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Abstract

Background

The elimination programme for visceral leishmaniasis (VL) in India has seen great

progress, with total cases decreasing by over 80% since 2010 and many blocks now

reporting zero cases from year to year. Prompt diagnosis and treatment is critical to

continue progress and avoid epidemics in the increasingly susceptible population.

Short-term forecasts could be used to highlight anomalies in incidence and support

health service logistics. The model which best fits the data is not necessarily most

useful for prediction, yet little empirical work has been done to investigate the balance

between fit and predictive performance.
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Methodology/Principal Findings

We developed statistical models of monthly VL case counts at block level. By

evaluating a set of randomly-generated models, we found that fit and

one-month-ahead prediction were strongly correlated and that rolling updates to

model parameters as data accrued were not crucial for accurate prediction. The final

model incorporated auto-regression over four months, spatial correlation between

neighbouring blocks, and seasonality. Ninety-four percent of 10-90% prediction

intervals from this model captured the observed count during a 24-month test period.

Comparison of one-, three- and four-month-ahead predictions from the final model fit

demonstrated that a longer time horizon yielded only a small sacrifice in predictive

power for the vast majority of blocks.

Conclusions/Significance

The model developed is informed by routinely-collected surveillance data as it

accumulates, and predictions are sufficiently accurate and precise to be useful. Such

forecasts could, for example, be used to guide stock requirements for rapid diagnostic

tests and drugs. More comprehensive data on factors thought to influence geographic

variation in VL burden could be incorporated, and might better explain the

heterogeneity between blocks and improve uniformity of predictive performance.

Integration of the approach in the management of the VL programme would be an

important step to ensuring continued successful control.

Author summary

This paper demonstrates a statistical modelling approach for forecasting of monthly

visceral leishmaniasis (VL) incidence at block level in India, which could be used to

tailor control efforts according to local estimates and monitor deviations from the

currently decreasing trend. By fitting a variety of models to four years of historical

data and assessing predictions within a further 24-month test period, we found that

the model which best fit the observed data also showed the best predictive

performance, and predictive accuracy was maintained when making rolling predictions
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up to four months ahead of the observed data. Since there is a two-month delay

between reporting and processing of the data, predictive power more than three

months ahead of current data is crucial to make forecasts which can feasibly be acted

upon. Some heterogeneity remains in predictive power across the study region which

could potentially be improved using unit-specific data on factors believed to be

associated with reported VL incidence (e.g. age distribution, socio-economic status

and climate).

1 Introduction 1

1.1 Visceral leishmaniasis in India 2

The short-term forecasting of diseases targeted for elimination can be a important 3

management tool. Visceral leishmaniasis (VL) is the acute disease caused by 4

Leishmania donovani, which is transmitted through infected female Phlebotomus 5

argentipes sandflies. In India, the burden of disease is largely contained within the 6

four northeastern states of Bihar, Jharkhand, Uttar Pradesh and West Bengal, with 7

the rural state of Bihar most broadly affected [1–3]. 8

Incidence of VL in India has decreased substantially since the initiation of the 9

regional Kala-Azar Elimination Programme (KEP), which aims to tackle the disease 10

across the Indian subcontinent through enhanced case detection and treatment and 11

reduction of vector density [4]. As a result, reported cases have fallen from 29,000 in 12

2010 to less than 5,000 in 2018 [3, 4]. The overall target of the programme is to reduce 13

incidence to less than 1 case/10,000 people/year within each “block”. Blocks are 14

administrative sub-divisions of a district with population sizes varying from twenty 15

thousand to several million, depending on geographic area and the proportion of urban 16

and rural habitation. As a consequence, the target equates to an absolute total of 17

between three and two hundred cases per year. To support the elimination effort, data 18

are reported to a central repository (Kala-Azar Management Information System, 19

KA-MIS) to construct line lists including the date and location of every diagnosed 20

case. 21

Despite the overall decrease in incidence, there is considerable heterogeneity 22
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between blocks (Fig. 1). In some blocks cases are now few and far between, while 23

others remain substantially affected from year to year. The combination of the 24

decrease and the heterogeneity raises the need for a more targeted approach; the finite 25

resources available must be distributed efficiently to continue progress. Additionally, 26

history has shown that VL has the potential to develop into large epidemics [5–7] and 27

hence it is important that localised pockets of incidence are not overlooked. 28

Intervention when incidence is low is required to prevent the trajectory from turning 29

upwards again, as cycles of VL incidence appear to occur with a frequency of 10-20 30

years [8]. 31

Fig 1. Estimated incidence per 10,000 population per block in 2018, for
Bihar and the four endemic districts of Jharkhand (Dumka, Godda,
Sahibganj and Pakur). Incidence is estimated according to reported cases in
KA-MIS with diagnosis date in between 01/01/2018 and 31/12/2018 and block
populations projected from the 2011 census according to decadal, block-level growth
rates [9]. Black lines indicate block boundaries. The affected blocks of Jharkhand on
average have much higher incidence than Bihar and can be seen in the bottom right of
the map. Blocks marked grey had no reported cases during the study period.

