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Abstract 
Etiological and clinical heterogeneity is increasingly recognized as a common characteristic of 

Alzheimer’s disease and related dementias. This heterogeneity complicates diagnosis, 

treatment, and the design and testing of new drugs. An important line of research is discovery 

of multimodal biomarkers that will facilitate the targeting of subpopulations with homogeneous 

pathophysiological signatures. High-throughput ‘omics’ are unbiased data driven techniques 

that probe the complex etiology of Alzheimer's disease from multiple levels (e.g. network, 

cellular, and molecular) and thereby account for pathophysiological heterogeneity in clinical 

populations. This review focuses on data reduction analyses that identify complementary 

disease-relevant perturbations for three omics techniques: neuroimaging-based subtypes, 

metabolomics-derived metabolite panels, and genomics-related polygenic risk scores. 

Neuroimaging can track accrued neurodegeneration and other sources of network impairments, 

metabolomics provides a global small-molecule snapshot that is sensitive to ongoing 

pathological processes, and genomics characterizes relatively invariant genetic risk factors 

representing key pathways associated with Alzheimer's disease. Following this focused review, 

we present a roadmap for assembling these multiomics measurements into a diagnostic tool 

highly predictive of individual clinical trajectories, to further the goal of personalized medicine 

in Alzheimer's disease. 
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Abbreviations 
Aβ or Aβ42 amyloid beta or amyloid beta 42 
APOE  apolipoprotein E 
ADNI  Alzheimer's Disease Neuroimaging Initiative 
CN  cognitively normal 
FDG  fluorodeoxyglucose 
fMRI  functional MRI 
GWAS  genome-wide association studies 
lvPPA  logopenic progressive aphasia 
MAF  minor allele frequency 
MCI  mild cognitive impairment 
NDDs  neurodegenerative diseases 
NGS  next-generation genome sequencing 
PCA  posterior cortical atrophy 
PET  positron emission tomography 
PRS  polygenic risk score 
SNPs  single nucleotide polymorphisms 
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Introduction 
 
Alzheimer’s disease is a complex, multifactorial pathology that manifests itself along a 

continuum of conditions, ranging from asymptomatic, to mild cognitive impairment (MCI), to 

dementia (specifically Alzheimer's disease dementia). Trials of disease-modifying therapies 

remain unsuccessful, and these persistent failures have been attributed to (1) intervention late 

in the disease process (i.e. symptomatic stage), by which time extensive irreversible damage 

has accrued, and (2) lack of precision intervention targets in a multifactorial condition. 

Accordingly, an important line of current research is directed at the discovery of multimodal 

biomarkers that will help facilitate the detection of Alzheimer's disease in asymptomatic 

populations, and the adaptation of intervention regimens to different target subpopulations in 

prevention trials (Anstey et al., 2015; Olanrewaju et al., 2015). This work reviews recent data-

driven approaches to biomarker discovery, in three omics fields that capture complementary 

aspects of neurodegeneration and Alzheimer's disease risk factors. We further propose a 

roadmap for integrating these multiomics biomarkers to advance our understanding of 

heterogeneity in Alzheimer's disease, and promote efficacy in intervention trials. 

 

Established Alzheimer's disease biomarkers currently capture three facets of the disease 

pathophysiology: amyloidosis, tauopathy, and specific aspects of neurodegeneration (Jack et 

al., 2018). Although these biomarkers have been usefully applied to the crucial goal of early 

Alzheimer's disease detection (Sperling et al., 2011), they fall short in explaining the 

heterogeneity of individual clinical trajectories, and their ability to predict differential cognitive 

decline is modest (Dumurgier et al., 2017). Predicting progression to dementia is challenging, 

as patients diagnosed with probable Alzheimer's disease dementia show considerable 

heterogeneity in the cognitive domains impaired (Scheltens et al., 2016), and the presence or 

severity of established Alzheimer's disease biomarkers. For example, amyloidosis-and-

tauopathy-defined ‘pure Alzheimer's disease neuropathology’ is observed in only 30-50 

percent of patients with probable Alzheimer's disease dementia (Beach et al., 2012; Robinson 

et al., 2018). The remaining cases show co-occurrence of multiple brain pathologies that 

overlap with other NDDs of aging, such as cerebral small vessel disease, and Lewy body 

dementia. Minimum to above-threshold levels of Alzheimer's disease pathology are also 

observed in a considerable proportion (39%) of dementia patients not clinically diagnosed as 

probable Alzheimer's disease (Beach et al., 2012). Alzheimer's disease pathology has also been 

demonstrated in postmortem studies of CN older adults (Bennett et al., 2006), and it remains 
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unclear if such individuals would have developed Alzheimer's disease symptoms with time, 

should they have lived longer (Jagust, 2013). Overall, “top-down” clinical labels, based 

primarily on cognitive symptoms, imperfectly align with biomarkers of neurodegeneration. 

Additional biomarkers are thus urgently needed to characterize the clinico-pathological 

heterogeneity of Alzheimer's disease, and to disambiguate it from other age-related NDDs and 

normal aging (Jack et al., 2018). 

 

A radically different paradigm to NDDs is to move away from “top-down” clinical labels, and 

concentrate on pathological signatures built “bottom up”, using unsupervised machine learning 

algorithms and high-throughput ‘omics’ metrics that screen global facets of an organism. These 

data-driven approaches provide new opportunities to probe the complex etiology of 

Alzheimer's disease from multiple levels (example network, cellular, and molecular), and to 

identify biomarker signatures with high diagnostic/prognostic value. This review focuses on 

the following omics approaches: brain connectomics, metabolomics, and genomics. These 

omics data capture complementary information on Alzheimer's disease emergence and 

progression: brain connectomics (and morphometry) can track accrued neurodegeneration and 

other sources of network impairments, metabolomics provides a global small-molecule 

snapshot that is sensitive to ongoing pathological processes, and genomics characterizes 

relatively invariant genetic risk factors representing key pathways associated with Alzheimer's 

disease (Jack et al., 2018). The high-dimensional nature of omics “big data” can prove 

challenging to process, manipulate, and visualize, even when a single modality is involved. 

