90 OR #91)	50047	21:25:23
#97	Search (#88 OR #89)	4189	21:25:01
#96	Search (#80 OR #81 OR #82 OR #83 OR #84 OR #85 OR #86 OR	344281	21:24:32
	#87 OR #88 OR #89)		
#95	Search (#75 OR #76 OR #77)	1549850	21:22:53
#94	Search (#72 OR #73 OR #74)	831057	21:21:59
#93	Search (#69 OR #70 OR #71)	1563389	21:21:19
#92	Search (#67 OR #68)	13679	21:20:30
#91	Search revascularization	50047	21:18:20
#90	Search need for revascularization	3465	21:18:06
#89	Search recurrent chest pain	2911	21:17:56

#88	Search recurrent angina	2673	21:17:31
#87	Search cvd hemorrhage	229	21:17:19
#86	Search cvd bleed	210	21:17:04
#85	Search cvd infarct	2332	21:16:47
#84	Search cerebral bleed	72121	21:16:36
#83	Search cerebral hemorrhage	53180	21:16:24
#82	Search cerebral infarct	49028	21:16:10
#81	Search cerebrovascular event	3648	21:16:00
#80	Search cerebrovascular accident	275080	21:15:40
#79	Search cerebrovascular disease	338376	21:15:16
#78	Search stroke	272396	21:15:01
#77	Search heart attack	229883	21:14:43
#76	Search MI	1344629	21:14:23
#75	Search myocardial infarction	223305	21:14:04
#74	Search cardiac death	720781	21:13:45
#73	Search cardiovascular death	95393	21:13:23
#72	Search cardiovascular mortality	151179	21:13:03
#71	Search death	720781	21:12:35
#70	Search mortality	1044577	21:12:15
#69	Search all-cause mortality	28210	21:11:59
#68	Search MACE	6872	21:11:32
#67	Search major adverse cardiovascular events	9103	21:09:35
#66	Search (#61 OR #62 OR #63 OR #64 OR #65)	6249	21:08:38
#65	Search Invasive Therapy Conservative Therapy	4294	21:07:35
#64	Search Invasive Treatment versus Conservative Treatment	294	21:07:20
#63	Search Invasive Management versus Conservative Management	183	21:07:07
#62	Search Invasive Strategy versus Conservative Strategy	125	21:06:53
#61	Search (#59 AND #60)	2471	21:06:15
#60	Search (#51 OR #52 OR #53 OR #54 OR #55 OR #56 OR #57 OR	125297	21:05:05
	#58)		
#59	Search (#43 OR #44 OR #45 OR #46 OR #49 OR #50)	111701	21:03:38
#58	Search Optimal Medical Therapy	42410	20:59:57
#57	Search Optimal Medical Management	19244	20:59:42
#56	Search Optimal Medical Treatment	48204	20:59:31

#55	Search Optimal Medical Strategy	4920	20:58:27
#54	Search Conservative Therapy	67332	20:58:09
#53	Search Conservative Treatment	56611	20:57:58
#52	Search Conservative Management	66213	20:57:43
#51	Search Conservative Strategy	3336	20:57:30
#50	Search CABG	15615	20:57:16
#49	Search Coronary Artery Bypass Graft	64717	20:56:56
#46	Search PTCA	41266	20:56:38
#45	Search Coronary Angioplasty	46901	20:56:19
#44	Search Percutaneous Coronary Angioplasty	21942	20:55:58
#43	Search Invasive Strategy	9348	20:55:34
#42	Search (#40 AND #41)	52265	20:53:53
#41	Search (#28 OR #29 OR #30 OR #31 OR #32 OR #33 OR #34 OR	118669	20:53:22
	#35 OR #36 OR #37 OR #38 OR #39)		
#40	Search (#21 OR #22 OR #23 OR #24 OR #25 OR #26 OR #27)	7732231	20:51:38
#39	Search Q-wave myocardial infarction	3366	20:49:40
#38	Search Q-wave MI	757	20:49:29
#37	Search UA	17483	20:49:13
#36	Search unstable angina	17732	20:48:59
#35	Search ACS	63075	20:48:41
#34	Search acute coronary syndrome	25819	20:48:28
#33	Search non-Q wave myocardial infarction	1631	20:48:10
#32	Search non-Q wave MI	400	20:47:57
#31	Search NSTEMI	2072	20:47:39
#30	Search non-st elevation myocardial infarction	8832	20:47:25
#29	Search NSTEACS	228	20:47:10
#28	Search non-st elevation acute coronary syndrome	2893	20:46:51
#27	Search more than or equal to 65 years old	3404034	20:46:33
#26	Search (65 years old and above)	845	20:46:04
#25	Search super centenarian	491	20:45:49
#24	Search centenarian	752696	20:45:34
#23	Search Advanced age	4671906	20:43:19
#22	Search old	898369	20:42:56
#21	Search elderly	4686863	20:42:37