The primary aim of this paper is to ascertain the potential utility of predictions 32

based solely on routinely-collected surveillance data, within a ready-made, rapid and 33

relatively easy-to-use framework. Such predictions could serve two purposes; firstly to 34

support logistics, for example in setting minimum stock levels of rapid diagnostic tests 35

and drugs, and secondly to provide an early warning if the number of cases starts to 36

resurge. For this modelling framework to be useful to the elimination programme, it is 37

essential that its predictions are sufficiently accurate. Hence we make predictive 38

accuracy of the forecasting approach the focus of the model selection. 39

1.2 Forecasting and spatio-temporal analysis 40

There have been many attempts at forecasting the various forms of leishmaniasis 41

across the three affected continents. Lewnard et al. (2014) [10] employ a seasonal 42

ARIMA model to predict cutaneous leishmaniasis in Brazil, incorporating 43

meterological data and evaluating one, two and three month ahead forecasts. More 44

recently, Li et al. used an extended ARIMA model to predict incidence in Kashgar 45

prefecture, China [11]. However, neither of these attempts to capture spatial variation. 46

Epidemiological data, in particular regarding infectious disease, are often both 47
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temporally and spatially correlated. That is to say, as well as incidence at one point in 48

time being related to incidence in the past, incidence in one area is also related to 49

incidence in nearby areas. Mapping reported VL incidence in India at the block level 50

demonstrates the presence of spatial correlation (Fig. 1), with concentrated regions of 51

high incidence appearing in East Bihar and Jharkhand. This could be due to similar 52

geographic and demographic characteristics of neighbouring blocks, or the spread of 53

infection by regular population movement. The latter can induce a spatio-temporal 54

pattern in which pockets of high incidence appear to “step” between neighbouring 55

blocks. The seasonal cycle of incidence and overall decreasing trend (Fig. 2) are 56

clearly evident in aggregated case counts. 57

Fig 2. Total monthly reported cases across the study region. The annual
cycle (peaking between January and April) and overall decreasing trend are clear at
this aggregate level.

Several statistical approaches have been developed to model count data in space 58

and time. These methods have been largely developed and used for understanding the 59

drivers of patterns, often incorporating additional covariate information describing 60

climate, geography or demography [12,13] Dewan et al. [14] employ scanning 61

techniques for a regional analysis solely of case data, but do not utilise the approach 62

for prediction. Paixão-Seva et al. (2017) [15] simultaneously model the infected 63

human, vector and dog populations in relation to landscape, climatic and economic 64

factors, and in particular use proximity to a highway and gas pipeline as indicators of 65

human movement. Where aetiology is not the focus, analyses often incorporate GPS 66

locations of cases to identify hotspots and predict disease spread at a local village or 67

household level [16], or across health facilities [17] . 68

In the case of VL on the Indian subcontinent, environmental data are difficult to 69

obtain in real-time at a sufficient spatial and temporal scale for forecasting purposes, 70

and GPS data have not been routinely or uniformly collected across the affected 71

region. As such, statistical approaches to spatio-temporal analysis have been broadly 72

limited to specific study regions within which additional data were collected [18]. 73

Predictions on a regional level have so far been the remit of transmission dynamic 74

modelling [19]. We aim to make use of the reliable and near-complete date and area 75

data within the KA-MIS system, for the whole state of Bihar and the affected region 76
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of Jharkhand, to understand how well future cases could be predicted solely from the 77

surveillance data of previous cases. As far as we are aware, no previous attempt has 78

been made to forecast VL at this spatial scale and with this level of coverage for the 79

Indian endemic region. 80

Often the model which best fits observed data is selected for forecasting, yet 81

goodness of fit does not guarantee predictive power. We therefore also investigate the 82

relationship between the fit and predictive power. 83

1.3 Model Framework 84

A natural modelling approach is to consider the cases in each month in each block as a 85

function of cases in the previous month and in neighbouring blocks. A model 86

framework developed in [20,21] has been applied previously for modelling cutaneous 87

leishmaniasis in Afghanistan [22]. This framework decomposes the distribution of 88

counts at each point in space and time into three components (auto-regressive, 89

neighbourhood and endemic): 90

• Auto-regressive (AR) The contribution of previous incidence in the same 91

block to current incidence. A choice must be made about time period of previous 92

incidence considered (i.e. the number of months). 93

• Neighbourhood (NE) The contribution of previous incidence in surrounding 94

blocks to current incidence. A choice must be made about both the time period 95

and spatial extent considered (i.e. neighbours, neighbours of neighbours etc.), 96

with indirect neighbours assigned decaying weights, for example, according to a 97

power law. 98

• Endemic (END) A function describing the intrinsic incidence related to block 99

factors (such as geography or demography) or seasonality. 100

The sum of these components forms the mean structure for a negative binomial 101

distribution used to model the count in each block and month. The epidemic 102

component consists of both auto-regression and spatial/spatio-temporal regression. 103

The maximum distance in space or time at which we assume one block-and-month 104

count affects another is referred to as the maximum spatial or temporal lag. The 105
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endemic component attempts to explain any remaining variation, potentially due to 106

overall temporal trends, population size and other unit-specific factors. 107

In addition to the genuine epidemiology of VL, there is an intermediary process of 108

detection and reporting which contributes to the distribution of case counts. A new 109

case in a previously unaffected area triggers active case detection (ACD) which 110

continues for twelve months, therefore contributing to the pattern of temporal 111

correlation. In other words, one case is likely to be promptly followed by more cases - 112

not only because of transmission but also as a result of increased, localised detection 113

effort. We therefore explored a flexible, distributed lag structure [23] which extends 114

the range of spatio-temporal interaction by allowing incidence over multiple previous 115

months to contribute to both the auto-regressive and spatial elements. The selection 116

of an optimal lag length has been investigated for distributed lag models in one 117

dimension (i.e. time alone) [24], but the impact of introducing a spatial component 118