Multiple redundancies are often present in these measures, and not all data points provide 

independent information as they tend to covary due to shared biological processes. We focus 

this review on three omics data reduction techniques that capture disease-relevant population 

heterogeneity with a limited number of indicators: neuroimaging-based subtypes, metabolite 

panels, and polygenic risk score or PRS. Neuroimaging subtypes are based on data-driven 

algorithms that identify patient subgroups with homogeneous brain imaging features. 

Metabolite panels are developed via data-driven algorithms applied to thousands of small 

molecules representing global biochemical events and distinguishing clinical phenotypes. PRS 

and other empirically derived representations of interactive or multi-gene risk may represent 

key domains of mechanisms and pathways to Alzheimer's disease. Following this focused 

review, we discuss the rationale and challenges for assembling multiomics diagnostic tools 

highly predictive of individual clinical trajectories, and in particular, the importance of 

pathophysiological heterogeneity in research clinical cohorts.  
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Materials and Methods 
 
We conducted parallel focused reviews of PubMed articles published between January 2011 to 

June 2018 in three omics domains: brain connectomics (and morphometry), metabolomics, and 

genomics. We included studies investigating Alzheimer's disease in human and published in 

English. Additional articles (that met criteria) were identified by scanning the reference lists of 

selected PubMed articles. Described in the following three sections are search characteristics 

specific to each omics domain. We have provided in Supplementary Material (Supplementary 

Tables S1, S2, and S5) characteristics of the 40 domain-specific omics studies included. 

 

Brain morphology and connectomics 

Search term combinations used for brain morphology and connectomics in neuroimaging are 

provided in were: (1) alzheimer’s disease OR alzheimer pathology AND subtype, (2) mild 

cognitive impairment OR amnestic mild cognitive impairment OR MCI OR amnestic MCI 

AND hierarchical clustering; resting-state AND functional MRI AND alzheimer AND 

clustering, (3) alzheimer’s disease OR alzheimer pathology AND structural subtype, (4) 

alzheimer’s disease OR alzheimer pathology AND structural MRI AND clustering, (5) resting-

state AND functional MRI AND alzheimer AND hierarchical clustering, (6) diffusion MRI 

AND alzheimer AND clustering, (7) diffusion MRI AND alzheimer AND hierarchical 

clustering; diffusion MRI AND hierarchical clustering. To these we applied the “common” 

exclusion criteria. Thereafter, only studies reporting AD spectrum subgroups identified using 

data-driven methods were included. It should be noted that neuroimaging-based subtyping is 

an emergent field and there is still a lack of consistent terminology. Therefore, to avoid missing 

relevant studies due to stringent use of terminology, search combinations 1 and 2, used relaxed 

and inclusive keywords, which captured all of the morphometry based literature. In total, 12 

papers met our criteria, and were reviewed. 

 

Metabolomics 

Search term combinations for metabolomics were: (1) alzheimer’s disease AND metabolomics 

panels; (2) alzheimer’s disease AND metabolomics profiles; (3) alzheimer’s disease AND 

metabolomics networks; (4) alzheimer’s disease AND metabolomics pathways; (5) 

alzheimer’s disease AND metabolomics biomarkers. To these we applied the common 

exclusion criteria. We further excluded: reviews and technical reports; articles not relevant to 

AD metabolomic panels, pathways, or networks; and studies using a targeted metabolomics 
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approach. Five papers were identified from reference list scans. In total, 11 studies were 

reviewed. Details on key metabolites highted in the 11 studies were compiled from three 

different databases: Kyoto Encyclopedia of Genes and Genomes (KEGG, 

https://www.genome.jp/kegg/pathway.html) Pathway Database, Human Metabolome 

Database (HMDB, http://www.hmdb.ca/) and PubMed. These details were used to generate 

Fig. 2b and are provided in Supplementary Table S3. 

 

Genomics 
Search term combinations used for the genomics were: (Polygenic Risk Scale OR Polygenic 

Risk Index OR Genetic Risk Score OR Genetic Risk Scale OR Genetic Risk Index) AND 

(Alzheimer Disease OR Alzheimers Disease OR Alzheimer's Disease), which identified 264 

potential papers. To these we applied the “common” exclusion criteria, followed by exclusion 

of single-gene studies. In total 17 studies were reviewed. References used for the compilation 

of the genes in Supplementary Table S4 are provided in the Supplemental Reference section. 
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Brain Subtypes 
  

 

Figure 1: Brain morphology and connectomics Alzheimer's disease-related subtypes 

Neuroimaging provides insight into the effect of neurodegeneration on brain health. There exist 

different tools that can capture distinct, yet complementary, aspects of brain structure and 

function. The most established neuroimaging marker of neurodegeneration is grey matter 

atrophy, measured by structural MRI. Structural MRI is a non-invasive technique widely used 

in both research and clinical practice. To generate structural maps, individual structural MRI 

scans are first spatially aligned to a reference template or atlas (1a). Then for each individual 

and each voxel (smallest volume element in MRI data), a metric characterizing the local 

structure of the grey matter is generated (1a), such as grey matter volume, cortical thickness or 

surface area. Using these approaches, it is possible to monitor the thinning of grey matter, 

which likely reflects the death of neuronal cell bodies at advanced stages of neurodegeneration. 

