Vitamin D receptor (VDR) gene FokI, BsmI, ApaI and TaqI polymorphisms and osteoporosis risk: a meta-analysis ============================================================================================================ * Upendra Yadav * Pradeep Kumar * Vandana Rai ## Abstract Osteoporosis is a bone disease characterized by low bone density. The prevalence of osteoporosis varies between different populations and ethnic groups. Numerous studies have investigated the relationship between VDR gene polymorphisms and osteoporosis across ethnic populations. Present meta-analysis aims to comprehensively evaluate the influence of common *Fok*I, *Bsm*I, *Apa*I and *Taq*I VDR gene polymorphisms and osteoporosis. PubMed, Google Scholar, Springer Link and Elsevier databases were searched for eligible studies and all statistical calculations were performed by Open Meta-Analyst software. Studies investigated *Bsm*I (65 studies; 6,880 case/ 8,049 control), *Apa*I (31 studies; 3,763 case/ 3,934 control), *Fok*I (18 studies; 1,895 case/ 1,722 control), and *Taq*I (26 studies; 2,458 case/ 2,895 control) polymorphisms were included in the present meta-analysis. Results of meta-analysis revealed significant association between dominant model of *Fok*I (ORff+Ff vs. FF= 1.19, 95% CI= 1.04-1.36, p= 0.01, I2= 39.36%) in overall analysis and recessive model of Caucasian population of *Taq*I polymorphism (ORTT+Tt vs. tt= 1.35, 95% CI= 1.11-1.63, p= 0.002, I2= 50.07%). While no such effect is found in any other genetic model in any other gene polymorphisms of the overall analyses or sub-group analyses. In conclusion, we found the *Fok*I polymorphism is associated with osteoporosis in overall analysis, also the *Taq*I polymorphism is a risk factor for the Caucasian population. Keywords * Osteoporosis * Vitamin D receptor * *Bsm*I * *Apa*I * *Fok*I * *Taq*I ## Introduction Bone is a very active tissue that maintain itself by continuously formation and reabsorption. To maintain this equilibrium osteoclasts, osteoblasts and osteocytes plays important role by performing bone resorption, formation and maintenance respectively [1]. Osteoporosis is a bone disease characterized by low bone density caused by increased activity of osteoclasts and decreased bone turnover [2]. The prevalence of osteoporosis greatly varies in different populations and ethnic groups [3]. Age and gender are the major contributing factor in the occurrence of osteoporosis. Worldwide every one women out of three over age of 50 will experience osteoporotic fractures in comparison to one in five men of the same age group [4]. The interaction between genetic and environmental factors are believed to play a central role in the etiology of osteoporosis [5, 6]. Among environmental factors exercise and calcium intake are crucial risk factor for the development of osteoporosis [5]. Now several evidences very well established that genetic factors play important role in the development of osteoporosis like- (i) female offspring of osteoporotic women have lower bone density in comparison with that of those with normal bone density values [7], (ii) male offspring of men who are diagnosed with idiopathic osteoporosis have lower bone mineral density (BMD) in comparison with that of men with normal bone density values [8] and (iii) studies of female twins have shown heritability of bone mineral density (BMD) to be 57% to 92% [9, 10]. Published studies have reported a list of effective genes for osteoporosis; the most important of which are vitamin D receptor gene (VDR), estrogen receptor alpha (ESRα), interleukin -6 (IL-6), Collagen type I (COLIA1), LDL receptor-related protein 5 (LRP5) [11, 12] etc. *VDR* gene polymorphisms have been reported to associated with the development of several bone diseases, multiple sclerosis, vitamin D dependent rickets type II and other complex diseases [13]. However, the mechanism by which the *VDR* gene influences bone mass has not been fully elucidated. In humans, *VDR* gene is mapped at chromosome 12 (12q12-q14), it has 11 exons and spans ∼75 kb of genomic DNA. The most studied *VDR* gene polymorphisms are-*Bsm*I (rs1544410), *Apa*I (rs7975232), *Fok*I (rs10735810), and *Taq*I (rs731236).Although