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ABSTRACT 
In the context of pharmacogenomics, whole genome sequencing provides a powerful approach for identifying 
correlations between response variability to specific drugs and genomic polymorphisms in a population, in an 
unbiased manner. In this study, we employed whole genome sequencing of DNA samples from patients showing 
extreme response (n=72) and non-response (n=27) to the antiepileptic drug levetiracetam, in order to identify 
genomic variants that underlie response to the drug. Although no common SNP (MAF>5%) crossed the conven-
tional genome-wide significance threshold of 5×10-8, we found common polymorphisms in genes SPNS3, HDC, 
MDGA2, NSG1 and RASGEF1C, which collectively predict clinical response to levetiracetam in our cohort with 
~91% predictive accuracy (~94% positive predictive value, ~85% negative predictive value). Among these genes, 
HDC, NSG1, MDGA2 and RASGEF1C are potentially implicated in synaptic neurotransmission, while SPNS3 is 
an atypical solute carrier transporter homologous to SV2A, the known molecular target of levetiracetam. Further-
more, we performed gene- and pathway-based statistical analysis on sets of rare and low-frequency variants 
(MAF<5%) and we identified associations between genes or pathways and response to levetiracetam. Our findings 
include a) the genes PRKCB and DLG2, which are involved in glutamatergic neurotransmission, a known target 
of anticonvulsants, including levetiracetam; b) the genes FILIP1 and SEMA6D, which are involved in axon guid-
ance and modelling of neural connections; and c) pathways with a role in synaptic neurotransmission, such as 
WNT5A-dependent internalization of FZD4 and disinhibition of SNARE formation. Targeted analysis of genes 
involved in neurotransmitter release and transport further supports the possibility of association between drug 
response and genes NSG1 and DLG2. In summary, our approach to utilise whole genome sequencing on subjects 
with extreme response phenotypes is a feasible route to generate plausible hypotheses for investigating the genetic 
factors underlying drug response variability in cases of pharmaco-resistant epilepsy.  
 
AUTHOR SUMMARY 
Levetiracetam (LEV) is a prominent antiepileptic drug prescribed for the treatment of both focal and generalised 
epilepsy. The molecular mechanism mediating its action is not well understood, but it involves the modulation of 
synaptic neurotransmition through binding to the synaptic vesicle glycoprotein SV2A. Identifying genomic poly-
morphisms that predict response to the drug is important, because it can help clinicians prescribe the most appro-
priate treatment in a patient-specific manner. In this study, we employed whole genome sequencing (WGS) of 
DNA samples from extreme responders or non-responders to LEV and we identified a small group of common 
variants, which successfully predict response to the drug in our cohort. These variants are mostly located in genes 
implicated in synaptic function. Furthermore, we identified significant associations between clinical response to 
LEV and low-frequency variants in genes and pathways involved in excitatory neurotransmission or in the mould-
ing of neural networks in the brain. Our approach to utilise WGS on subjects with extreme response phenotypes 
is a feasible route to generate plausible hypotheses on the genomic basis of pharmaco-resistant epilepsy. We 
expect that the rapidly decreasing cost of WGS will allow conducting similar studies on a larger scale in the near 
future. 
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INTRODUCTION 
The advent of next-generation sequencing (NGS) has made possible the routine reconstruction of an individual’s 

genetic variation profile across their whole genome1,2, while the introduction of NGS to clinical practice brings 

closer the promise of personalised medicine for diagnostic sensitivity and therapeutic precision3,4. In the context 

of pharmacogenomics, whole exome and genome sequencing combined with appropriate bioinformatics and sta-

tistical analysis has the potential to identify variants that correlate with clinical response to specific drugs, in a 

comprehensive, high-resolution and unbiased manner5–12, i.e. without the need for a prior hypothesis regarding 

the type (e.g. common or rare), location or distribution of genomic polymorphisms across the whole extent of the 

genome. We employed whole genome sequencing to better understand response variability to the antiepileptic 

drug levetiracetam (LEV), a third-generation first-line drug for the treatment of both focal and generalised epi-

lepsies. 

 

Experiments in mice show that SV2A, but not its paralogs SV2B and SV2C, is the molecular target of LEV13. SV2A 

is a synaptic glycoprotein with widespread distribution in the brain14 and a crucial role in synaptic vesicle exocy-

tosis15. Mice deficient in SV2 functionality exhibit severe seizures with a concomitant reduction in (inhibitory) 

GABAergic neurotransmission16 and an abnormal presynaptic accumulation of calcium leading to increased neu-

rotransmitter release17. LEV inhibits presynaptic calcium channels18 and calcium-dependent vesicle exocytosis19, 

and it reverses synaptic deficits due to overexpression of SV2A20. However, its exact mechanism of action as an 

antiepileptic drug is not understood.  