Synaptic disruption is an early event in Alzheimer's disease (Sperling et al., 2011), and 

functional networks may have the ability to compensate the impact of neurodegeneration on 
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cognitive symptoms (Franzmeier et al., 2017). For these reasons, intrinsic functional 

connectivity from resting-state fMRI is an emerging Alzheimer's disease biomarker that holds 

promise  for  early  diagnosis (Sperling et al., 2011; Badhwar et al., 2017). To analyze resting-

state fMRI, select regions in canonical brain networks previously established in the literature 

are generally considered (1b). An individual resting-state fMRI connectivity map can be 

generated for different networks, with the default-mode, limbic, and salience networks being 

the key components affected by Alzheimer's disease (Badhwar et al., 2017) (1b). Structural 

and functional brain maps enter a subtyping procedure, which identifies groups of individuals 

with homogeneous brain maps (1c).The number of subtypes are defined a priori or through 

various metrics for model selection (Seghier, 2018) (for example N=3 in 1c). A subtype map 

is generated by averaging the maps within each subgroup and subtracting the grand average 

(i.e. demeaned) to emphasize the features of the subtype. Chi square statistics are applied to 

identify groups that include a greater number of Alzheimer's disease patients than expected by 

chance (illustrated by a “*AD” annotation for subtype 2 in 1c). In 1d, the subtyping procedure 

was applied on maps of grey matter density from CN and Alzheimer's disease dementia 

individuals in the ADNI database (N=377). Four out of seven subtypes were identified as 

Alzheimer's disease dementia-related (results adapted from Tam and colleagues (Tam et al., 

2018)). Three subtypes were consistent with previous reports: posterior (or temporo-occipito-

parietal-predominant), diffuse, and temporal (or medial temporal-predominant) atrophy 

subtypes. A novel language atrophy subtype was also identified. In 1e, the subtype procedure 

was applied to resting-state fMRI data collected on CN, MCI, and Alzheimer's disease 

dementia individuals in a dataset pooling ADNI2 with several independent samples (N=130). 

Three subtypes were extracted for three resting-state networks known to be impacted by 

Alzheimer's disease: default-mode, salience, and limbic. One Alzheimer's disease 

dementia/MCI-related subtype was found for each network. The salience and default-mode 

followed similar patterns: increased within-network connectivity, and a lower (negative) 

connectivity between networks. The limbic subtypes showed lower connectivity with frontal 

regions, and increased connectivity with occipital regions. Results adapted from Orban et al. 

(Orban et al., 2017). The section on “Brain Subtypes” compares results from the above-

mentioned and other studies with similar approaches and objectives. Supplementary Table S1 

provides detailed characteristics of the 12 neuroimaging subtyping studies (structural MRI and 

resting-state fMRI) that met our search criteria. Abbreviations: BOLD (blood oxygen level 

dependant sigal)  
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Anatomical subtypes 
The spatial distribution of brain atrophy on structural MRI is highly heterogeneous in MCI, 

and Alzheimer's disease dementia patients (Nettiksimmons et al., 2014; Poulakis et al., 2018). 

Using data-driven clustering algorithms, 11 studies have attempted to subtype and characterize 

this inherent heterogeneity (Supplementary Table S1). Seven studies reported at least three 

distinct atrophy subtypes in Alzheimer's disease dementia (Noh et al., 2014; Hwang et al., 

2016; Park et al., 2017; Poulakis et al., 2018; ten Kate et al., 2018), or mixed (Alzheimer's 

disease dementia and CN) cohorts (Varol et al., 2017; Tam et al., 2018). Subtypes were 

generally consistent across studies, and can be described as diffuse, medial temporal-

predominant (temporal), and temporo-occipito-parietal-predominant (posterior) (Fig. 1d). 

They were generated by applying (1) hierarchical agglomerative clustering using Ward’s 

clustering linkage (Noh et al., 2014; Hwang et al., 2016; Tam et al., 2018), Louvain clustering 

(Park et al., 2017), random forest clustering (Poulakis et al., 2018), or non-negative matrix 

factorization (ten Kate et al., 2018) on cortical thickness or grey matter density maps, or (2) 

clustering on grey matter density maps using a novel approach called HYDRA (Varol et al., 

2017). Good agreement across studies may, in part, reflect usage of the same data sample 

(ADNI) for subtype identification in four studies (Hwang et al., 2016; Varol et al., 2017; 

Poulakis et al., 2018; Tam et al., 2018). Some studies report two-subtype decomposition (Dong 

et al., 2016; Malpas, 2016), but these lack inter-study consensus. Using model-based clustering 

on regional cortical thickness measures from ADNI, Malpas reported normal and atrophic-

entorhinal subtypes in a sample including Alzheimer's disease dementia, and CN individuals 

(Malpas, 2016). The atrophic-entorhinal subtype demonstrated considerable heterogeneity in 

entorhinal thickness, suggesting the presence of additional subtypes (Malpas, 2016). Dong et 

al. reported limbic-insular, and parietal-occipital atrophy subtypes using CHIMERA clustering 

on brain volume data from Alzheimer's disease dementia and CN ADNI participants (Dong et 

al., 2016). In a separate study, the same group reported four atrophy subtypes using 

CHIMERA: normal, temporal, and two diffuse subtypes - one with predominant temporal 

involvement (diffuse-temporal), and one without (diffuse) (Dong et al., 2017). Visually, the 

diffuse subtype from CHIMERA shared some overlap with the posterior subtype described 

previously. In general, the reported subtypes (Dong et al., 2017) fit better with the three subtype 

solution, considering that, unlike previous studies, the CHIMERA study included CN 

individuals. Finally, Tam et al. identified a fourth atrophy subtype involving several language-

related areas (Tam et al., 2018). 
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The choice of the number of subtypes is to some degree arbitrary. Two studies showed that 

their three subtypes could be decomposed into six (Noh et al., 2014), or more (Tam et al., 2018) 

homogeneous groups. Finally, an additional study looking at heterogeneity with a linear 

mixture model, instead of a discrete cluster analysis, showed that most individuals tend to 

express varying levels of multiple subtypes (Zhang et al., 2016). Continuous measures of 

subtype similarity are thus more advisable than discrete assignment (Zhang et al., 2016; Tam 

et al., 2018). 