several studies between osteoporosis and *VDR* gene polymorphisms have been published, the results have been contradictory [14, 15], possibly because of variations in study design, small sample sizes, varying ethnic backgrounds, or environmental factors. So, we performed a meta-analysis to elucidate the role of these genetic polymorphisms in the etiology of osteoporosis. ## Materials and methods Different databases (PubMed; Google Scholar, SpringerLink) were searched up to December 31, 2018 with the keywords ‘vitamin D receptor gene’, ‘*Bsm*I’, ‘*Apa*I’, ‘*Fok*I’, ‘*Taq*I’, ‘VDR’, and ‘osteoporosis’. The retrieved studies were published from 1995 to 2018 and we thoroughly examined all retrieved articles to assess their appropriateness for inclusion in the present meta-analysis. ### Inclusion and exclusion criteria Eligible studies had to meet all of the following criteria: (a) the study should be a case-control study and (b) the articles must report the sample size, distribution of genotypes. The following exclusion criteria were used for excluding studies: (a) studies conducted on the animal model system; (b) studies that contained duplicate data; (c) no usable data reported; (d) only cases were reported; and (e) book chapters or reviews articles. ### Data extraction The following information were extracted from all the selected articles: (a) the name of the first author; (b) year of publication; (c) country of study; (d) source of the control group; and (e) distribution of genotypes in case and control groups. We also evaluated whether the genotype distributions of control population of all the included studies were in agreement of Hardy–Weinberg equilibrium (HWE). ### Statistical analysis Meta-analysis was done according to the method given in Rai et al. [16]. Pooled odds ratio (OR) with its corresponding 95% confidence interval (CI) to investigate the association between different *VDR* gene polymorphisms and risk of osteoporosis. Heterogeneity, Publication bias and subgroup analysis were done as per the method given in the Rai et al. [16]. ## Results For meta-analysis, we followed PRISMA guidelines. Figure 1 presents a flow chart of the retrieved studies and the studies included and excluded, with specifying reasons in the meta-analysis (Figure 1). After applying inclusion and exclusion criteria, 81 studies were found suitable for the inclusion in the present meta-analysis. Out of 81 included studies, *Bsm*I, *Apa*I, *Fok*I and *Taq*I polymorphism were investigated in 65, 31, 18 and 26 studies respectively. ![Figure 1.](http://medrxiv.org/http://medrxiv.stage.highwire.org/content/medrxiv/early/2019/10/24/19009746/F1.medium.gif) [Figure 1.](http://medrxiv.org/content/early/2019/10/24/19009746/F1) Figure 1. Flow diagram of study search and selection process. ### Eligible studies For *Bsm*I total 65 studies with 6,880 cases and 8,049 controls were found eligible to include in the meta-analysis [17-81]. For *Apa*I total 31 studies with 3,763 cases and 3,934 controls were found to be eligible to include in the meta-analysis [19, 23, 25, 33, 39, 40, 43, 46, 51, 58, 59, 61, 64, 66, 68, 70, 72, 74, 76, 78-80, 82-90]. For *Fok*I meta-analysis total 18 studies with 1,895 cases and 1,722 controls were found eligible to include in the meta-analysis [33, 40, 45, 51, 56, 62, 65, 66, 68, 70, 74, 76, 79, 91-95]. For *Taq*I total 26 studies including 2,458 cases and 2,895 controls were found eligible to include in the meta-analysis [19, 23, 25, 33, 40, 43, 46, 51, 58, 59, 64, 66, 68, 70, 72, 74, 76, 78-81, 87, 88, 90, 96, 97]. ### Meta-analysis #### *BsmI* meta-analysis Meta-analysis with allele contrast model showed insignificant association with high heterogeneity (ORbvsB= 0.89; 95% CI: 0.78-1.01; p= 0.09; I2= 82.02%; Pheterogeneity= <0.001). No significant association was found in any other genetic model. In dominant model (bb+Bb vs. BB): OR= 0.81, 95% CI= 0.68-0.97, p= 0.02; for homozygote model (bb vs. BB): OR= 0.77, 95% CI= 0.60-0.99, p= 0.04; for co-dominant model (Bb vs. BB): OR= 0.85, 95% CI= 0.73-0.98, p= 0.03; and for recessive model (BB+Bb vs. bb): OR= 0.88, 95% CI= 0.74-1.06, p= 0.20. High heterogeneity was found in all the genetic contrast models except