 

It is natural to hypothesize that LEV may act by modifying deregulated SV2A-dependent neurotransmission and 

that variability in SV2A functionality may explain differential responsiveness to treatment with LEV. This view 

is supported by reports showing that partial loss of SV2A functionality is linked to decreased LEV efficacy in 

several mice seizure models21, or that levels of SV2A expression in tumour and peri-tumoral tissue predicts clin-

ical response to LEV in patients with glioma22. However, neither common nor rare polymorphisms in SV2A (in-

cluding polymorphisms overlapping its binding site with LEV) are associated with clinical response to the drug, 

based on targeted sequencing approaches23,24. Any role of genetic variation (either rare or common) in other ge-

nomic loci as potential predictors of LEV efficacy remains to be elucidated. 

 

We analysed whole genome sequencing (WGS) data from 99 people with epilepsy, classified as extreme respond-

ers (n=72) or non-responders to LEV (n=27), aiming to explore the genetic differences between the two groups 

and to identify rare or common polymorphisms that may be predictive of the response/non response phenotype. 

Using whole genome sequencing (instead of targeted sequencing or genome-wide SNP arrays) facilitates the 

search for genetic predictors to LEV in a complete, high-resolution and unbiased manner. At the same time, a 

targeted search for genomic features associated with response to LEV is still possible. Here, we identified common 

polymorphisms which collectively predict a substantial fraction of clinical response to the drug in our cohort of 

patients with epilepsy. Furthermore, analysis of groups of low-frequency variants highlights significant associa-

tions between response to LEV and genes involved in synaptic neurotransmission, axon guidance and modelling 

of neural connections. 
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METHODS 
Sample acquisition and whole genome sequencing 
The study was approved by the relevant local ethics committee. Patients provided written informed consent, or in 

the case of people unable to provide consent, assent was obtained from parents or guardians as permitted within 

the approved protocol.  

 

Ninety-nine unrelated adults with a range of types of epilepsy were recruited from the National Hospital for Neu-

rology and Neurosurgery. Non-responders (n=27; ~27%) were defined as patients who had failed to respond to at 

least two of the currently established epilepsy treatments and had not responded to maximum tolerated doses of 

levetiracetam used for at least 12 months. Extreme responders were defined as patients who became seizure-free 

for at least 12 months after initiation of levetiracetam and who had not previously responded to at least three 

appropriately chosen and used antiepileptic drugs (AEDs; n=72; ~73%).  

 

Samples from the above subjects were sequenced at the Oxford Genomics Centre using the HiSeq2500 platform, 

v3 chemistry and the 100bp paired-end read format (Illumina, San Diego, CA). Sequencing was performed across 

2.3 lanes per sample at depth 30X (Figure 1).  

 

Bioinformatics analysis 
Reads were mapped to hs37d5 using BWA25 and duplicate reads were removed using the MarkDuplicates option 

from the Picard toolkit26 all with default options. Variants were called simultaneously across all 99 samples with 

Platypus27 v0.7.9.3 resulting in a multi-sample VCF file. Read alignments were checked visually using the Inte-

grative Genomics Viewer v2.3.528. 

 
In total, ~20M variants were called across all samples (Figure 1). We excluded variants in multi-allelic loci or in 

sex chromosomes, variants with FILTER flag other than PASS, and variants in homopolymers with running length 

larger than 8 base pairs (HP>8). We excluded genotypes of low quality (PHRED score GQ<20), and with less 

than 10 reads covering the variant location (DP<10). We also excluded variants not in Hardy-Weinberg Equilib-

rium29 (p-value less than 10-6) and with missing genotypes in more than 2 individuals (~2%). Furthermore, we 

excluded variants in low complexity regions30, in poor mappability regions31, in segmental duplications32 and in 

the top 1% most variable genes according to Ingenuity IVA33. On the remaining ~8.4M variants, we conducted 

principal component analysis using the prcomp function in R34 and we identified 7 outlier samples, which were 

excluded from further analysis (Figure 2A,B). We did not find evidence of association between clinical response 

and sex in the remaining 92 patients (Figure 2C). The filtered data were annotated using the Ensembl Variant 

Effect Predictor35 software v90.5 with allele frequency annotations provided by gnomAD r2.0.136 and variant IDs 

provided by dbSNP37 build 150. Overall, we reviewed ~3.9M common variants (MAF>5%), and ~4M low-fre-

quency (1%<MAF<5%) and rare variants (MAF<1%) (Figure 2D,E).  

 
Statistical analysis 
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We conducted single-variant tests on common variants, and gene- and pathway-based tests on low-frequency and 

rare variants (Figure 1). In the case of common variants, we calculated SNP-specific p-values by applying a two-

tailed Fisher’s exact test on each common variant (Figure 3A). In a pre-specified second stage, we selected a small 

subset of variants by using all variants with p-value less than the conventional suggestive genome-wide signifi-

cance threshold of 10-5 (n=23 variants; Table S1 and Figure 3A, white dots) as predictors (along with sex) in a 

penalised logistic regression model38 (known as the LASSO; Figure 3B). An optimal penalisation parameter was 

estimated using leave-one-out cross-validation. This resulted in the selection of 10 out of 23 variants with maximal 

predictive power (Figure 3B, red dots). An additional selection step was applied by filtering out all variants 

(among those selected by the LASSO in the previous step) that had non-protein-coding gene annotation or were 

annotated as intergenic. This resulted in the final selection of 5 variants with protein-coding gene annotations 

(Table S1). The reason for this final selection step was to avoid overfitting during the downstream analyses de-

scribed below and because the selection of variants in protein-coding genes (instead of non-protein coding or 

intergenic variants) facilitates the subsequent investigation of their possible biological relevance. After variant 

selection, we conducted an analysis of deviance by examining a series of logistic regression models using response 

to LEV as the dependent variable (Table S2). The BASIC model includes, besides the intercept, a single predictor, 

sex. The FULL model includes in addition the genotypes of the previously selected variants. A number of inter-

mediate models are simple extensions of the BASIC model through the inclusion of just one of these variants. 