 

We now highlight various associations between Alzheimer's disease markers/risk-factors and 

the three atrophy subtypes consistently reported. In three studies, Alzheimer's disease dementia 

patients with the posterior subtype were reported to be the youngest, and had the earliest age-

at-onset (Noh et al., 2014; Hwang et al., 2016; Park et al., 2017). They also demonstrated 

greater PET-detectable amyloidosis (Hwang et al., 2016), and pathological levels of CSF Aβ42 

and tau (Noh et al., 2014; Varol et al., 2017; ten Kate et al., 2018). Differences across subtypes 

were reported with FDG-PET-detectable glucose hypometabolism (Hwang et al., 2016), and 

white matter hyperintensities (ten Kate et al., 2018). Subtype-specific associations with 

Alzheimer's disease-related genes were observed, specifically, APOE (Noh et al., 2014; Varol 

et al., 2017), CD2AP (CD2-associated protein) (Varol et al., 2017), SPON1 (Spondin-1) (Varol 

et al., 2017), LOC390956 or PPIAP59 (peptidyl-prolyl cis-trans isomerase A pseudogene) 

(Varol et al., 2017), though the association with APOE was not consistently found (Hwang et 

al., 2016). Associations of subtypes with cognition were observed for global (Varol et al., 2017; 

Tam et al., 2018) and domain-specific (e.g. episodic memory) (Noh et al., 2014; Park et al., 

2017; Poulakis et al., 2018; ten Kate et al., 2018) measures, but not by all studies (Hwang et 

al., 2016). Associations between subtypes and sex were found to be significant in two (Noh et 

al., 2014; Varol et al., 2017) of four (Noh et al., 2014; Hwang et al., 2016; Varol et al., 2017; 

Tam et al., 2018) studies.  

 

Functional subtypes 
By coupling cluster analysis and resting-state functional MRI, a preprint report by Orban et al. 

(Orban et al., 2017) investigated connectivity subtypes in CN, MCI, and Alzheimer's disease 

dementia patients (Supplementary Table S1). They noted associations between functional 

connectivity subtypes and cognitive symptoms in the default-mode, limbic, and salience 
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networks in MCI, and Alzheimer's disease dementia patients (Fig. 1e). Limbic subtypes were 

also associated with Alzheimer's disease biomarkers (CSF Aß42 levels, APOE4 genotype) in 

an independent cohort at increased risk for familial Alzheimer's disease, suggesting that 

functional connectivity subtypes may be sensitive to the presence and progression of preclinical 

disease (Orban et al., 2017). 

  

Summary 
Our review found convergent evidence of distinct brain atrophy subtypes in Alzheimer's 

disease dementia patients, including at least three data-driven Alzheimer's disease atrophy 

subtypes: diffuse, temporal, and posterior. These structural subtypes seem to associate with 

established biomarkers, risk factors, and clinical symptoms of Alzheimer's disease, as well as 

cognitive subtypes: temporal subtype with memory impairment, and diffuse subtype with 

impaired executive function (Zhang et al., 2016). The picture emerging from fMRI data is one 

of aberrant between-network connectivity initiating in the mesolimbic network at the 

preclinical stage and propagating to the salience and default-mode network with Alzheimer's 

disease progression (Orban et al., 2017).  
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Metabolomics Panels 
  

 
 
Figure 2: A typical Alzheimer's disease metabolomics biomarker discover pipeline 

Metabolomics is a relatively recent addition to the systems biology toolkit for the study of 

NDDs of aging (Wilkins and Trushina, 2017). It encompasses the global study of small-

molecules (50-1500 daltons in mass), that are substrates and products of metabolism. Together, 

these metabolites (e.g. amino acids, antioxidants, vitamins) represent the overall physiological 

status of the organism. An individual’s metabolic activity is influenced by an individual’s 

genotype and environment (Kaddurah-Daouk et al., 2011). Analysis of the metabolome, 

therefore, provides an opportunity to study the dynamic molecular phenotype of an individual. 

Untargeted metabolomics approaches are increasingly used to compare two or more groups 

(e.g. Alzheimer's disease dementia and CN participants) and identify metabolite profiles 

associated with a disease. These profiles provide insight into underlying disease mechanisms, 

as well as constitute candidates for biomarker discovery and drug development. In the field of 

Alzheimer's disease research, metabolomics studies (targeted and untargeted) over the last 

decade have examined several biofluids and tissues, including serum, plasma, CSF, saliva, 

urine, and brain tissue (Wilkins and Trushina, 2017). Technologies include NMR (nuclear 

magnetic resonance) spectroscopy and mass spectrometry. In 2a, a typical Alzheimer's disease 
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metabolomics biomarker discovery pipeline using MS-LC (mass spectrometry-liquid 

chromatography) is depicted. Subsequent to metabolite extraction, identification, and 

quantification, most studies apply multivariate statistical methods to the metabolome data to 

identify the top discriminant metabolites. These can be further combined into metabolite-panels 

to increase discriminative power (i.e. sensitivity and specificity) in Alzheimer's disease 

prediction and progression (Liang et al., 2015, 2016; Huan et al., 2018). Significant 

discriminative power is commonly tested with the Receiver Operating Characteristic curve 

analysis (area under the curve or AUC values). Discriminant metabolite-panels are then 

validated in independent samples. Following discriminant metabolite(s) discovery, researchers 

conduct pathway and network analyses, which provide crucial mechanistic insights into the 

sequences of processes leading to the heterogeneous phenotypes of neurodegeneration. 