co-dominant model (Table 1; Figure 2). View this table: [Table 1.](http://medrxiv.org/content/early/2019/10/24/19009746/T1) Table 1. Summary estimates for the odds ratio (OR) of *Bsm*I in various allele/genotype contrasts, the significance level (p value) of heterogeneity test (Q test), and the I2 metric. ![Figure 2.](http://medrxiv.org/http://medrxiv.stage.highwire.org/content/medrxiv/early/2019/10/24/19009746/F2.medium.gif) [Figure 2.](http://medrxiv.org/content/early/2019/10/24/19009746/F2) Figure 2. Random effect forest plot of allele contrast model (b vs. B) of VDR *Bsm*I polymorphism. Results of individual and summary OR estimates, and 95% CI of each study were shown. Horizontal lines represented 95% CI, and dotted vertical lines represent the value of the summary OR. The sub-group analyses were conducted on the basis of ethnicity. Out of 65 studies 37 were belongs to Caucasians, 22 were Asian and six were of other origin. High heterogeneity was observed in almost all genetic models in all sub-groups. No significant association were found in any sub-group analyses in any genetic model (Table 1; Figure 2). #### *ApaI* meta-analysis Meta-analysis with allele contrast model showed insignificant association with high heterogeneity (ORavsA= 1.01; 95% CI: 0.87-1.17; p= 0.86; I2= 74.82%; Pheterogeneity= <0.001). No significant association was found in any other genetic model. In dominant model (aa+Aa vs. AA): OR= 0.95, 95% CI= 0.78-1.14, p= 0.60; for homozygote model (aa vs. AA): OR= 0.97, 95% CI= 0.72-1.30, p= 0.84; for co-dominant model (Aa vs. AA): OR= 0.92, 95% CI= 0.81-1.04, p= 0.21; and for recessive model (AA+Aa vs. aa): OR= 1.02, 95% CI= 0.81-1.28, p= 0.83 (Table 2; Figure 3). View this table: [Table 2.](http://medrxiv.org/content/early/2019/10/24/19009746/T2) Table 2. Summary estimates for the odds ratio (OR) of *Apa*I in various allele/genotype contrasts, the significance level (p value) of heterogeneity test (Q test), and the I2 metric. ![Figure 3.](http://medrxiv.org/http://medrxiv.stage.highwire.org/content/medrxiv/early/2019/10/24/19009746/F3.medium.gif) [Figure 3.](http://medrxiv.org/content/early/2019/10/24/19009746/F3) Figure 3. Random effect forest plot of allele contrast model (a vs. A) of VDR *Apa*I polymorphism. The sub-group analyses were conducted on the basis of ethnicity. Out of 31 studies 15 were belongs to Caucasians, 12 were Asian and four were of other origin. High heterogeneity was observed in Caucasian studies while low heterogeneity was found in Asian and other studies. No significant results were found in any sub-group in any genetic models except for recessive model (AA+Aa vs. aa): OR= 1.49, 95% CI= 1.00-2.23, p= 0.04 in other studies (Table 2; Figure 3). #### *FokI* meta-analysis Significant association was found using dominant model (ORff+Ffvs.FF= 1.19, 95% CI: 1.04-1.36, p= 0.01; I2= 39.36%). No significant association was observed in any other genetic model (allele contrast model: ORfvsF= 1.13,95% CI: 0.95-1.34, p= 0.15, I2= 61.8%, Pheterogeneity= <0.001; homozygote model (ff vs. FF): OR= 1.38, 95% CI= 0.92-2.05, p= 0.11; co-dominant model (Ff vs. FF): OR= 1.12, 95% CI= 0.97-1.30, p= 0.11; and recessive model (FF+Ff vs. ff): OR= 1.34, 95% CI= 0.94-1.91, p= 0.10 (Table 3; Figure 4). View this table: [Table 3.](http://medrxiv.org/content/early/2019/10/24/19009746/T3) Table 3. Summary estimates for the odds ratio (OR) of *Fok*I in various allele/genotype contrasts, the significance level (p value) of heterogeneity test (Q test), and the I2 metric. ![Figure 4.](http://medrxiv.org/http://medrxiv.stage.highwire.org/content/medrxiv/early/2019/10/24/19009746/F4.medium.gif) [Figure 4.](http://medrxiv.org/content/early/2019/10/24/19009746/F4) Figure 4. Fixed effect forest plot of dominant model (ff+Ff vs. FF) of VDR *Fok*I polymorphism. The sub-group analysis was conducted on the basis of ethnicity. Out of 18 studies ten were belongs to Caucasians, five were Asian and three were of other ethnicity. Low heterogeneity was observed in Caucasian studies but high heterogeneity was found in Asian and other studies. No significant results were found in any sub-group in any genetic model (Table 3; Figure 4). #### *TaqI* meta-analysis Meta-analysis