Finally, we calculated the predictive power of the FULL model using leave-one-out cross-validation and the ac-

curacy (ACC), sensitivity (TPR), specificity (TNR), positive (PPV) and negative (NPV) predictive values, and 

Matthews correlation coefficient (MCC) as metrics of predictive power. For completeness, we also conducted 

auxiliary statistical analyses, which included a genome-wide Bayesian analysis and calculation of bespoke ge-

nome-wide significance thresholds (see Supplementary Material for more details). 

 

In the case of rare and low-frequency variants, we first calculated a variant-specific p-value by applying a two-

tailed Fisher’s exact test, as in the case of the common variants. Subsequently, we aggregated all variant-specific 

p-values in a gene- or pathway-specific statistic using an appropriately corrected Fisher’s product method39 (see 

Supplementary Material), which takes into account the effective number of independent variants in a group of 

variants, thus correcting for correlations between variants in the same gene or pathway. The resulting statistic was 

used to calculate a gene- (Table S3) or pathway-specific (Table S4) p-value for testing the null hypothesis that 

none of the variants in the gene/pathway are associated with response to LEV, against the alternative hypothesis 

that at least one variant in the set is associated with response to LEV. P-values were corrected for multiple hy-

pothesis testing across all genes or pathways using Sidak’s method. 

 

Finally, we conducted a targeted analysis of common and rare variants in a set of genes implicated in neurotrans-

mitter transport and release and in a set of genes associated with epilepsy (Table S5). For the common variants, 

we tested each variant individually using a two-tailed Fisher’s exact test of independence, as above. We used 

Sidak’s method for multiplicity correction across all genes in each of the two sets. The effective number of inde-

pendent variants was estimated by first calculating a gene-specific estimate of the number of independent variants 
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using four alternative methods39–43, followed by summing these estimates over all genes. All four methods re-

turned consistent results. For the rare variants, we calculated gene-specific p-values followed by multiplicity cor-

rection using the Sidak method, as before. 

 

More details on the statistical analysis are given in the Supplementary Material. 

 

RESULTS 

Common polymorphisms in genes SPNS3, HDC, NSG1, MDGA2 and RASGEF1C predict clinical 

response to LEV in our cohort with overall accuracy ~91% 
We constructed a statistical model that utilises common genomic variation to predict response to LEV in our 

cohort. Towards this aim, we first assessed the significance of association between each SNP and response to 

LEV (Figure 3A). The smallest SNP-specific p-value calculated at this stage was 1.6×10-7, i.e. no p-value crossed 

the conventional genome-wide significance threshold of 5×10-8 (Table S1). This was followed by a principled 

SNP selection process (see Methods) to identify a minimal set of highly predictive variants (n=5 variants). These 

are located in the protein-coding genes SPNS3, HDC, NSG1, MDGA2 and RASGEF1C, as indicated by the non-

zero coefficients in Figure 1B. Variants with non-zero coefficients in the non-coding genes RP11-284F21.8, 

RP11-446J8.1 and RP11-650J17.1, as well as two intergenic variants in chromosome 15, were not included, in 

order to keep the model small and avoid overfitting (see Methods for rationale). All these variants are listed in 

Supplementary Table S1.  

 

At the next stage, we conducted an analysis of deviance on the polymorphisms identified in the previous step (see 

Methods and Table S2). We found that the inclusion of these SNPs in a logistic regression model reduces the 

residual deviance from ~107 (BASIC model) to ~28 (FULL model), thus significantly improving the goodness of 

fit (p-value=1.15×10-15 based on a χ2 test) of the model to the data. The fraction of explained deviance in the data 

was assessed using a pseudo-R2 metric, the adjusted D2, as described in Guisan & Zimmermann44. The BASIC 

and FULL models have an adjusted D2 equal to 1% and 73%, respectively, which implies that the identified 

variants in genes SPNS3, HDC, NSG1, MDGA2 and RASGEF1C collectively explain ~72% of the total deviance 

(Table S2). When considering just a single gene as predictor (as in any of the intermediate models between BASIC 

and FULL), the improvement in model fit is significant (as indicated by the low p-values). Furthermore, the pro-

portion of explained deviance by SNPs in each gene ranges between 10% (HDC) and 21% (SPNS3), as inferred 

by comparing the adjusted D2 value for each of the intermediate models to the adjusted D2 value of the BASIC 

model.  