has not been thoroughly discussed. A strong interdependence between the 119

autoregressive and neighbourhood components is introduced by simultaneously 120

incorporating past information from the same block and the neighbourhood of that 121

block in a distributed lag model; each block affects subsequent incidence in its 122

neighbours, which in turn affects subsequent incidence in the original block. We apply 123

a semi-systematic approach which attempts to optimise the temporal and spatial lags 124

simultaneously such that one does not mask the effect of the other. 125

1.4 Evaluation of forecasts 126

The three components described in the previous section have arbitrary complexity and 127

lead to a large number of candidate models. A key issue is therefore to identify the 128

best-fitting model, or a set of well-fitting models, and to assess to which degree good 129

in-sample (or retrodiction) performance translates to out-of-sample forecasting 130

performance. In-sample performance is widely assessed via the Akaike information 131

criterion (AIC). The AIC balances the model fit and complexity, and has been 132

recommended for model selection for prediction purposes [25]. To assess performance 133

of probabilistic forecasts it is standard to use proper scoring rules [21,26–29], which 134

offer more detailed scrutiny of the prediction than measures of absolute or squared 135
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error (as used, for example, in [30]) by taking into account the whole predicted 136

distribution. In fact, the ranked probability score (RPS) can be considered a 137

generalisation of absolute error, to which it reduces if the forecast distribution consists 138

of a single point. Proper scoring rules measure simultaneously the calibration and 139

sharpness of forecast distributions; they capture the model’s ability to predict both 140

accurately and precisely but also to identify its own uncertainty in that prediction [28]. 141

With a well-calibrated model the observed values should appear as having come from 142

the predicted distribution at that point, and we want as precise or sharp a predicted 143

distribution as possible while maintaining that calibration. In contrast, the mean 144

absolute error for example only evaluates how well the central tendency of predictions 145

aligns with the observations. We utilise the ranked probability score (RPS) [26] 146

averaged over all predicted time points (502 blocks * 24 months, so 12048 test 147

predictions), which for a predictive distribution P and an observation x is defined as 148

RPS(P, x) =
∞∑
k=0

[FP (k)− 1(x ≤ k)]2 (1)

Here, FP is the cumulative distribution function of P and 1 is the indicator 149

function. The RPS thus compares the cumulative distribution function of P to that of 150

an “ideal” forecast with all probability mass assigned to the observed outcome x. We 151

use this score rather than the logarithmic score as it is considered more robust [31], 152

and we wish to assign some credit to forecasts near the observed value. The score is 153

negatively oriented, meaning that smaller values are better. 154

Calibration can in addition be assessed using probability integral transform (PIT) 155

histograms. The PIT histogram shows the empirical distribution of FP ;i(xi) for a set of 156

independent forecasts i = 1, ..., I. We here use an adapted version for count data 157

suggested by Czado et al [26]. If the forecasts are calibrated, the histogram should be 158

approximately uniform. U and inverse U-shaped PIT histograms indicate that the 159

forecasts imply too little or too much variability, respectively. 160

A closely-related summary measure which is easy to communicate are empirical 161

coverage probabilities [31]. We will provide coverage probabilities of central 50% and 162

80% prediction intervals (reaching from the 25% to 75% and 10% to the 90% quantiles 163

of the predictive distribution, respectively). For a calibrated forecast, the empirical 164

March 10, 2020 8/33page.33

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. certified by peer review)

(which was notThe copyright holder for this preprint this version posted April 24, 2020. ; https://doi.org/10.1101/19009258doi: medRxiv preprint 

https://doi.org/10.1101/19009258
http://creativecommons.org/licenses/by-nc-nd/4.0/


coverage probabilities should be close to the nominal levels. However, in the context of 165

sparse, low counts the discreteness of the data often prevents achieving exactly the 166

nominal coverage level. Prediction intervals can then either be slightly conservative 167

(too high coverage), which is usually preferred in practice, or slightly liberal. 168

Our hypothesis is that models constructed with the surveillance framework to 169

accommodate spatio-temporal correlation in disease incidence can provide significantly 170

more accurate (in terms of sharpness and calibration) predictions than a purely 171

parameter-driven (i.e. independent of history and spatial context) model with overall 172

mean and linear time trend. Initially, we examine and discuss the relationship between 173

model complexity, its ability to describe past data (i.e. its fit) and its ability to predict 174

the next month. We then apply this understanding to select an optimal model for 175

prediction with a semi-systematic approach, before comparing its predictive ability for 176

different time horizons. 177

2 Materials and methods 178

2.1 Data 179

Access to the KA-MIS database of VL cases was provided by the National Vector 180

Borne Disease Control Programme (NVBDCP) and facilitated by CARE India. 181

Individual case records were downloaded for Bihar and Jharkhand, restricted to 182

diagnosis date between 01/01/2013 and 31/12/2018 and then aggregated by block and 183

diagnosis month. This gave reported case counts for 441 blocks. The KA-MIS data 184

were merged with data from the 2011 census [9] (compiled by CARE India) for the 185

two states to produce the final data set, including endemic blocks which had no 186

reported cases during the study period and hence did not appear in KA-MIS. Because 187

we incorporate spatial correlation into the model, it is necessary to not have “holes” of 188

missing data in the map. For individual blocks within the assumed “endemic” region 189

without any reported cases in certain months, case counts were assumed to be “true 190

zeros” since detection efforts should be consistent with the affected neighbouring 191

blocks. The time series for these blocks were imputed with zeros and therefore 192

contributed to the fit of the model. Four entire districts of Bihar, at the edge of the 193
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“endemic” region, (Gaya, Jamui, Kaimur and Rohtas) had no reported cases during 194

the period, and were excluded from the analysis. 195

The final analysis data set included 502 blocks across 38 districts of Bihar and 196