with allele contrast model showed insignificant association with high heterogeneity (ORtvsT= 1.10; 95% CI: 0.91-1.32; p= 0.30; I2= 77.26%; Pheterogeneity= <0.001). High heterogeneity was found in all other genetic models so random effect model was applied. No significant association was found in any other genetic model. In dominant model (tt+Tt vs. TT): OR= 1.09, 95% CI= 0.84-1.41, p= 0.48; for homozygote model (tt vs. TT): OR= 1.20, 95% CI= 0.85-1.69, p= 0.29; for co-dominant model (Tt vs. TT): OR= 1.04, 95% CI= 0.82-1.33, p= 0.70; and for recessive model (TT+Tt vs. tt): OR= 1.16, 95% CI= 0.91-1.48, p= 0.20 (Table 4; Figure 5). View this table: [Table 4.](http://medrxiv.org/content/early/2019/10/24/19009746/T4) Table 4. Summary estimates for the odds ratio (OR) of *Taq*I in various allele/genotype contrasts, the significance level (p value) of heterogeneity test (Q test), and the I2 metric. ![Figure 5.](http://medrxiv.org/http://medrxiv.stage.highwire.org/content/medrxiv/early/2019/10/24/19009746/F5.medium.gif) [Figure 5.](http://medrxiv.org/content/early/2019/10/24/19009746/F5) Figure 5. Fixed effect forest plot of recessive model (TT+Tt vs. tt) of VDR *Taq*I polymorphism. The sub-group analyses were conducted on the basis of ethnicity. Out of 26 studies 17 were belongs to Caucasians, six were Asian and three were of other ethnicity. High heterogeneity was observed in all groups i.e. Asian, Caucasian and other studies. No significant results were found in any sub-group in any genetic models except for recessive model (TT+Tt vs. tt): OR= 1.35, 95% CI= 1.11-1.63, p= 0.002 in Caucasian population (Table 4; Figure 5). ### Sensitivity analysis Sensitivity analysis was performed by eliminating studies in which control population was not in Hardy Weinberg Equilibrium (p <0.05). The control samples of 21 *Bsm*I studies [22, 25, 29, 33, 34, 39, 43-47, 53, 55, 57, 59, 61, 63, 65, 66, 71, 75] were deviated from the HWE. Sensitivity analysis was performed after removal of these 21 studies and results showed no significant association with osteoporosis risk in the main analysis (ORbvsB= 0.99; 95% CI: 0.85–1.15; p= 0.92; I2= 77.48%) or in any sub-groups- (Asian subgroup-ORbvsB= 0.99; 95% CI: 0.66–1.50; p= 0.99; I2= 83.65%: Caucasian subgroup-ORbvsB=0.96; 95% CI: 0.83–1.11; p= 0.65; I2= 69.61%: other studies subgroup-ORbvsB= 1.24; 95% CI: 0.64–2.43; p= 0.51; I2= 86.53%). Heterogeneity decreases both in the overall and sub-group meta-analyses except the Asian studies. In total 18 *Fok*I studies, control population in five studies [51, 65, 74, 94, 95] were not in HWE. After removal of these studies and no significant association was found in the main analysis (ORfvsF = 1.12; 95% CI: 0.99–1.26; p= 0.05; I2= 46.48%) or in any sub-groups. Heterogeneity was decreased both in the overall and sub-group meta-analyses. The control samples of nine *Apa*I studies [23, 25, 39, 43, 46, 51, 66, 78, 89] were not in HWE. Result of meta-analysis after removal of these nine studies showed no association between *Apa*I polymorphism and osteoporosis risk in the main/overall analysis (ORavsA= 1.07; 95% CI: 0.90–1.27; p= 0.39; I2= 73.94%) and Caucasian population (ORavsA=0.85; 95% CI: 0.63–1.16; p= 0.32; I2= 78.62%) but the Asian population (ORavsA= 1.42; 95% CI: 1.03–1.96; p= 0.03; I2= 77.61%); and subgroup other studies (recessive model: ORAA+Aavs.aa= 1.49; 95% CI: 1.00–2.23; p= 0.04; I2= 52.4%) showed statistically significant association with osteoporosis. Heterogeneity was also decreased both in the overall and sub-group meta-analyses. Out of 26 *Taq*I studies, control samples of four studies [23, 51, 72, 96] were deviated from the HWE. Results of meta-analysis of 22 studies (after elimination of 4 studies deviated from HWE) did not show any association between Taq1 polymorphism and osteoporosis risk either in total studies (ORtvsT= 1.05; 95% CI: 0.85–1.29; p= 0.63; I2= 78.86%) or in any sub-group. Moreover, removal of these 4 studies, heterogeneity was increased both in the overall and sub-group meta-analyses except the Asian population. ### Publication bias The funnel plots are symmetrical for all genetic models in overall and sub-group meta-analyses for all polymorphisms except