 

Subsequently, we assessed the predictive power of the FULL model using leave-one-out cross-validation. In brief, 

this involves fitting the FULL model in all but one subjects and predicting the response phenotype of the held-out 

subject using the fitted model. This process of model fitting and prediction is repeated until all 92 subjects have 

been used for prediction. We found that the FULL model correctly predicts clinical response to LEV in 62 re-

sponders and 22 non-responders, which corresponds to ~94% sensitivity (TPR) and positive predictive value 

(PPV), ~85% specificity (TNR) and negative predictive value (NPV), and ~91% overall predictive accuracy 
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(ACC). The Matthews correlation coefficient (MCC), a balanced performance metric for binary classifiers even 

when the two classes are of very different size, was equal to ~79%.  

 

Local genomic structure near the identified variants and possible biological relevance 

For gene NSG1 on chromosome 4, three highly correlated SNPs (rs7695197, rs3981 and rs12641832) are located 

~5kb upstream of the gene, less than 3kb upstream or downstream of transcription factor binding sites (TFBS) 

and DNaseI hypersensitivity sites (DHS), and less than 5kb upstream of a small cluster of conserved elements 

(CE; Figure 4A). The odds ratio for a recessive model (with respect to the ALT allele) is ~23 times in favour of 

the non-responders, while the corresponding odds ratio for a dominant model is ~2.7 (see Table S1 for the number 

of homozygous/heterozygous cases in each group). In other words, non-responders to LEV are ~23 times more 

likely to be homozygous for the alternative allele than responders. NSG1 (Neuronal Vesicle Trafficking Associ-

ated 1) is abundantly expressed in the brain45,46 and it plays a role in synaptic neurotransmission and plasticity due 

to its involvement in recycling and trafficking of receptors, such as the glutamate receptor AMPA, the amyloid 

precursor protein (APP), and the L1 cell adhesion molecule (L1CAM)47. 

 

The intronic variant rs34570575 in gene RASGEF1C on chromosome 5 overlaps a DHS and it is located ~5kb 

upstream of a TFBS and a cluster of CE (Figure 4B). The odds ratio for a dominant model of inheritance (with 

respect to the ALT allele) is slightly higher than that of a recessive model (~9.5 and ~8, respectively; Table S1). 

RASGEF1C (RAS guanyl-nucleotide exchange factor domain family member 1C) is abundantly expressed in the 

brain45,46. It belongs to a family of proteins containing the RASGEF domain, which regulates the GTPase activity 

of RAS-like proteins. These comprise a superfamily of membrane-associated signalling molecules involved in a 

variety of essential cellular processes, including vesicle trafficking and synaptic function48–50.  

 

In gene MDGA2 on chromosome 14, rs1952220 is an intronic variant, less than ~4kb from CE, TFBS and DHS 

(Figure 4C). The odds ratios for recessive and dominant models (with respect to the ALT allele) are 0.11 and 0.61 

in favour of the non-responders, respectively, suggesting a recessive model where non-responders to LEV are ~9 

times less likely to be homozygous for the alternative allele than responders (Table S1). The MDGA2 (MAM 

Domain Containing Glycosylphosphatidylinositol Anchor 2) mRNA is expressed in the cerebral cortex45,46. 

MDGAs are Ig superfamily cell adhesion molecules that contribute to the radial migration of cortical neurons 

during early neural development. They play an important, neuroglin-2-dependent role in controlling the function 

of inhibitory synapses, and they have been associated with autism spectrum disorders and schizophrenia51,52.  
  

In gene HDC on chromosome 15, rs7182203 is an intronic variant that overlaps a TFBS and a DHS, and it is 

within 5kb of upstream or downstream CE (Figure 4D). From Table S1, the odds ratios for recessive and dominant 

models (with respect to the ALT allele) are 1.1 and 0.12 in favour of the non-responders, respectively. This implies 

that patients that respond to LEV are ~8 times more likely to be homozygous or heterozygous for the alternative 

allele in comparison to non-responders. HDC (histidine decarboxylase) is expressed in the brain45,46, and it catal-

yses the synthesis of histamine, which is implicated, among others, in neurotransmission and smooth muscle tone. 

Elevated levels of histamine in the brain appear to suppress seizures and confer neuroprotection, thus antiepileptic 

agents that boost the levels of histamine in the brain may act by increasing HDC activity53. Furthermore, HDC 
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has been linked to the pathogenesis of Tourette’s syndrome54. Interestingly, LEV has been used for the treatment 

of Tourette’s syndrome, although its efficacy has not been established55–57. 

 

Finally, in gene SPNS3 on chromosome 17, the intronic variants rs2047231, rs2047232 and rs2047233 overlap a 

DHS and a cluster of CE, and they are located within 5kb of upstream or downstream TFBS (Figure 4E). From 

Table S1, the odds ratio for a recessive model (with respect to the ALT allele) ranges among these three SNPs 

between 0.07 and 0.09 in favour of non-responders. This implies that patients responding to LEV are between 

~11 and ~14 times more likely to be homozygous for the alternative allele than non-responders. SPNS3 (a putative 

sphingolipid transporter 3) is expressed in the cerebral cortex45,46. Both SPNS3 and SV2A, the known target of 

LEV, are atypical solute carrier (SLC) transporters. They belong to the Major Facilitator Superfamily (MFS) of 

membrane transporters, and they share a common structure consisting of 12 transmembrane segments, which is 

necessary for optimal transporter activity58,59. 