Pathway analysis focus on identifying sequences of processes that lead to the presence of a 

discriminant metabolite. Network analysis examine how discriminant metabolites are 

connected to each other within Alzheimer's disease and related dementias. In 2b, we show the 

three main metabolic pathways (namely, amino acid, lipid and nucleic acid) that 90 Alzheimer's 

disease-associated metabolites in our review (N=11 publications, Supplementary Table S2) 

were found to belong. The text color indicates the biofluid metabolome each metabolite was 

identified in: red = serum or plasma, purple = saliva, black = CSF. A larger font size indicates 

that the metabolite was identified in more than one study (see Supplementary Table S3 for 

details) The maximum number of studies a metabolite was detected in our review was four. * 

indicates that the metabolite was identified in more than one biofluid:** indicates presence in 

plasma or serum and saliva, ** indicates presence in plasma or serum and CSF. Abbreviations: 

AD, Alzheimer’s disease; CN, cognitively normal; MCI, mild cognitive impairment. 

 

Metabolite Panels 
We reviewed six Alzheimer's disease studies that constructed metabolite panels from top 

discriminant metabolites in biofluids: 2 plasma, 1 serum, 2 saliva, and 1 CSF (Supplementary 

Table S2). Using plasma metabolome data, Wang et al. (Wang et al., 2014) constructed a six-

metabolite panel to discriminate Alzheimer's disease dementia from CN, and a five-metabolite 

panel to discriminate amnestic MCI from CN. Arachidonic acid, N,N-dimethylglycine, and 

thymine were present in both panels. Association of panel metabolites with lipid, amino acid, 

or nucleic acid metabolism suggested specific metabolic deregulations in Alzheimer's disease. 

Mapstone et al. (Mapstone et al., 2017) used a 12-plasma-metabolite panel to discriminate the 
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following cohorts from CN: older adults with superior memory; amnestic MCI + Alzheimer's 

disease dementia patients; and participants who converted to amnestic MCI or Alzheimer's 

disease dementia in approximately two years. Similar to Wang et al. (Wang et al., 2014), 

several panel metabolites were associated with lipid or amino acid metabolism. Panel 

metabolites were also found to be constituents of pathways regulating oxidative stress, 

inflammation, and nitric oxide bioavailability. Using serum metabolome data, Liang et al. 

(Liang et al., 2016) identified a panel of two lipid metabolites (spinganine-1-phosphate, 7-

ketocholesterol) that discriminated MCI from Alzheimer's disease dementia. Sphinganine-1-

phosphate was also present in a three-metabolite panel constructed from the salivary 

metabolome, and discriminated Alzheimer's disease dementia patients from CN (Liang et al., 

2015). The other two panel members, ornithine and phenyllactic acid, were amino acid 

metabolites (Ogata et al., 1999) with links to the same oxidative stress pathway reported by 

Mapstone et al. (Mapstone et al., 2017) A separate study using saliva reported a seven-

metabolite panel that discriminated pre-dementia (i.e. five years prior to dementia onset) from 

CN (Figueira et al., 2016). Metabolites were associated with amino acid, lipid, or energy 

metabolism. Czech et al. (Czech et al., 2012) assessed multiple combinations of 16 CSF 

metabolites to discriminate Alzheimer's disease dementia from CN. Highest discrimination was 

obtained with a 5-metabolite panel consisting of cortisol and amino acids. Our focused review 

of Alzheimer's disease-associated metabolite panels highlight that the majority of discriminant 

molecules detected in biofluids are involved in amino acid, lipid, or nucleic acid metabolism  

(Fig. 2b). 
 

Metabolomics Pathways and Networks 
We reviewed five Alzheimer's disease studies that followed up non-targeted metabolomics 

research in biofluids with pathway or network analyses: 2 plasma, 1 plasma plus CSF, and 2 

serum (Supplementary Table S2). In plasma, de Leeuw et al. (de Leeuw et al., 2017) identified 

26 metabolites comprised of mainly amino acids and lipids with significantly altered levels in 

Alzheimer's disease dementia patients. Network analyses suggested a shift in Alzheimer's 

disease towards amine and oxidative stress compounds, known to cause imbalances in 

neurotransmitter production, Aβ generation, and neurovascular health. Perturbations in amino 

acid metabolism (interlinked polyamine and L-arginine pathways) was also demonstrated in 

the plasma metabolome of MCI to Alzheimer's disease dementia converters (Graham et al., 

2015). Changes in polyamine and L-arginine metabolism have been linked to neurotoxicity, 

and deregulations in genesis and/or death of neural cells and neurotransmitter production 
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(Graham et al., 2015). Other metabolic pathways notably impacted were cholesterol, glucose, 

and prostaglandin (Graham et al., 2015). Cholesterol metabolism (specifically cholesterol and 

sphingolipids transport) was also found to be abnormal in both plasma and CSF from 

Alzheimer's disease dementia patients (Trushina et al., 2013). In serum, metabolism of amino 

acids dominated the top pathways altered in Alzheimer's disease dementia patients in one study 

(González-Domínguez et al., 2015), a finding in line with plasma metabolome data (de Leeuw 

et al., 2017). A second study in serum reported a 3-metabolite panel predictive of progression 

from MCI to Alzheimer's disease dementia (within 27±18 months), with major contribution 

from up-regulated 2,4-dihydroxybutanoic acid, a metabolite potentially overproduced during 

hypoperfusion-related hypoxia (Orešič et al., 2011). Upregulation of the pentose phosphate 

pathway in progressors further supported the involvement of secondary hypoxia in Alzheimer's 

disease pathogenesis. More glucose is metabolized via the pentose phosphate pathway in the 

brain under hypoxic conditions. 