Jharkhand over 72 months. 197

2.2 Model Structure 198

Due to considerable temporal variation in incidence within blocks, as a result of 199

detection effort and cases arising in “clumps”, the block-level monthly case counts are 200

widely dispersed. A negative binomial distribution was therefore used to model the 201

block-level case counts throughout. 202

All models fitted conform to the same negative binomial structure for case counts 203

Yit given previous incidence: 204

Yit | past ∼ NegBin(µit, ψi) (2)

µit = λt

Q∑
q=1

uqYi,t−q︸ ︷︷ ︸
AR

+φt
∑
j 6=i

Q∑
q=1

wijuqYj,t−q︸ ︷︷ ︸
NE

+ νteit︸︷︷︸
END

. (3)

where Yit denotes the reported case count in block i in month t with population 205

eit, neighbourhood weights wij for neighbours j of block i, and overdispersion 206

parameter ψi > 0 such that Var(Yit) = µit(1 + ψiµit). Normalised weights uq for 207

distributed lags q = 1, ..., Q are defined according to a scalar parameter p which is 208

estimated from the data. 209

u0q = p(1− p)q−1, uq =
u0q∑Q
q=1 u

0
q

(4)

The log-transformed parameter of each model component is then defined by a 210

linear regression on any relevant covariates, Xit; in this case we consider time with 211

sine and cosine terms to replicate seasonal waves. 212

log(λt) = βλXλ
it, (5)

213

log(φt) = βφXφ
it, (6)
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log(νt) = βνXν
it, (7)

where β are the regression coefficients. 214

All models were fit using the R package surveillance [32] and its extension 215

hhh4addon [33] in R version 3.5.1 (2018-07-02) [34]. 216

Investigating fit and prediction 217

Thirty random models were drawn from the set of possible formulations (where all 218

three of the endemic-epidemic components are included in some form) and compared 219

on the metrics of interest. This informed the subsequent selection process for the final 220

prediction model. 221

Code used to produce the results in this paper is available from 222

https://github.com/esnightingale/VL_prediction_paper, along with a simulated 223

version of the dataset from the final selected model. 224

2.3 Model selection 225

During the selection process, all models were fit to the subset of months 5 to 48 in 226

order to make comparisons between temporal lags up to four months. The remaining 227

24 months were then predicted sequentially in a “one-step-ahead” (OSA) approach to 228

assess predictive power (as was applied in [10]), either with rolling updates to the fit 229

(incorporating each month’s data into parameter estimates to predict the next) or 230

without (using only the training set of data for all predictions) [22,26]. The average 231

RPS of these predictions served as the primary criteria for model selection, comparing 232

by permutation test between models of increasing complexity with a significance 233

cut-off at 0.001. At the same time, average RPS was compared to AIC from the 234

model’s training period fit to assess the relationship between fit to the “observed” 235

data and future prediction. 236

The following elements were considered for inclusion in the model: 237

• Log of population density as a covariate in the endemic component, in place of 238

population fraction offset. 239

• Seasonal variation and linear trend within the coefficients of all three 240
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components, serving to vary the relative strength of each component over time. 241

• Distributed temporal lags up to 4 months, with decaying weights according to a 242

geometric distribution. 243

• Spatial lags up to maximum of 7th order neighbours, with weights decaying 244

according to a power law (wij = o−dij , where oij is the neighbourhood order of 245

blocks i and j, and the decay exponent d is to be estimated). 246

• Intercept of log population density in the neighbourhood component (Gravity 247

Law), to reflect that blocks of high population density may be more strongly 248

influenced by their neighbours due to migration. 249

• District and state-specific dispersion, allowing the variation in incidence to differ 250

between spatial units. 251

It was not feasible to allow a block-specific dispersion parameter since many blocks 252

had too few cases to obtain stable estimates. 253

Finer details of the model selection process are included in Appendix A. 254

2.3.1 Empirical Coverage Probabilities 255

As an alternative measure of prediction utility, we calculated the empirical coverage of 256

prediction intervals produced by each model, with respect to the observed counts. 257

This describes the proportion of points in the test period for which the observed count 258

fell within the middle 50% or 80% of the predicted distribution. For an ideal forecast 259

the empirical coverage will match the nominal level. An empirical coverage probability 260

cannot be considered “strictly proper” [21,26,31], as the RPS score is, and hence does 261

not favour sharpness in addition to calibration. However, a high coverage quantile 262

interval may provide useful lower and upper bounds for expected incidence. For more 263

detail see Appendix A. 264

2.3.2 Longer Prediction Horizons 265

For the final model, further predictions were calculated based on a rolling window of 266

three and four months. As with the rolling OSA approach, the model was initially fit 267

to the training set (months 1, . . . , t) and this fit used to predict month t+ 3. The 268
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model was then updated with the data from t+ 1 in order to predict t+ 4, and so on, in 269

a similar fashion to Lewnard et al. [10]. The RPS of one, three and four month ahead 270

predictions were compared to assess the loss in accuracy with a longer time horizon. 271

3 Results 272

Preliminary analyses of dispersion and exploration of temporal lags are described in 273