 
Tests on sets of low frequency variants (MAF<5%) 
Next, we studied variants with MAF<5%, i.e. low-frequency and rare variants. Among the approximately 4M 

variants with MAF<5%, we focused on the top 5% genotypically most variable variants across all 92 samples in 

our cohort. These included ~182K variants with MAF between 0.003% and 5%. A common strategy for increasing 

statistical power when studying low-frequency and rare variants is to analyse sets of variants, instead of individual 

variants. Therefore, we examined gene- and pathway-based sets of variants (see Methods).  

 

Gene-based tests indicate that low-frequency variants in genes PRKCB, DLG2, FILIP1, SEMA6D and 

LINC01090 are associated with response to LEV 

We conducted 19,824 gene-based tests, which is the number of genes harbouring at least one of the ~182K low-

frequency and rare variants in our data. We found that four protein-coding genes (PRKCB, DLG2, FILIP1 and 

SEMA6D) and a long intergenic non-protein-coding RNA (LINC1090) had a Family-Wise Error Rate (FWER) 

less than 10%, and they were kept for further study (Table S3 and Figure 5). 

 

The top hit, PRKCB, encodes a protein kinase C, a family of serine- and threonine-specific protein kinases, which 

can be activated by calcium and second messenger diacylglycerol47. There are 78 variants in PRKCB with MAF 

between 2.2% and 4.9%. Forty-five of them have p-values less than 0.05 and they aggregate towards the 5’ end 

of the gene (Figure 5A). Associated Reactome pathways are glutamate binding, activation of AMPA receptors 

and synaptic plasticity60. PRKCB is implicated in the trafficking of GluR2-containing AMPA receptors60. It is 

known that fast synaptic excitation relevant to epilepsy is mediated mainly by AMPA receptors, thus rendering 

the latter potential targets of antiepileptic treatment61. There is evidence suggesting that LEV interacts with AMPA 

receptors62 and that its antiepileptic action is mediated by inhibiting glutamatergic neurotransmission through 

presynaptic calcium channels63, but the precise molecular mechanism that mediates its action remains unclear. 

 

A second hit of interest, DLG2, encodes a membrane-associated guanylate kinase, which is implicated in the 

clustering of receptors (including NMDARs), ion channels, and associated signalling proteins at postsynaptic sites 

of excitatory synapses47. We found 208 variants in this gene with MAF between 0.96% and 4.97%, 53 of which 
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have p-values less than 0.05 (Figure 5B). A related Reactome pathway is protein-protein interactions at synap-

ses60. There is evidence supporting the role of NMDARs in epilepsy, and as a potential therapeutic target of 

antiepileptic drugs, including LEV64. It is possible that LEV blocks epileptiform bursting induced by NMDA in 

vitro without affecting normal synaptic transmission65 and that it inhibits NMDA-dependent excitatory postsyn-

aptic currents63, although its precise molecular mechanism of action remains unclear. 

 

Among the remaining three hits (Figure 5C-E), FILIP1 includes 12 variants (11 with p-values less than 0.01) with 

MAF between 1.8% and 5%, SEMA6D has 41 variants (17 with p-values less than 0.05) with MAF between 1.9% 

and 5% and LINC01090 harbours 35 variants (18 with p-values less than 0.01) with MAF between 1.7% and 5%. 

FILIP1 encodes a protein that stimulates filamin A degradation, which may regulate cortical neuron migration, 

dendritic spine morphology, and normal excitatory signalling47. SEMA6D encodes a transmembrane semaphorin, 

a class of proteins involved in axon guidance, and maintenance and remodelling of neural connections47. Finally, 

LINC01090 is transcribed into a long intergenic non-protein-coding RNA47, which is associated with post-trau-

matic stress disorder66. 

 

Pathway-based tests indicate that associations between response to LEV and Reactome pathways are driven 

mainly by low-frequency variants in gene PRKCB  

We conducted tests using gene sets, instead of single genes, as the organisational unit for grouping individual 

variants together. We have used all pathways from Reactome, a curated, peer-reviewed database of interacting 

signalling and metabolic molecules, which are organised into groups of higher order structures (pathways) with 

well-defined biological relevance60. In total, we considered 2,028 pathways, of which 1,979 harboured at least 

one of the ~182K low-frequency highly-variable variants in our data. Among these, we identified six pathways 

with FWER<5% and one pathway with FWER<10% (Table S4). 

 

The top hit is activation of NF-kappaB (nuclear factor kappaB) in B cells. NF-kappaB is a ubiquitous transcription 

factor, which is instrumental in gene regulation relevant to cell death and survival and to the immune system’s 

response to inflammation. The next hit is WNT5A-dependent internalization of FZD4. WNT5A regulates multiple 

intracellular signalling cascades via internalisation of its receptors. These include FZD4, a member of the frizzled 

gene family, which encode seven-transmembrane domain proteins47. Importantly, the WNT5A-dependent uptake 

of FZD4 occurs in a clathrin-dependent manner67. Clathrins are adaptor proteins, which are essential in the for-

mations of synaptic vesicles, and which are known to interact with SV2A, the molecular target of LEV68.  