 

Summary  

Overall, metabolite panels, and metabolomics pathway and network analyses provide the 

following insights: (1) discriminant Alzheimer's disease-associated metabolites may be 

narrowly or broadly interconnected (Wilkins and Trushina, 2017); (2) metabolomes of different 

biofluids provide convergent and biofluid-related mechanistic insights into Alzheimer's disease 

pathology (Trushina et al., 2013); (3) genotype-associated (e.g. APOE status) differences in 

preclinical and clinical groups suggest different routes to Alzheimer's disease (de Leeuw et al., 

2017), (4) neurodegenerative disease subtypes can be characterized by metabolomics analyses 

(de Leeuw et al., 2017). 
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Genomics-derived Polygenic Risk Scores 

 
 

Figure 3: Polygenic Risk Scores 

High-throughput genotyping technologies have revolutionized studies in diseases with 

complex genetics by enabling detection of common genetic variants with low effect sizes, and 

rarer variants with relatively higher effect sizes (see 3a). In Alzheimer's disease, the prevalent 

late-onset variant is genetically complex and demonstrates high heritability (up to 80%) (Gatz 
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et al., 2006), whereas the early-onset familial variant is deterministically driven by single gene 

mutation(s) in PSEN1 (presenilin 1), PSEN2 (presenilin 2) or the APP (amyloid precursor 

protein) (Guerreiro et al., 2013). The genetics of late-onset Alzheimer's disease has been 

predominantly investigated using GWAS. Designed to rapidly scan for statistical links between 

a set of known SNPs and a phenotype of interest, GWAS can identify common variants with 

MAF greater than 5% (Torkamani et al., 2018) (see 3a). Up to 24 key Alzheimer's disease-risk 

genes have been identified using GWAS (Supplementary Table S4). Identification of rarer 

Alzheimer's disease-associated SNPs (MAF >0.5% and <5%), that often escape detection 

with GWAS, is being enabled by NGS technologies, such as whole-exome sequencing and 

targeted resequencing of disease-associated genes (Bras et al., 2012; Masellis et al., 2013) (see 

Supplementary Table S4 for examples). NGS technologies provide transcriptome-wide 

coverage without requiring any a priori knowledge of SNPs (3a). To date, Alzheimer's disease 

prediction using individual high-throughput genotyping technologies identified risk genes have 

been predominantly non-significant, with the exception of APOE, which accounts for up to 

30% of the genetic risk (Daw et al., 2000). Therefore, the search for risk genes beyond APOE 

now include polygenic risk score (PRS, also referred to as genetic risk scores, risk indexes or 

scales) approaches (3b). A PRS is a calculation (e.g. weighted sum) based on the number of 

risk alleles carried by an individual, where the risk alleles and their weights are defined by 

GWAS-detected loci and their measured effects (Torkamani et al., 2018). In the most common 

scenario, only SNPs reaching conventional GWAS significance (p < 5 x 10-8) are included (3c). 

A threshold lower than the genome-wide statistical significance (e.g. p = 10-5) can also be used 

to improve or estimate total predictability (Torkamani et al., 2018) (3c). SNPs representing 

multiple hits among Alzheimer's disease risk genes from one or more major mechanistic 

pathways can also be included into a PRS (3c). Displayed are six main mechanistic clusters, 

each populated by genetic variants thought to represent the cluster (3d). Genetic variants have 

been placed within the cluster according to population frequency (horizontal axis) and level of 

estimated risk (vertical axis). For example, an Aβ/APP metabolism cluster is made up of rare 

ADAM10 (a disintegrin and metalloproteinase domain-containing protein 10) and common 

APOE4+)higher risk genes, and rare PLD3 (phospholipase D family member 3) and common 

PICALM (phosphatidylinositol binding clathrin assembly protein) lower risk genes. Some 

genes are involved with multiple mechanisms as can be seen for PICALM’s involvement in 

nervous function, basic cellular processes, and Aβ/APP metabolism.  As implied in the figure, 

when creating PRS, it may be very useful to select genes within mechanistic groups, and select 
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groups depending on the purpose of the research. In sum, PRS reflect a large number of SNPs 

and a complex set of biological mechanisms related to Alzheimer's disease pathogenesis, and 

can improve the precision of early Alzheimer's disease risk or diagnosis (Desikan et al., 2017; 

Escott-Price et al., 2017; Morgan et al., 2017). 

 

Polygenic Risk Score Approach or PRS 

Constructed of multiple SNPs that implicate one or more biological mechanisms, PRS (Fig. 3) 

are better at discriminating Alzheimer's disease from CN than single-gene analysis (Escott-

Price et al., 2017; Torkamani et al., 2018). We reviewed 11 Alzheimer's disease PRS studies 

(Supplementary Table S4, S5), the majority comprised of GWAS-detected SNPs. To identify 

genetic risk beyond that of APOE alone, several studies assessed PRS with (APOE-PRS) and 

without (non-APOE-PRS) APOE. Desikan et al. (Desikan et al., 2017) found that an APOE-

PRS associated with age-at-onset of Alzheimer's disease symptoms, decreased Aβ and 

increased tau in CSF, and increased atrophy, tau, and Aβ load in brain. APOE-PRS also 

associated with plasma inflammatory markers in Alzheimer's disease patients (Morgan et al., 