recessive model of subgroup other studies in *Fok*I and co-dominant model of Asian studies in *Apa*I polymorphisms (Figure 6; Table 1-4). Moreover, Egger’s test reveals no evidence of publication bias in any genetic model in overall meta-analyses of all four polymorphisms. ![Figure 6.](http://medrxiv.org/http://medrxiv.stage.highwire.org/content/medrxiv/early/2019/10/24/19009746/F6.medium.gif) [Figure 6.](http://medrxiv.org/content/early/2019/10/24/19009746/F6) Figure 6. Funnel plots- for *Fok*I a) Precision by log odds ratio, b) standard error by log odds ratio; for *Bsm*I c) Precision by log odds ratio, d) standard error by log odds ratio; for *Apa*I e) Precision by log odds ratio, f) standard error by log odds ratio; for *Taq*I g) Precision by log odds ratio, h) standard error by log odds ratio. ## Discussion VDRs are members of the nuclear hormone receptor (NR1I) family, which includes pregnane X (PXR) and constitutive androstane receptors (CAR), which form heterodimers with members of the retinoid X receptor family and expressed in the intestine, thyroid and kidney [98]. Vitamin D receptor is considered to be the primary mediator of vitamin D endocrine actions, which can regulate calcium homeostasis and reduce the risk of osteoporosis. VDR translocated from cytoplasm to nucleus upon activation by binding of its ligand 1-α-25-dihydroxyvitamin D3 (1-α-25(OH) 2D3) [99]. Numerous investigations have reported that *VDR* gene polymorphisms were connected with the onset of osteoporosis [81] and other diseases like-breast cancer [100], diabetes [101], myocardial infarction [102] and metabolic syndrome and inflammation [103]. Meta-analysis is a well established statistical tool used for combining the data of small sample sized individual studies. Meta-analysis increases the power of study and decreases type I and II errors. During past two decades, a number of meta-analyses were published which assessed the polymorphism of small effect genes as risk factor for different diseases and disorders e.g. Down syndrome [16], neural tube defects [104], Glucose 6-phosphate dehydrogenase deficiency [105], depression [106], schizophrenia [107], Alzheimer [108], breast cancer [109], colorectal cancer [110], esophageal cancer [111] and prostate cancer [112] etc. During literature search we identified seven meta-analyses [15, 113-118] investigating the relationship *VDR* gene polymorphism and osteoporosis. *Bsm*I, *Apa*I, *Fok*I and *Taq*I polymorphism were included in seven, four, two and two meta-analyses respectively. *Bsm*I polymorphism studies were included in all seven meta-analyses. Six meta-analyses [15, 113-117] did not report any significant association between osteoporosis susceptibility and *Bsm*I polymorphism. Zhang et al [118] conducted a meta-analysis on the risk of osteoporosis in postmenopausal women with 36 studies including 7,192 subjects and found marginally significant association (ORbvs.B= 1.2; CI= 1.00-1.46; p= 0.052). In all the meta-analyses high between studies heterogeneity was not found except the study conducted by Yu et al [115]. *Apa*I polymorphism was included in four meta-analyses [113, 115, 117, 118]. Zintzaras et al [113], Yu et al [115], Wang et al [117] and Zhang et al [118] included seven, six, three and 18 studies respectively in their meta-analyses and all four studies reported no association between *Apa*I polymorphism and osteoporosis risk. Zintzaras et al [113] and Zhang et al [118] conducted meta-analyses of three and 18 studies of *Fok*I polymorphism and they did not found significant association between *Fok*I polymorphism and osteoporosis. Both groups [113, 118] also conducted meta-analyses of *Taq*I polymorphism studies and again reported no association between *Taq*I polymorphism and osteoporosis susceptibility. In the present meta-analysis, four common VDR gene polymorphisms (*Bsm*I, *Apa*I, *Fok*I and *Taq*I), largest sample size and highest number of studies were included. total 65 (14,929 samples), 31 (7,697 samples), 18 (3,617 samples) and 26 (5,353 samples) studies for *Bsm*I, *Apa*I, *Fok*I and *Taq*I polymorphisms respectively were included. We found significant association dominant model of *Fok*I polymorphism (ff+Ff vs. FF: OR= 1.19, 95% CI= 1.04-1.36, p= 0.01) with low heterogeneity (I2= 39.36). No association was found in sub-group analysis on the basis of ethnicity in any genetic model except in the Caucasian population in the recessive model of *Taq*I polymorphism (TT+Tt vs. tt: OR= 1.35, 95% CI= 1.11-1.63, p= 0.002) with moderate heterogeneity (I2= 50.07). The present meta-analysis has few demerits like- (i) used crude odds ratio, (ii) only genetic polymorphisms considered, other factors such as environmental factors or food habits are not included which might have important role in the etiology of osteoporosis. With these limitations the present study has strength also like- (i) this is largest meta-analysis conducted both in number of included studies and number of sample size (81 studies; 19,268 samples), (ii) included all common VDR polymorphisms (*Bsm*I, *Apa*I, *Fok*I and *Taq*I). ## Conclusion In conclusion, we found the *Fok*I polymorphism is associated with osteoporosis also the *Taq*I polymorphism is a risk factor for the Caucasian population. While other polymorphisms (*Bsm*I and *Apa*I) has no role in the etiology of osteoporosis in total or stratified populations. Furthermore, we suggest that for the future case-control studies gene–gene and gene–environment interactions should also be considered which might well elucidate genetics of osteoporosis. ## Data Availability All the data are provided in the manuscript. ## Data Availability All the data are provided in the manuscript. ## Funding There was no funding for this review. ## Ethical Approval The article does not contain any studies with human or animal subjects performed by any of the authors. ## Conflict of interest Upendra Yadav, Pradeep Kumar and Vandana Rai declare that they have no conflict of interest. ## Acknowledgments Upendra Yadav is highly grateful to VBS Purvanchal University, Jaunpur for providing financial assistance to him in the form of PDF. * Received October 19, 2019. * Revision received October 19, 2019. * Accepted October 24, 2019. * © 2019, Posted by Cold Spring Harbor Laboratory This pre-print is available under a Creative Commons License (Attribution-NonCommercial-NoDerivs 4.0 International), CC BY-NC-ND 4.0, as described at [http://creativecommons.org/licenses/by-nc-nd/4.0/](http://creativecommons.org/licenses/by-nc-nd/4.0/) ## References 1. 1.Manolagas SC. Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev. 2000;21(2):115–37. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1210/er.21.2.115&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=10782361&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2019%2F10%2F24%2F19009746.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000086493300001&link_type=ISI) 2. 2.Weinstein RS, Jilka RL, Parfitt AM, Manolagas SC. Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids. Potential mechanisms of their deleterious effects on bone. J Clin Investig. 1998;102:274. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1172/JCI2799&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=9664068&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2019%2F10%2F24%2F19009746.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000074971100002&link_type=ISI) 3. 3.Faucki A, Eugene B, Dennis L, Stephen L, Dan L, Jameson J. Harrison’s Principles of Internal Medicine. Vol II. 17th ed. McGrow-Hill; 2008. 4. 4.Kanis JA, Johnell O, Oden A, Sembo I, Redlund-Johnell I, Dawson A, et al. Long-term risk of osteoporotic fracture in Malmo. Osteoporos Int. 2000;11(8):669–74. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s001980070064&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=11095169&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2019%2F10%2F24%2F19009746.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000165769300003&link_type=ISI) 5. 5.Nieves JW. Osteoporosis: the role of micronutrients. Am J Clin Nutr. 1999;81:1232S–39S. 6. 6.Recker RR. Genetic research in osteoporosis: where are we? Where should we go next? J Musculoskelet Neuronal Interact. 2004;4:86–90. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=15615081&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2019%2F10%2F24%2F19009746.atom) 7. 