#20	Search (#1 OR #2 OR #3 OR #4 OR #5 OR #6 OR #7 OR #8 OR	9528711	20:42:17
	#9 OR #10 OR #11 OR #12 OR #13 OR #14 OR #15 OR #16 OR		
	#17 OR #18 OR #19)		
#19	Search (Not (animals [mh] NOT human [mh]))	4353823	20:40:33
#18	Search volunteer* [tw]	180971	20:40:13
#17	Search prospectiv* [tw]	709909	20:40:00
#16	Search control* [tw]	4598941	20:39:43
#15	Search prospective studies [mh]	445018	20:39:27
#14	Search follow-up studies [mh]	569279	20:39:03
#13	Search evaluation studies [mh] Schema: all	0	20:38:42
#12	Search evaluation studies [mh]	0	20:38:41
#11	Search comparative study [mh] Schema: all	0	20:38:18
#10	Search comparative study [mh]	0	20:38:18
#9	Search research design [mh:noexp]	92025	20:38:05
#8	Search (((((singl* [tw] OR doubl* [tw] OR trebl* [tw] OR tripl*	1225171	20:37:46
	[tw] AND (mask* [tw] OR blind* [tw])) OR (placebos [mh] OR		
	placebo* [tw] OR random* [tw])))		
#7	Search ("clinical trial" [tw])	640470	20:37:25
#6	Search clinical trials [mh]	303191	20:36:57
#5	Search clinical trial [pt]	767368	20:36:46
#4	Search single-blind method	39999	20:36:26
#3	Search double-blind method [mh]	140472	20:36:09
#2	Search random allocation [mh]	90997	20:35:54

394 APPENDIX B.

395

Sample Data Extraction Template

Trial ID	Extractor	Year of publication
Title		
Authors		
Citation		

396

397

Participants

Inclusion criteria:

Exclusion criteria:

403

404

Quality assessment/ Risk of Bias Table

Domain	Judgement	Support for Judgement/
	Low Risk/ High Risk/ Unclear	Description
Method of Random		
sequence		
Generation		
(Selection Bias)		
Method of		
allocation		
Concealment		
(Selection Bias)		
Incomplete		
Outcome Data/Loss		
of participants to		
follow up (Attrition		
Bias)		
Blinding of		
Participants and		
Personnel		
(Performance Bias)		
Blinding of		
Outcome		
Assessment		
(Detection Bias)		

Selective Reporting/		
Intention to treat		
analysis (Reporting		
Bias)		
Other Bias		

405

406

Outcomes

	Outcome Measures (Dichotomous)		Total =		
		Intervention n =	on group =	Contr	rol group
					n =
		Events	total	events	Total
	Primary:				
1					
	Secondary:				

	Outcome	Measures	Tota	al = 457		
	(Dichotomous)					
			Intervention gro	oup		
			n = 229		Control group)
					n = 228	
			Events	Total	Events	Total
1	All-Cause Mortality		57	-	62	-

2	Cardiovascular Mortality	Not reported		Not	
				reported	
3	Myocardial infarction	39	-	69	-
4	Stroke	8	-	13	-
5	Recurrent angina	Not reported	-	Not reported	-
6	Need for revascularization	5	-	24	-

Sanchis et al., 2016.

Randomized comparison between the invasive and conservative strategies in comorbid

elderly patients with non-ST elevation myocardial infarction

	Outcome Measures (Dichotomous)	<i>Total</i> = 106			
		Intervention group n = 52		1 group Control group	
				n = 54	
		Events	Total	Events	Total
1	All-Cause Mortality	22	-	26	-
2	Cardiovascular Mortality	Not reported	-	Not reported	
3	Myocardial infarction	16	-	11	-
4	Stroke	Not reported	-	Not reported	-
5	Recurrent angina	Not reported	-	Not reported	-
6	Need for revascularization	0	-	1	-

426	5
420)

Savonitto et al., 2012.