 

Another interesting pathway is disinhibition of SNARE formation. SNARE is a family of proteins, which are 

important components of the mechanism responsible for membrane fusion, thus playing an important role in 

docking of synaptic vesicles with the presynaptic membrane, and neurotransmitter release. It is known that SV2A, 

the target of LEV, regulates the formation of SNARE complexes: kindling epileptogenesis triggers the long-term 

accumulation of both SNARE and SV2A in the ipsilateral hippocampus, a molecular process which is reversed 

by LEV69.  
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Next, we asked which genes underlie these findings. In total, in these pathways, there are 108 genes harbouring 

low-frequency mutations (Table S4). In Figure 6, we illustrate these genes, as well as their pathway membership. 

PRKCB is mutated in all but the least significant pathway with FWER<10%, followed by its paralog, PRCKA, 

which is mutated in three pathways (central panel). The remaining genes are mutated in only 1 or 2 pathways. 

Furthermore, PRKCB and PRKCA harbour the largest number of low-frequency mutations, along with RUNX1 

(top panel). However, in PRKCB, more than half of these mutations have p-values less than 0.05 (see also Table 

S3) leading to a low gene- and pathway-based p-value (Tables S3 and S4), while only a very small proportion of 

mutations in PRKCA and RUNX1 have p-values less than 0.05. Among the other highly mutated genes, LPR6 and 

IKBKB also harbour a large proportion of mutations with low p-values, but they participate in only 1 and 2 path-

ways, respectively. We conclude that the significant associations in Table S4 are driven mainly by PRKCB in all 

but the least significant pathway with FWER<10%. Associations in this last pathway (disassembly of the destruc-

tion complex and recruitment of AXIN to the membrane) are driven mainly by LRP6, a transmembrane low density 

lipoprotein (LDL) receptor47. Neuronal LRP6-mediated Wnt signalling is critical for synaptic function and cogni-

tion70,71. 

 

Targeted analysis of genes implicated in neurotransmitter transport and release highlights the 

previously identified genes NSG1 and DLG2, but not SV2A, SV2B or SV2C  
Whole genome sequencing permits focused analysis of identified sets of variants, in addition to unbiased analysis 

over the whole genome. Furthermore, by testing only a small subset of variants, we can ameliorate the effect of 

multiple hypothesis testing, thus increasing the power of statistical analysis. We conducted targeted analysis of 

common and rare variants on a set of 294 genes implicated in neurotransmitter transport and release (Table S5). 

These genes (SYNAPTIC) were identified based on their Gene Ontology72 terms and they included SV2A and its 

paralogs, SV2B and SV2C. In addition, we tested all 402 high-confidence (i.e. “green”) genes (EPILEPSY) in the 

genetic epilepsy syndromes panel v1.35 provided by Genomics England73 (Table S5).  

 

In the case of SYNAPTIC genes, which harboured ~51K common variants, we found evidence of association 

with response to LEV in the previously identified gene NSG1 at a FWER<5% or <10%, depending on the meth-

odology used for calculating the effective number of independent tests (Table S5). Furthermore, when examining 

the ~2.6K rare variants found in SYNAPTIC genes, DLG2 was found associated with response to LEV at a 

FWER<0.1% (Table S5). This is not surprising, since DLG2 was also found associated with LEV response in the 

previously conducted gene-based tests. We did not find any evidence of association between LEV response and 

SV2A or its paralogs, SV2B and SV2C, using either SNP- or gene-based tests. Furthermore, we did not find any 

evidence of association between ~66K common variants in EPILEPSY genes and response to LEV or between 

~3.7K rare variants in the same genes and response to LEV at a FWER<10% (Table S5). 

 

DISCUSSION 
Although the anticonvulsant properties of the prominent antiepileptic drug LEV have been linked to the activity 

levels of its molecular target, the synaptic glycoprotein SV2A21,22, targeted sequencing did not reveal any associ-

ations between common24 or rare23 variation in this gene and LEV efficacy. This leaves open the question as to 

whether genetic variation is a component of response variability and, if so, the identity of the genomic variants 
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underlying clinical response to LEV. In the present study, we followed a whole genome sequencing approach in 

an unbiased search of genomic polymorphisms that underlie clinical response to this drug. 

 

According to one possible hypothesis for explaining variability in drug response, one or more common polymor-

phisms occur with different frequencies between responders and non-responders. Our analysis indicates that com-

mon polymorphisms in genes NSG1, HDC, MDGA2, RASGEF1C and SPNS3 collectively predict clinical response 

to LEV in our cohort with overall accuracy ~91%. These genes are attractive candidates, since the first four are 

potentially implicated in synaptic neurotransmission, while the fourth is a transmembrane transporter protein ho-

mologous to SV2A. 

 

A second hypothesis asserts that multiple rare variants act synergistically to influence a patient’s response to the 

drug. Our analysis showed that groups of low-frequency variants in genes PRKCB, DLG2, FILIP1 and SEMA6D, 

and in pathways involving PRKCB (and LRP6) demonstrate significant associations with the response/non-re-

sponse phenotype.  