Appendix B. 274

3.1 Random model assessment 275

According to the thirty random models drawn, fit and prediction were found to be 276

strongly correlated (Fig. 3A). Predictions were calculated based on either a rolling fit 277

(incorporating each month’s data into parameter estimates to predict the next month) 278

or fixed fit (using parameters fit to the training set only for all predictions). The 279

scores for both prediction approaches were very similar for most models, suggesting 280

that the processes defined in these models are consistent over time and hence the 281

quality of prediction does not depend on regular model updates (Fig. 3B). This is 282

noteworthy since in practice it may not be possible to update the fits on such a regular 283

basis. Selecting the model based on RPS of predictions from a fixed model fit would 284

best reflect the constraints of reality and be the more conservative approach. 285

Fig 3. Comparison of predictive performance and model fit, and predictive performance for training period
fit and rolling fit updates, for models with randomly selected components. (A) AIC versus RPS for 30 randomly
selected models. AIC is calculated from the fit to the training period only (months 13 to 48) and RPS from one-step-ahead
predictions (months 49 to 72) based on the same fit. According to this random sample, fit and prediction are strongly
correlated; the model which fits best to the observed data produces the best one-step-ahead predictions. (B) RPS of
predictions based on the fixed training set fit versus rolling fit updates. Predictive power is very similar between the two
prediction approaches.

3.2 Model selection 286

As was found with the random model set, the final selected model which demonstrated 287

the highest predictive power as measured by RPS also achieved the closest fit to 288

existing data. Initially, no more than two distributed AR lags could be added to the 289

model without yielding evidence of miscalibration in the predictions. However, once 290
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the neighbourhood component was added in the third stage of selection, increasing the 291

AR lags to four months significantly improved both AIC and RPS with no evidence of 292

miscalibration. At this point the endemic linear trend lost significance and therefore 293

was removed in subsequent models. The AIC, RPS and empirical coverage 294

probabilities for all models considered in the selection process are shown in Fig. 4. Fit 295

and prediction metrics for all models are given in Table S1 and PIT histograms for the 296

models selected at each stage are compared in Fig. S3. 297

Fig 4. Measures of fit and predictive power throughout the model selection
process. Figures illustrate the models tested in chronological order from left to right,
with each stage indicated by a different colour. Models were selected at each stage
based on the biggest reduction in RPS, subject to calibration; these are identified by
hollow points, and the final selected model by a star. For the two variants on the
coverage probability, average quantile interval width (representing uncertainty in the
predicted case count) is shown on the right axis and by the grey dashed line. Interval
width is determined by the count at the upper quantile minus the count at the lower,
hence an interval width of two covers three possible count values (e.g. 2, 3, 4).

We found that as RPS and AIC were improved, the empirical coverage 298

probabilities of prediction intervals were increased far beyond their nominal level. 299

With the final model (Model no. 42), only 5.4% (652/12048) of observations fell 300

outside the 10-90% interval, with an average interval width of just three possible case 301

counts. This predicted distribution is much more conservative in its coverage than a 302

simple linear trend model (coverage 10-90% = 0.905) but attains substantially better 303

fit and RPS, suggesting that more of the improvement comes in the form of 304

calibration. The conservative 90% predicted quantile provides a reliable upper limit 305

for the next month’s incidence, to which a management plan could be defined 306

accordingly. The 25-75% prediction interval was found to be of limited use since, with 307

very low counts across the majority of the region, this interval often consists of only a 308

single value. The median would be a more interpretable value to report. 309

3.3 Final model 310

The final model consists of a negative binomial distribution with a single dispersion 311

parameter and the following mean structure: 312

µit = λit

4∑
q=1

uqYi,t−q + φit
∑
j 6=i

4∑
q=1

wijuqYj,t−q + eitνit (8)
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log(νit) = αν (9)

313

log(λit) = αλ + γλ1 sin

(
2π

12
t

)
+ δλ1 cos

(
2π

12
t

)
(10)

314

log(φit) = αφ + γφ1 sin

(
2π

12
t

)
+ δφ1 cos

(
2π

12
t

)
(11)

The model fit is dominated by auto-regression; the majority of information with 315

which to predict the current month comes from incidence in the previous four months, 316

with seasonally-varying strength. Since the contribution of each component is 317

modelled on a log scale these parameters have a multiplicative effect, hence the range 318

of the seasonal AR component (approx. [0.6, 0.8]; see supplementary Fig. S4) 319

indicates that each month’s count is expected to be a certain fraction of the weighted 320

average of the counts over the last four months. This occurs over all blocks and 321

therefore amounts to an overall decreasing trend. After accounting for auto-regression, 322

it was found that the neighbourhood effect did not extend beyond directly bordering 323

blocks with respect to prediction. Seasonality within this component also serves to 324

vary the magnitude of the effect throughout the year. 325

The contribution of an endemic trend was found to be negligible, reflecting the lack 326

of homogeneity across blocks, and was therefore not included; the reduction in total 327

incidence comes entirely from each block’s autoregressive pattern. Block-specific 328

covariate data (e.g. relating to socio-economic or geographic features of the area) 329

would contribute to this component and potentially reveal associations which are 330

consistent across blocks. Random intercepts were tested in the endemic component to 331

capture unexplained block variation, yet did not improve predictive power in a basic 332

model and caused convergence issues in more complex, distributed-lag models. 333

The relative contributions of the three model components are illustrated for the 334

four blocks with highest average monthly incidence (Gopikandar, Kathikund, Boarijor 335

and Sundarpahari) in Fig. 5. 336

3.3.1 Predictive performance 337

The final model achieved an overall RPS for one-step-ahead prediction of 0.420, 36% 338

lower than the null (non-spatial and non-autoregressive) model and 8% lower than the 339
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Fig 5. Model fit for the four blocks with highest average monthly incidence
(Gopikandar, Kathikund, Boarijor, and Sundarpahari, all in Jharkhand).
The observed case counts are indicated by black points and the coloured regions
illustrate the relative contribution of the different model components. The
contribution of the endemic component is negligible therefore barely visible. The fitted
value from the model falls at the upper edge of the coloured region.