2017). An APOE-PRS including a rare TREM2 (triggering receptor expressed on myeloid cells 

2) variant discriminated Alzheimer's disease dementia and CN, with increasing scores 

associating with decreasing age-at-onset, and CSF Aβ42 (Sleegers et al., 2015). Discriminative 

power of APOE-PRS was found to improve with diagnostic accuracy, as demonstrated using a 

pathologically confirmed Alzheimer's disease cohort (Escott-Price V, Myers, AJ, Huentelman 

M, Hardy, J, 2017). In four separate studies, a non-APOE-PRS was reported to discriminate 

between Alzheimer's disease dementia and CN (Xiao et al., 2015), as well as associate with 

MCI (Adams et al., 2015), increased risk of Alzheimer's disease dementia (Adams et al., 2015; 

Chouraki et al., 2016; Tosto et al., 2017), and earlier Alzheimer's disease onset (Tosto et al., 

2017). Inclusion of APOE either resulted in a modest increase in discriminative power (Xiao 

et al., 2015), stronger clinical or biomarker associations (Adams et al., 2015; Chouraki et al., 

2016), or had no additional effect (Tosto et al., 2017). In another non-APOE-PRS study in 

Alzheimer's disease patients, PRS scores correlated negatively with CSF Aβ42 levels, and 

positively with temporal cortex Aβ pathology, and γ-secretase activity (Martiskainen et al., 

2015). Naj et al. (Naj et al., 2014) found that though APOE contributed to 3.7% of age-at-onset 

variability in Alzheimer's disease dementia patients, adding a non-APOE-PRS accounted for 

an additional 2.2%. Overall, Alzheimer's disease heritability has a large polygenic contribution 
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beyond APOE, which makes PRS approaches pivotal for Alzheimer's disease-risk prediction 

(Escott-Price et al., 2015).  

 

Mechanism-based Interaction and Network Approaches  
Alzheimer's disease-risk genes can be clustered into functional/mechanistic pathways (Fig. 3d), 

and the information gained utilised to improve Alzheimer's disease discrimination and/or risk 

prediction (Gaiteri et al., 2016; Hu et al., 2017). We reviewed six mechanism-based 

Alzheimer's disease studies (Supplementary Table S5). Functional variants of Alzheimer's 

disease GWAS-significant SNPs (e.g. CELF1 or CUGBP Elav-like family member 1) was 

reported to associate with human brain expression quantitative trait loci, and preferentially 

expressed in specific cell-types (e.g. microglia) (Karch et al., 2016). Rosenthal et al. (Rosenthal 

et al., 2014) highlighted the potential regulatory functions of non-coding Alzheimer's disease 

GWAS SNPs. Protein-protein interaction network analyses highlighted that Alzheimer's 

disease-risk genes whose protein-products interact physically may be under positive 

evolutionary selection (e.g. PICALM or phosphatidylinositol binding clathrin assembly 

protein, BIN1 or bridging integrator 1, CD2AP or CD2 associated protein, EPHA1 or EPH 

receptor A1) (Raj et al., 2012). Ebbert et al. (Ebbert et al., 2014) reported that while an APOE-

PRS did not improve discrimination of Alzheimer's disease from CN over APOE, a model 

allowing for epistatic interactions between SNPs increased discriminative power. Patel et al. 

(Patel et al., 2016) applied a stratified false discovery rate approach, used to increase GWAS 

power by adjusting significance levels to the amount of overall signal present in data, to identify 

gene networks and provide links with sMRI phenotypes: e.g. linking genes involved in 

transport (e.g. SLC4A10 or solute carrier family 4 member 10, KCNH7 or potassium voltage-

gated channel subfamily H member 7) with hippocampal volume. Huang et al. (Huang et al., 

2018) integrated Alzheimer's disease GWAS genes with human brain-specific gene network 

using machine learning to identify additional Alzheimer's disease-risk genes. 

 

Summary  
In sum, PRSs may contribute substantially to accounting for the genetic variability that 

distinguishes Alzheimer's disease from MCI and CN groups. They may also be used to probe 

genetic underpinnings of Alzheimer's disease subtypes as well as related and disparate NDDs. 

Thus far, research reporting PRSs in relation to conversion rates of CN or MCI to Alzheimer's 

disease dementia have been mixed (Adams et al., 2015; Lacour et al., 2017), but early PRS 
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prediction of cognitive trajectories and clinical outcomes have also been reported (Sapkota and 

Dixon, 2018).  

 

 

Discussion 

Roadmap for assembling multiomics measures into diagnostic tool 
 
On the complementarity of multiomics biomarkers 

Individuals clinically diagnosed with an NDD of aging (e.g. Alzheimer's disease) exhibit 

varying loads of neurodegenerative markers (e.g. Aβ, tau, alpha-synuclein, brain atrophy, 

vascular abnormalities) (Beach et al., 2012; Robinson et al., 2018). Single-domain omics 

biomarkers can, to an extent, characterize this heterogeneity in vivo. Some data-driven brain 

atrophy subtypes parallel established clinical diagnoses. For example, the posterior atrophy 

subtype is evocative of the PCA Alzheimer's disease variant, and the language atrophy subtype 

of the lvPPA variant (Ossenkoppele et al., 2015). An active area of research is to determine to 

what degree the “bottom-up”, fully automated and data-driven subtypes match with established 

“top-down” clinical assessments, which usually start with cognitive symptoms and then 

incorporate specific neuroimaging characteristics, such as left temporoparietal atrophy in 

lvPPA (Ossenkoppele et al., 2015). The fact that reviewed studies included participants with 

typical late-onset Alzheimer's disease dementia, and not atypical variants such as PCA, suggest 

that specific brain atrophy phenotypes comprise a spectrum of involvement that may overlap a 

clinical label, but not associate uniquely with one. It is unclear how functional connectivity 

subtypes tie in with atrophy subtypes, although they both associate with clinical diagnoses and 

biomarkers and risk factors of Alzheimer's disease (Zhang et al., 2016; Orban et al., 2017). 