- 427 Early Aggressive Versus Initially Conservative Treatment in Elderly Patients With Non–ST-Segment Elevation Acute
- 428

Coronary Syndrome

	Outcome Measures (Dichotomous)	Tota	al = 313		
		Intervention gro n = 154	oup	Control group n = 159	p
		events	Total	Events	Total
1	All-Cause Mortality	19		22	
2	Cardiovascular Mortality	16		17	
3	Myocardial infarction	11		17	
4	Stroke	0		0	
5	Recurrent angina	0		4	
6	Need for revascularization	5		9	

429

430

Puymirat et al., 2012. FAST-MI

431 Use of Invasive Strategy in Non–ST-Segment Elevation Myocardial Infarction Is a Major Determinant of Improved

- 432
- 433

FAST-MI (French Registry of Acute Coronary Syndrome)

Long-Term Survival

	Outcome Measures	Tota	al = 658		
	(Dichotomous) In the Subgroup > 75	Intervention gro n = 412	up	Control group)
	years old			n = 246	
		Events	Total	Events	Total
1	All-Cause Mortality	119	-	158	-

2	Cardiovascular	Not reported	-	Not	
	Mortality			reported	
3	Myocardial infarction	Not reported	-	Not	-
				reported	
4	Stroke	Not reported	-	Not	-
				reported	
5	Recurrent angina	Not reported	-	Not	-
				reported	
6	Need for	Not reported	-	Not	-
	revascularization			reported	

434

435

Bach et al., 2004.

436 The Effect of Routine, Early Invasive Management on Outcome for Elderly Patients with Non–ST Segment Elevation

437

Acute Coronary Syndromes

	Outcome Measures (Dichotomous) at 6 Months	Tota	al = 962		
		Intervention gro n = 491	oup	Control group	0
				n = 471	
		Events	Total	Events	Total
1	All-Cause Mortality	5.3 % (25)	-	5.9% (28)	-
2	Cardiovascular Mortality	Not reported	-	Not	
				reported	
3	Myocardial infarction	4.7 % (23)	-	9.6 % (45)	-
4	Stroke	Not reported	-	Not	-
				reported	
5	Recurrent angina	Not reported	-	Not	-
				reported	
6	Need for revascularization	Not reported	-	Not	-
				reported	

APPENDIX D.

439 440

Excluded Studies and Reasons for Exclusion

EXCLUDED STUDY	REASON FOR EXCLUSION
Early Invasive Versus Selective Strategy for Non–ST-Segment	> Population: "mean age of the
Elevation Acute Coronary Syndrome: The ICTUS Trial	patients in our study was 62 years
Hoedemaker, MD, Damman, MD, de Winter, MD, et al. Journal of	with relatively few patients older
the American College of Cardiology Vol. 69, No. 15, 2017.	than 80 years"
http://dx.doi.org/10.1016/j.jacc.2017.02.023	> Outcome: Study presented the
	number and treatment assignment of
	patients in the age subgroup > 65
	years but did not state the number of
	outcomes seen per treatment arm.
5-year outcomes in the FRISC-II randomised trial of an	>Population:
invasive versus a non-invasive strategy in non-ST-elevation	Patients were excluded if they were
acute coronary syndrome: a follow-up study	at an advanced age (older than 75
Lagerqvist et al. Lancet 2006; 368: 998–1004	years)
Interventional versus conservative treatment for patients with	>Population: Did not specify age in
unstable angina or non-ST-elevation myocardial infarction: the	the patient selection but described
British Heart Foundation RITA 3 randomised trial	the included population to have a
Fox et al. <i>Lancet 2002;</i> Vol 360; No. 9349, p 1971-1972.	mean age of 62 years
DOI: http://dx.doi.org/10.1016/S0140-6736(02)11864-2	>Outcome: Did not report age
	subgroup results
Elderly patients with myocardial infarction selected for	>Population: Included STEMI
conservative or invasive treatment strategy.	patients
Libungan B, Karlsson T, Albertsson P, Herlitz J.	>Method: Retrospective Study