best non-spatial model, with individual block-wise averages ranging from 4.3× 10−5 to 340

3.47. This equates to a mean absolute error of 0.58, a 30% reduction from the null 341

model. That the RPS is lower than the MAE implies the probabilistic forecast is 342

preferable to a simple point forecast. 343

Model selection was performed based on the model’s mean RPS across all blocks 344

and the whole test period but beneath this overall score is a broader distribution of 345

scores for each block-month prediction, influenced by peaks, troughs and otherwise 346

unusual incidence patterns. The histogram in Fig. 6 illustrates the distribution over 347

blocks, demonstrating that the final model is able to predict accurately and precisely 348

across the majority of the region, yet there is a small subset of blocks with more 349

widely varying RPS. It should be noted that the overall performance of the model is 350

strongly influenced by blocks with almost no incidence as these yield the very lowest 351

scores. Similarly, there is some correlation between the blocks for which the model 352

performs least well, and the blocks which have historically demonstrated the highest 353

average incidence since higher counts are harder to predict than zeros or single cases. 354

The blocks with the highest RPS also tend to exhibit sporadic patterns or have 355

experienced sudden, sharp changes in incidence (potentially outbreaks) within the test 356

period, which cannot be reproduced by a model primarily informed by an average of 357

past incidence. Examples of these patterns are illustrated in Fig. S5. 358

Fig 6. Distribution of time-averaged ranked probability scores across all
502 blocks. Low values reflect accurate and precise prediction. The majority of
blocks fall below 1 with a subset for which predictive power varies widely.

Pakur, Maheshpur, Boarijor and Sundarpahari in Jharkhand (RPS = 3.47, 2.70, 359

2.58 and 2.58, resp.) experienced substantial jumps in incidence between May and 360

July 2017, constituting differences of up to 27 cases from one month to the next. 361

Paroo (RPS = 3.07) showed a particularly erratic pattern of cases within the test 362

period, with spikes of 21 and 19 cases separated by a few months of ∼5 cases and a 363
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subsequent fall to just one case by December 2018. Incidence in Garkha has also been 364

inconsistent and appeared to have been on the rise in recent years, until a similar fall 365

at the end of 2018. It should be noted that additional case detection efforts in 366

Jharkhand at the start of 2017 will likely have contributed substantially to the 367

observed spikes at this time. 368

3.3.2 Three- and four-month-ahead prediction 369

For the final model, further predictions were calculated based on rolling windows of 370

three and four months. Fig. 7 illustrates that the longer time window did not result in 371

a substantial loss in predictive power, with block-wise RPS very similar for the 372

majority of blocks. When compared over the same predicted months, the differences in 373

RPS between one-month-ahead prediction and three-/four-month-ahead were found to 374

be small but statistically significant (-0.024 and -0.028, resp.; p < 0.0001 for both). In 375

terms of the empirical coverage, 85.4% of test period observations were captured in the 376

middle 50% of the predicted distribution based on a three month window, and 85.7% 377

with a four month window. 378

Fig 7. Time-averaged (over months 52-72 for comparability) RPS for
three- (A) and four-month-ahead (B) predictions versus one-month-ahead.
Scores are closely matched for the majority of blocks (where RPS < 1.5) but the
differences increase for blocks which are harder to predict.

Figs 8 and 9 illustrate the coverage of 45-55%, 25-75% and 10-90% prediction 379

intervals for the block with the highest RPS of 3.47 (Pakur, Jharkhand) and a block 380

with RPS of 1 (Bhagwanpur, Bihar). For Pakur, RPS is strongly influenced by the 381

model’s inability to match the spike in 2017, yet the incidence in surrounding months 382

is well represented. 383

Fig 8. One-, three- and four-step-ahead predictions (solid white line) with
10-90%, 25-75% and 45-55% quantile intervals, for Pakur block in
Jharkhand (RPS = 3.47 for one-step-ahead over months 49-72).
Observations which fall outside the outer prediction interval are indicated
by a cross.

Fig 9. Corresponding predictions for Bhagwanpur block in Bihar (RPS =
1.00).
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4 Discussion 384

We have presented the evaluation of a predictive model of VL in Bihar and four 385

endemic districts in Jharkhand, demonstrating a substantial (36% lower RPS) benefit 386

from incorporating spatial and historical case information when compared to a 387

non-spatial, linear trend model. We have empirically investigated the performance of 388

different models on prediction performance rather than model fit and produced a 389

statistical model that is capable of accurate forecasting. To the best of our knowledge, 390

this is the first time the spatio-temporal correlation of incidence at block level across 391

all the endemic districts of Bihar and Jharkhand has been quantified. Methods such as 392

these can be an important tool for management of endemic diseases. 393

Given the lack of an effective vaccine and evidence that indoor residual spraying of 394

insecticide fails to significantly reduce sandfly densities and VL incidence in sprayed 395

villages [35,36], rapid diagnosis and treatment is currently our best method of control. 396