Although the propagation of functional dysconnectivity parallels the Braak staging of 

Alzheimer's disease, the mix of connectivity increases and decreases observed in patients may 

reflect transient compensatory mechanisms as well as neurodegeneration (Badhwar et al., 

2017). To date, we are unaware of studies that have associated data-driven Alzheimer's disease 

brain subtypes with PRS and/or metabolite panels, but our review strongly supports such 

coordinated multiomics approaches. For example, an Alzheimer's disease PRS comprised of 

genes linked to lipid metabolism and inflammatory response may associate with panels 

comprised of metabolites involved in corresponding pathways. One could further speculate 

whether the resulting inflammation may cause the diffuse atrophy subtype, and trigger specific 
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functional compensatory mechanisms. Testing these hypotheses will require a cohort that is 

both deeply phenotyped and captures the entire spectrum of age-related dementia.  

 

A roadmap for parsing heterogeneity in neurodegeneration 

A data-driven characterization of heterogeneity across the NDDs of aging will require cohorts 

representative of the spectrum of neurodegeneration. The cohort assembled by the Canadian 

Consortium on Neurodegeneration in Aging (CCNA, http://ccna-ccnv.ca/) provides a new 

opportunity to study the full spectrum of age-related dementia. By 2019, the cohort will include 

2,310 individuals (ages 50-90) featuring the following cognitive conditions: Alzheimer's 

disease, vascular, Lewy Body, Parkinson’s, frontotemporal, and mixed etiology dementias, as 

well as subjective cognitive impairment, MCI, vascular MCI, and CN  (Fig. 4). 
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Figure 4: proposed roadmap to discovering multiomics Alzheimer's disease biomarkers 

Panel 1 (COMPASS-ND): The COMPASS-ND cohort is comprised of people with various 

types of dementia or cognitive complaints, as well as healthy, cognitively normal individuals. 

Panel 2 (Omics data): Performing dimension reduction for omics data. Featured as examples 

are some of the results of our review of the Alzheimer's disease literature as presented earlier 

in the paper. Panels 3-5 (Machine Learning, Multiomics Biotypes and Prediction): demonstrate 

how signatures of neurodegeneration derived from the integration of multiomics data using 
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machine learning techniques will better identify individuals on an Alzheimer's disease 

spectrum trajectory. While our proposed roadmap addresses multiomics biomarkers for 

Alzheimer's disease, a similar approach can be used for other neurodegenerative diseases of 

aging. Abbreviations: Alzheimer’s Disease (AD), FrontoTemporal Dementia (FTD), Lewy 

Body Disease (LBD), Vascular Cognitive Impairment (VCI), Mixed etiology dementia 

(Mixed), Cognitively normal (CN), Subjective Cognitive Impairment (SCI), Mild Cognitive 

Impairment (MCI), Imaging features (I), Metabolic features (M), Genomics features (G), 

clinical and demographic features (O). 

 

The cohort composition ensures that age-related dementias are more or less equally 

represented, even for less prevalent dementia types (e.g. frontotemporal dementia). Participants 

will be deeply phenotyped with extensive clinical, neuropsychological, neuroimaging, 

biospecimen, and neuropathological assessments. 

 

In Fig. 4 we present a roadmap for a multiomics approach to heterogeneity in NDD. We begin 

with a heterogeneous clinical cohort design that enables the discovery of subgroups sharing a 

common signature across multiple omics domains (biotypes) that are highly predictive of the 

clinical status and evolution of individual patients. Multiomics biotypes will be complemented 

by other important variables such as sex, presence of Aβ and tau deposits, and vascular 

abnormalities. Machine learning tools will be applied to identify an optimal combination of 

different biotypes and explanatory variables that either discriminate different clinical cohorts, 

or are predictive of future progression of specific symptoms (Fig. 4).  

 

Towards highly predictive multiomics signatures 

Biomarkers of Alzheimer's disease dementia demonstrate limited predictive power in the 

prodromal phase (Rathore et al., 2017). For example, Korolev et al. (Korolev et al., 2016) 

reached about 80% accuracy (specificity 76%, sensitivity 83%) by including cognitive, 

multimodal imaging, and plasma-proteomics measures in a predictive model of progression. 

The best models include a combination of cognitive, sMRI, FDG-PET, and/or amyloid-PET 

measures (Rathore et al., 2017). A substantial proportion of patients identified as progressors, 

even by the best model, will remain stable over time. Given a 30% baseline rate of progressors 

in an MCI cohort, and a prediction achieving a sensitivity and specificity of 80%, 37% of 

patients identified as progressors by the model will remain stable. This limited positive 

predictive value is likely explained by sample heterogeneity. For example, Dong et al. (Dong 
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et al., 2017) reported two atrophy subtypes with higher-than-expected rates of progression to 

dementia, but one subtype was much more at risk than the other. Thus, an important first step 

to precision medicine is to identify specific subsets of patients where an accurate prediction 

can be made.  

 

Multiomics signatures can be used to improve the accuracy of early prognosis, but they also 

capture a range of information, ranging from brain networks targeted by the disease, metabolic 

abnormalities in specific pathways, and distinct genetic backgrounds. The multiomics signature 

thus may also help elucidate the specific pathophysiological pathways involved. Overall, 

multiomics biomarkers have the potential to reshape clinical diagnosis, and define new “bottom 

up” cohorts based on markers of underlying pathologies to design and evaluate drugs. 
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