 

From a neurophysiological perspective, there are three major, not mutually exclusive hypotheses for explaining 

pharmaco-resistant epilepsy74. First, the drug target hypothesis postulates that alterations in the activity of the 

molecular target of the drug (e.g. due to genomic polymorphisms coding for the drug-target binding site) result in 

reduced drug efficacy. Our analysis did not provide any evidence that SV2A or its paralogs (SV2B and SV2C) are 

associated with response to LEV, in agreement with previous studies23,24 

 

Second, the drug transporter hypothesis states that reduced efficacy of antiepileptic drugs are due to low concen-

tration of the drug at its target site due to over-active efflux drug transporters. A common intronic polymorphism 

in SPNS3, a gene homologous to SV2A, may be of interest in relation to this hypothesis. Both SPNS3 and SV2A 

(and its paralogs) are structurally similar to the solute carrier family 22 (SLC22), a large family of transmembrane 

drug transporters. It should, however, be emphasised that homology (as established through structural similarity) 

is not definitive proof of biological relevance.  

 

Finally, the intrinsic severity hypothesis postulates that severe epilepsy (manifested, for example, as high-fre-

quency seizures) is linked to reduced response to antiepileptic drugs. Neurophysiological processes that are pro-

posed to underlie the severity of epilepsy include neuroinflammation, aberrations in synaptic neurotransmission, 

and restructuring of neural networks75. Our analysis has identified common and low-frequency polymorphisms in 

genes and pathways, which are putatively related to these processes; for example, genes HDC, NSG1, MDGA2, 

RASGEF1C, PRKCB and DLG2 (synaptic neurotransmission) and genes FILIP1 and SEMA6D (restructuring of 

neural networks). 

 

Whilst highlighting the approaches now available through the advent of NGS technologies, the findings in the 

present study need independent replication and potentially functional validation to confirm their role in determin-

ing response to LEV. Furthermore, we expect that the rapidly decreasing cost of WGS will allow conducting 
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similar studies with a larger sample size in the near future. Nevertheless, our approach of using extremes of re-

sponse is a pragmatic way to derive hypotheses for experimental testing. It is interesting to postulate what the 

remaining factors are that determine response to LEV. Drug response is likely to be a complex interaction of many 

factors, including interacting genetic factors, which should be explored through polygenic risk score analysis and 

integrative analysis of multiple data modalities utilizing machine learning approaches. 

 

In summary, we have identified common and low-frequency variants in genes and pathways, which may influence 

clinical response to LEV in a cohort of 99 patients with epilepsy. We conclude that whole genome sequencing 

can be a useful approach for investigating the genomic correlates of pharmaco-resistant epilepsy. 
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FIGURES 
 

 
 

Figure 1: Overview of the study. We recruited 99 patients with epilepsy (72 extreme responders and 27 extreme 

non-responders to LEV). After performing WGS, alignment and variant calling, we identified ~20M unfiltered 

variants. After filtering across variants and samples, we ended up with ~3.9M common (MAF>5%) variants and 

~4M low-frequency and rare (MAF<5%) variants across 92 patients. Subsequently, we calculated p-values for 

each common variant using a two-tailed Fisher’s exact test. In the next step, we performed penalised logistic 

regression (LASSO) on all common variants with p-value less than the suggestive genome-wide significance 

threshold of 10-5 (n=23 variants; Supplementary Table S1). This was followed by further selecting variants with 

protein-coding gene annotation. In the last step, we performed analysis of deviance on the finally selected variants 

(n=5 variants) and we calculated their collective predictive accuracy using a cross-validation approach. For com-

pleteness, we also conducted additional auxiliary statistical analyses on the common variants (see Supplementary 

Material). In the case of low-frequency and rare variants, we focused on the top 5% most variable variants in our 

cohort and, by performing gene- and pathway-based tests on these, we identified associations between several 

genes or pathways and clinical response to LEV. Finally, for both common and low-frequency/rare variants, we 

conducted targeted analysis on a panel of epilepsy genes and on genes related to neurotransmitter transport and 

release. 
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Figure 2: Overview of the WGS data from 99 extreme responders and non-responders to LEV. A) Principal 

component analysis (PCA) of the matrix of genotypes across all samples and variants. The first two principal 

components are illustrated. Seven samples appear as outliers. B) Repeating the PCA after removing the seven 

outliers identified in (A) indicates lack of any stratification (e.g. due to population structure) in the data. C) Num-

ber of male and female subjects among responders and non-responders to LEV. There are almost twice as many 

non-responders among 49 males (n=17), as among 43 females (n=9) in the data. A two-tailed Fisher’s exact test 

of independence indicates that this difference is not statistically significant (odds ratio: 1.99; 95% CI: 0.72-5.86; 

p-value: 0.17). D) Consequences of all variants identified by WGS. Most variants are intronic, intergenic, or 

located immediately upstream or downstream of protein-coding genes. E) Minor allele frequencies (MAF) of all 

variants identified by WGS. A cut-off of 5% was chosen to discriminate between common and low-frequency or 

rare variants.  
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Figure 3: Genome-wide selection of a minimal set of common (MAF>5%) variants with maximal predictive 

power. A) Manhattan plot summarising SNP-based tests using a two-tailed Fisher’s exact test of independence. 