With a block-level estimate of the likely number of cases to arise over the next few 397

months, local management teams could take steps to ensure they are prepared. For 398

example, the 90% quantile of the predicted distribution could be used to inform 399

block-specific minimum stock levels for drugs. 400

In practice, the prediction interval is constrained by the efficiency of the reporting 401

process; the time taken to process diagnosis reports and input the information into the 402

database sets a minimum horizon at which predictions would be genuinely prospective 403

and therefore of practical use. In this paper we have assumed a delay of two months 404

until a month’s data can be considered complete, which would necessitate making 405

predictions at least three months ahead of that point. However, conservative 406

predictions based on preliminary month totals would still likely be of use to the 407

programme. 408

We have demonstrated here that rolling three-month-ahead predictions are a 409

reasonable approximation to one-month-ahead, but confidence is sacrificed for a 410

minority of blocks as the time horizon is increased. There is a need for discussion with 411

local disease management teams to determine the optimal balance between 412

practicality and uncertainty. Moreover, the way in which we quantify the accuracy 413

and utility of predictions would benefit from some public health insight; it is highly 414
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likely that over- and under-estimation would need to be weighted differently, which 415

may alter which model is deemed preferable. Ideally, the model structure would have 416

been optimised according to predictive power on this slightly longer time horizon, but 417

this is not a trivial task and was deemed beyond the scope of this paper. 418

There are also potential issues with movement of VL cases across international 419

borders; in particular, the international boundary with Nepal cuts through a VL 420

endemic area, artificially removing some aspects of spatial correlation. Ideally, we 421

would take a regional perspective and also include areas in neighbouring states that 422

have some more sporadic VL reporting. 423

It could be argued that the block-level is too coarse a spatial scale for modelling 424

the spread of an infectious disease. Outbreaks of VL occur on a smaller spatial and 425

temporal scale than has been applied here, therefore cannot be anticipated by this 426

model. The transmission dynamic models which are usually employed for this type of 427

problem can be defined on a village, household or even individual level [37], yet this 428

more detailed picture demands many more assumptions which are difficult to justify in 429

this context. The sparseness of cases at this point in the elimination process also 430

means that aggregation at a finer temporal scale might lead to issues with parameter 431

estimation. The block is the unit at which control efforts are co-ordinated, disease 432

burden is monitored, and control targets are set, therefore predictions at this level 433

could prove to be a worthwhile compromise while more realistic transmission models 434

are out of reach. With more detailed location data, the spread of disease can be 435

modelled as a point process at the village or household level, potentially giving insight 436

into the size and movement of disease clusters or “hot-spots” over time. This 437

technique has previously been applied to the case of VL [38] and may be possible to 438

extend to a larger study region in the near future, following a recent effort to collect 439

GPS co-ordinates of affected villages across Bihar. 440

In this case the best-fitting model was found to be the best-predicting model. The 441

similarity of prediction and fitting results perhaps reflects the continuity of the 442

processes creating the data. However, consideration of predictive power across the 443

whole range of possible values was key to determining an optimal temporal lag length 444

for short-term prediction. Fit and overall predictive power favoured a high number of 445

lags in order to best capture the spatio-temporal correlation between neighbouring 446
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block counts, which appears to contribute to prediction of sudden changes in 447

incidence. However, auto-regression is the dominant model component and appears to 448

be captured by lags up to four months. It would be preferable to specify a different lag 449

length for the auto-regressive and spatial components but this is not currently 450

implemented in the surveillance framework. By inspection of PIT histograms, we were 451

able to select the lag length which balanced overall predictive power with capacity to 452

predict at the upper end of the range. 453

The model selection approach taken in this analysis is semi-systematic; it was not 454

feasible to assess every possible combination of model components. Therefore we 455

aimed to home in on a suitable model by adding components which gave the biggest 456

improvement in predictive performance out of a range of likely options. It was found 457

that once the major components were included in some form, further adjustment 458

largely had the effect of redistributing the variation attributed to each component and 459

did not substantially alter fit or prediction. There is only so much information within 460

the time series of cases to feed the model, so predictive power quickly reaches a limit. 461

The analysis presented here aims to demonstrate the best that can be done with 462

the minimal information routinely collected by the current programme, but there is 463

evidence that this model still cannot fully account for the heterogeneity in incidence 464

across the region. The lack of geographic and/or demographic covariates beyond 465

population size means that the endemic component in this model is negligible; almost 466

all our information comes from the spatio-temporal correlations, underlining the need 467

for up-to-date data in order to make accurate predictions. Associations between VL 468

incidence and, for example, age and socio-economic quintiles have been 469

demonstrated [18,39], which may give rise to varied endemic patterns at the block 470

level. This unknown variation could in theory be quantified by random effects within 471

this model framework, but convergence issues (likely due to the large number of 472

zero-counts) made this infeasible in practice. 473

There is clearly a limitation of fitting such a model over a large number of highly 474

heterogeneous units with minimal unit-specific information. Model selection was 475

performed based on an average score over all blocks and time points for which 476

predictions were made; a model is therefore chosen which predicts well overall, but in 477

doing so sacrifices predictive power for a minority of blocks which do not follow the 478
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general trend. Zero counts dominate over all time and space, and the variance of the 479

negative binomial distribution with a universal dispersion parameter is still too 480

restrictive to account for blocks with the highest counts. It is in these areas where 481

additional information on potential predictors of incidence could prove most valuable. 482