Clin Interv Aging. 2015 Jan 21;10:321-7. doi:	
10.2147/CIA.S74012. eCollection 2015.	
Invasive strategy in non-ST elevation acute coronary	>Method: Observational longitudinal
syndromes: risks and benefits in an elderly population.	study
Lourenço C, Teixeira R, Antonio N, Saraiva F, Baptista R, Jorge E,	
Monteiro S, Gonçalves F, Monteiro P, Matos V, Calisto J, Faria H,	
Gonçalves L, Freitas M, Providência LA.	
Rev Port Cardiol. 2010 Oct;29(10):1451-72. English, Portuguese.	
Influence of age on use of cardiac catheterization and	>Method: Retrospective Study
associated outcomes in patients with non-ST-elevation acute	
coronary syndromes.	
Bagnall AJ, Goodman SG, Fox KA, Yan RT, Gore JM, Cheema	
AN, Huynh T, Chauret D, Fitchett DH, Langer A, Yan AT;	
Canadian Acute Coronary Syndrome Registry I and II	
Investigators; Canadian Global Registry of Acute Coronary Events	
(GRACE/GRACE2) Investigators.	
Am J Cardiol. 2009 Jun 1;103(11):1530-6. doi:	
10.1016/j.amjcard.2009.01.369. Epub 2009 Apr 8.	
Effect of an invasive strategy on in-hospital outcome in elderly	>Method: Retrospective Study
patients with non-ST-elevation myocardial infarction.	
Bauer T, Koeth O, Jünger C, Heer T, Wienbergen H, Gitt A, Zahn	
R, Senges J, Zeymer U; Acute Coronary Syndromes Registry	
(ACOS) Investigators.	
Eur Heart J. 2007 Dec;28(23):2873-8. Epub 2007 Nov 2.	

Interventional versus conservative treatment in acute non-ST	>Population: Included STEMI
elevation coronary syndrome: time course of patient	patients
management and disease events over one year in the RITA 3	>Method: Post-Hoc Analysis
trial.	
Poole-Wilson PA, Pocock SJ, Fox KA, Henderson RA, Wheatley	
DJ, Chamberlain DA, Shaw TR, Clayton TC; Randomised	
Intervention Trial of unstable Angina Investigators.	
Heart. 2006 Oct;92(10):1473-9. Epub 2006 Apr 18.	
Early invasive versus ischaemia-guided strategies in the	>Population and method: Non-Q
Early invasive versus ischaemia-guided strategies in the management of non-Q wave myocardial infarction patients	>Population and method: Non-Q wave MI patients with prior MI
Early invasive versus ischaemia-guided strategies in the management of non-Q wave myocardial infarction patients with and without prior myocardial infarction; results of	>Population and method: Non-Q wave MI patients with prior MI versus patients with first non-Q wave
Early invasive versus ischaemia-guided strategies in the management of non-Q wave myocardial infarction patients with and without prior myocardial infarction; results of Veterans Affairs Non-Q Wave Infarction Strategies in Hospital	>Population and method: Non-Q wave MI patients with prior MI versus patients with first non-Q wave MI
Early invasive versus ischaemia-guided strategies in the management of non-Q wave myocardial infarction patients with and without prior myocardial infarction; results of Veterans Affairs Non-Q Wave Infarction Strategies in Hospital (VANQWISH) trial.	>Population and method: Non-Q wave MI patients with prior MI versus patients with first non-Q wave MI
Early invasive versus ischaemia-guided strategies in the management of non-Q wave myocardial infarction patients with and without prior myocardial infarction; results of Veterans Affairs Non-Q Wave Infarction Strategies in Hospital (VANQWISH) trial. Heggunje PS, Wade MJ, O'Rourke RA, Kleiger RE, Deedwania	>Population and method: Non-Q wave MI patients with prior MI versus patients with first non-Q wave MI
Early invasive versus ischaemia-guided strategies in the management of non-Q wave myocardial infarction patients with and without prior myocardial infarction; results of Veterans Affairs Non-Q Wave Infarction Strategies in Hospital (VANQWISH) trial. Heggunje PS, Wade MJ, O'Rourke RA, Kleiger RE, Deedwania PC, Lavori PW, Boden WE; VANQWISH trial investigators.	>Population and method: Non-Q wave MI patients with prior MI versus patients with first non-Q wave MI
Early invasive versus ischaemia-guided strategies in the management of non-Q wave myocardial infarction patients with and without prior myocardial infarction; results of Veterans Affairs Non-Q Wave Infarction Strategies in Hospital (VANQWISH) trial. Heggunje PS, Wade MJ, O'Rourke RA, Kleiger RE, Deedwania PC, Lavori PW, Boden WE; VANQWISH trial investigators. Eur Heart J. 2000 Dec;21(24):2014-25.	>Population and method: Non-Q wave MI patients with prior MI versus patients with first non-Q wave MI