All variants with p-values below a suggestive significance threshold of 10-5 are indicated with white circles 

(n=23). B) Summary of variable selection using penalised logistic regression (LASSO). All SNPs crossing the 

suggestive genome-wide significance threshold in (A) were used as predictors. Variants selected through this 

process have non-zero regression coefficients (red dots). Among these, the variants with protein-coding gene 

annotation (i.e. SPNS3, HDC, MDGA2, NSG1 and RASGEF1C) were selected for further analysis. 
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Figure 4: Local genomic structure near the most significant SNPs in genes NSG1, RASGEF1C, MDGA2, HDC 

and SPNS3. Common variants in these genes are strong predictors of clinical response to LEV in our cohort. SNPs 

crossing the suggestive genome-wide significance threshold of 10-5 are indicated in red.  
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Figure 5: Distribution of rare variants along genes PRKCB, LINC01090, FILIP1, DLG2 and SEMA6D. Based on 

gene-based tests, these genes are significantly associated with response to LEV at a FWER<10%. Rare variants 

with p-values below 5% (calculated using a two-tailed Fisher’s exact test of independence) are indicated in red. 
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Figure 6: Summary of the results from Reactome pathway-based tests. In the left panel, pathways are as follows: 

1-Activation of NF-kappaB in B cells; 2-WNT5A-dependent internalization of FZD4; 3-RUNX1 regulates tran-

scription of genes involved in differentiation of myeloid cells; 4-Downstream signalling events of B Cell Receptor 

(BCR); 5-Depolymerisation of the Nuclear Lamina; 6-Disinhibition of SNARE formation; 7-Disassembly of the 
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destruction complex and recruitment of AXIN to the membrane. Among all genes harbouring the highest number 

of rare variants (RUNX1, PRKCA, PRKCB, LRP6), PRKCB and LRP6 have the highest proportion of rare variants 

with p-values less than 5% (right panel). PRKCB is participating in all but one pathway, with the remaining genes 

participating in only 1, 2 or 3 pathways (left panel). 

 
 
SUPPORTING INFORMATION LEGENDS 
Figure S1: Auxiliary statistical analysis of common (MAF>5%) variants across the whole genome. A) Manhattan 

plot summarising SNP-based tests using a two-tailed Fisher’s exact test of independence. Genome-wide signifi-

cance thresholds (calculated using four different methodologies) are indicated, including a suggestive significance 

threshold of 10-5. Two variants (in red) cross the three least conservative thresholds and they could be considered 

statistically significant with respect to these thresholds. B) Manhattan plot summarising the Bayesian analysis of 

single SNPs. We assumed a prior retrospective probability of association (rPPA) equal to π=10-4. Variants with 

rPPA values above 50% are more likely than not to be associated with response to the drug. 

 

Table S1: Summary of all common variants with p-values less than a suggestive genome-wide significance 

threshold of 10-5 (n=23). Among these, those selected by the LASSO are indicated in green and orange (n=10; 

also see Figure 3B). The variants indicated in green (n=5) have protein-coding genes annotations and they were 

selected for further analysis. Those indicated in orange (n=5) have non-protein-coding gene annotations or are 

annotated as intergenic and they were not selected for further analysis. In order to avoid division by zero in the 

calculation of odds ratios, the matrix of counts for each variant was pre-processed using Lidstone smoothing with 

pseudo-count parameter equal to 1 (i.e. add-one smoothing).  

 

Table S2: Analysis of deviance using seven different logistic regression models of increasing complexity. The 

BASIC model includes only sex and the intercept as predictors. The FULL model includes in addition five SNPs 

from genes SPNS3, HDC, NSG1, RASGEF1C and MDGA2, which were previously selected using penalised lo-

gistic regression. Intermediate models include only sex, the intercept and the SNP harboured by the indicated 

gene. DF: degrees of freedom 

 

Table S3: Summary of gene-based tests. Only genes with FWER<10% are shown. The low-frequency variants 

harboured by these genes are listed in the second spreadsheet. 

 

Table S4: Summary of Reactome pathway-based tests. Only pathways with FWER<10% are shown. The rare 

variants harboured by genes in these pathways are listed in the second spreadsheet. 

 

Table S5: Summary of results from the targeted analysis. We list the results from SNP- and gene-based tests on 

SYNAPTIC and EPILEPSY genes. A complete list of genes in each of these two groups is also provided in the 

last spreadsheet. 

 

Table S6: Summary of results from the auxiliary statistical analysis on common variants. Only variants with a p-

value below a suggestive genome-wide significance threshold of 10-5 are presented. P-values were corrected for 
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multiplicity using Sidak’s method and four different estimates of the effective number of independent tests, as 

indicated. The results of Bayesian analysis for different choices of the priors π (10-4, 10-5 and 10-6) and (a, b, c) 

(flat or empirical) are also given. rPPA: retrospective probability of association. FWER: family-wise error rate. 
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