The variation in case counts may be better explained by a zero-inflated process, 483

and the extent of zero-inflation will likely become more prominent as elimination is 484

approached. Bayesian hierarchical models can be used to distinguish sources of 485

variation at different levels and have the benefit of accommodating any informal or 486

incomplete understanding of the transmission process within prior distributions for 487

model parameters. These models have until recently been commonly implemented 488

using Markov Chain Monte Carlo (MCMC) [40], which is computationally intensive 489

for data rich in both space and time. They are however becoming increasingly 490

accessible as a tool for inference and prediction, thanks to user-friendly wrappers 491

which take advantage of fast computation using Integrated Nested Laplace 492

Approximations (INLA) [41]. We hope to explore this approach in future work. 493

Conclusion 494

We have demonstrated a framework for forecasting VL incidence at subdistrict level in 495

India which achieves good predictive performance based on the available routinely 496

collected surveillance data. This framework could be used to make short-term 497

forecasts to provide an early indication of where case numbers are higher (or lower) 498

than expected and to support the logistics of the elimination programme. 499
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Supporting information

Appendix A

Model Selection

Starting with a basic, endemic-only model (including a population offset and linear

trend in time), potential extensions of the three core components were added in turn

and measures of fit and predictive power were calculated. The addition which yielded

the best improvement in the RPS of OSA predictions, subject to calibration (p not

less than 0.1 for test of calibration based on RPS), was selected and then all remaining

options tested again. This process was repeated until no further extension of the

model made a significant (p <0.001) improvement to predictive power (as determined

by a permutation test on the RPS). This stringent criterium was employed in order to

prioritise simplicity over complexity. If at any point an individual model parameter

lost significance, the element associated with this parameter was removed in

subsequent models.

Empirical Coverage Probabilities

Again using a one-step-ahead approach, the 25th and 75th quantiles of the predicted

distribution were calculated and a score of 0 or 1 assigned if the observed value fell

inside or outside this quantile range respectively. This binary score was assigned for

each block and each month in the test set, such that we could subsequently calculate a

proportion of prediction intervals which did not capture the true count. Thus, the

overall score, C, is given by

C =
1

nint

∑
i,t

1[yit ≤ qi,t,0.25|yit ≥ qi,t,0.75] (12)

where yit is the observed count for block i at month t, ni and nt the total number

of blocks and months respectively, and qi,t,p the pth quantile of the predicted

distribution. We also investigated such a score using 10th and 90th quantiles, to

ascertain whether these could be used as approximate lower and upper bounds for case

counts.
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Appendix B

Preliminary analyses

Dispersion

District-specific dispersion parameters were investigated, but ultimately not

considered a viable option to be included in the model. Four districts in particular

(Aurangabad, Banka, Jehanabad and Nawada) demonstrate extended periods of zero

incidence with occasional sporadic cases or large spikes, which lead to very large

dispersion estimates for these districts and therefore unrealistically high predictions.

See Fig. S1 for an illustration of these patterns. Due to the neighbourhood effect,

these high predictions in turn influence the predictions of any bordering blocks.

Changes in detection effort could go some way to explaining these unusual patterns,

however it is also likely that such patterns will become more common as elimination is

approached. This suggests that an alternative modelling strategy will become

necessary as cases become more sparse in space and time.

Distributed temporal lags

By sequentially adding further distributed lags to the best-fitting single-lagged model,

neither a clear minimum nor an “elbow” in RPS was attained up to twelve months.

The weights assigned to each lag did not show a rapid “drop-off” as a result of a high

estimated decay parameter, and months substantially far back in time were still

assigned non-negligible weight. PIT histograms of predictions from these lagged

models are included in 4. We found that adding higher orders of distributed lags

consistently improved both predictive power and fit. This appears to contradict

analysis of individual block time series which suggested significant auto-correlation no

more than four months back in time. In the current form of “hhh4addon”, it is not

possible to specify a different temporal lag length within the AR and NE components

(for example, to incorporate neighbouring incidence from further back in time than

within-block). Therefore, the contribution of distributed lags to both components had

to be considered and a balance had to be drawn. Comparing the PIT histograms of

solely auto-regressive models, the very highest counts are vastly underestimated for all

lag lengths. Since the highest values in each block often reflect sudden jumps they
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cannot be captured by auto-regression; more information - potentially from the

surrounding area - is required to anticipate them. Models with no auto-regression but

which incorporate neighbouring incidence are better able to reach the highest counts

but in doing so over-estimate the moderate-to-high range. It was concluded that

beyond four months of lags the improvement in prediction was small enough to

discount, and much longer lags were difficult to justify epidemiologically. Therefore

only four months of lags were considered for the final model.

Supplementary Figures

Fig. S1 Districts with unusual incidence patterns resulting in inflated

dispersion estimates.

Fig. S2 Probability integral transform (PIT) histograms for models with

increasing orders of geometric lags from 1 to 12 months (left to right, top

to bottom) in the autoregressive component. The final model selection

process considered up to four lags.
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PIT histograms for the selected model at each stage. Model 42 is the fi-
nal model. Model 52 offered minor improvement in RPS with additional
complexity.

Fig. S3

Fitted seasonal waves in the auto-regressive (AR) and neighbourhood (NE)
model components. Both reflect the first-quarter peak in reported cases
but the magnitude of the waves differs, with the contribution of the AR
component varying more than that of the NE.

Fig. S4

Fig. S5 Blocks with average RPS greater than 2.5 over the test period

(Jan 2017 - Dec 2018)
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