7.van Leeuwen JP, Uitterlinden AG, Birkenhäger JC, Pols HA. Vitamin D receptor gene polymorphisms and osteoporosis. Steroids. 1996;61:154–6. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=8732991&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2019%2F10%2F24%2F19009746.atom) 8. 8.Van Pottelbergh I, Goemaere S, Zmierczak H, De Bacquer D, Kaufman J. Deficient Acquisition of Bone During Maturation Underlies Idiopathic Osteoporosis in Men: Evidence From a ThreeLJGeneration Family Study. J Bone Miner Res. 2003;18:303–11. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1359/jbmr.2003.18.2.303&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=12568407&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2019%2F10%2F24%2F19009746.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000180544200015&link_type=ISI) 9. 9.Harris M, Nguyen T, Howard G, Kelly P, Eisman J. Genetic and environmental correlations between bone formation and bone mineral density: a twin study. Bone. 1998;22:141–5. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/S8756-3282(97)00252-4&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=9477237&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2019%2F10%2F24%2F19009746.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000071687300008&link_type=ISI) 10. 10.Nguyen T, Howard G, Kelly P, Eisman JA. Bone mass, lean mass, and fat mass: same genes or same environments? Am J Epidemiol. 1998;147:3–16. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/oxfordjournals.aje.a009362&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=9440393&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2019%2F10%2F24%2F19009746.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000071429700002&link_type=ISI) 11. 11.Brandi ML, Gennari L, Cerinic MM, Becherini L, Falchetti A, Masi L, et al. Genetic markers of osteoarticular disorders: facts and hopes. Arthritis Res. 2001;3:270–80. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/ar316&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=11549368&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2019%2F10%2F24%2F19009746.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000171184600002&link_type=ISI) 12. 12.Ioannidis JP, Stavrou I, Trikalinos TA, Zois C, Brandi ML, Gennari L et al. Association of polymorphisms of the estrogen receptor α gene with bone mineral density and fracture risk in women: a meta-analysis. J Bone Miner Res. 2002;17(11):2048–60. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1359/jbmr.2002.17.11.2048&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=12412813&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2019%2F10%2F24%2F19009746.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000178779700018&link_type=ISI) 13. 13.Cantorna MT, Mahon BD. Mounting evidence for vitamin D as an environmental factor affecting autoimmune disease prevalence. Exp Biol Med. 2004;229:1136–42. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=15564440&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2019%2F10%2F24%2F19009746.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000225680200008&link_type=ISI) 14. 14.Thakkinstian A, D’Este C, Eisman J, Nguyen T, Attia J. Meta-analysis of molecular association studies: vitamin D receptor gene polymorphisms and BMD as a case study. J Bone Miner Res. 12004;9:419–28. 15. 15.Qin G, Dong Z, Zeng P, Liu M, Liao X. Association of vitamin D receptor BsmI gene polymorphism with risk of osteoporosis: a meta-analysis of 41 studies. Mol Biol Rep. 2013;40(1):497–506. 16. 16.Rai V, Yadav U, Kumar P, Yadav SK, Mishra OP. Maternal methylenetetrahydrofolate reductase C677T polymorphism and down syndrome risk: a meta-analysis from 34 studies. PLoS One. 2014;9:e108552. 17. 17.Melhus H, Kindmark A, Amer S, Wilen B, Lindh E, Ljunghall S. Vitamin D receptor genotypes in osteoporosis. Lancet. 1994;344:949–50. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=7934356&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2019%2F10%2F24%2F19009746.atom) 18. 18.Lim SK, Park YS, Park JM, Song YD, Lee EJ, Kim KR, et al. Lack of association between vitamin D receptor genotypes and osteoporosis in Koreans. J Clin Endocrinol Metab. 1995;80(12):3677–681. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1210/jc.80.12.3677&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=8530619&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2019%2F10%2F24%2F19009746.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=A1995TJ04900049&link_type=ISI) 19. 19.Riggs BL, Nguyen TV, Melton LJ 3rd, Morrison NA, O’Fallon WM, Kelly PJ, et al. The contribution of vitamin D receptor gene alleles to the determination of bone mineral density in normal and osteoporotic women. J Bone Miner Res. 1995;10(6):991–6. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=7572325&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2019%2F10%2F24%2F19009746.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=A1995RM87600021&link_type=ISI) 20. 20.Berg JP, Falch JA, Haug E. Fracture rate, pre- and postmenopausal bone mass and early and late postmenopausal bone loss are not associated with vitamin D receptor genotype in a high-endemic area of osteoporosis. Eur J Endocrinol. 1996;135:96–100. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiZWplIjtzOjU6InJlc2lkIjtzOjg6IjEzNS8xLzk2IjtzOjQ6ImF0b20iO3M6Mzk6Ii9tZWRyeGl2L2Vhcmx5LzIwMTkvMTAvMjQvMTkwMDk3NDYuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 21. 21.Houston LA, Grant SF, Reid DM, Ralston SH. Vitamin D receptor polymorphism, bone mineral density, and osteoporotic vertebral fracture: studies in a UK population. Bone. 1996;18:249–52. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/8756-3282(95)00483-1&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=8703580&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2019%2F10%2F24%2F19009746.atom) 22. 22.Yanagi H, Tomura S, Kawanami K, Hosokawa M, Tanaka M, Kobayashi K, et al. Vitamin D receptor gene polymorphisms are associated with osteoporosis in Japanese women. J Clin Endocrinol Metab. 1996;81(11):4179–81. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=8923885&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2019%2F10%2F24%2F19009746.atom) 23. 23.Vandevyver C, Wylin T, Cassiman JJ, Raus J, Geusens P. Influence of the vitamin D receptor gene alleles on bone mineral density in postmenopausal and osteoporotic women. J Bone Miner Res. 1997;12(2), 241–7. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1359/jbmr.1997.12.2.241&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=9041056&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2019%2F10%2F24%2F19009746.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=A1997WG80900011&link_type=ISI) 24. 24.Feskanich D, Hunter DJ, Willett WC, Hankinson SE, Hollis BW, Hough HL, et al. Vitamin D receptor genotype and the risk of bone fractures in women. Epidemiology. 1998;9:535–9. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=9730033&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2019%2F10%2F24%2F19009746.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000075537000011&link_type=ISI) 25. 25.Gennari L, Becherini L, Masi L, Mansani R, Gonnelli S, Cepollaro C, et al. Vitamin D and estrogen receptor allelic variants in Italian postmenopausal women: evidence of multiple gene contribution to bone mineral density. J Clin Endocrinol Metab. 1998;83(3):939–44. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1210/jc.83.3.939&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=9506753&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2019%2F10%2F24%2F19009746.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000072403500042&link_type=ISI) 26. 26.Ramalho AC, Lazaretti-Castro M, Hauache O, Kasamatsu T, Brandao C, Reis AF, et al. Fractures of the proximal femur: correlation with vitamin D receptor gene polymorphism. Braz J Med Biol Res. 1998;31:921–7. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=9698755&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2019%2F10%2F24%2F19009746.atom) 27. 27.Zhang H, Tao G, Wu Q. [Preliminary studies on the relationship between vitamin D receptor gene polymorphism and osteoporosis in Chinese women]. Zhonghua Liu Xing Bing Xue Za Zhi. 1998;19(1):12–4. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=10322698&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2019%2F10%2F24%2F19009746.atom) 28. 28.Gómez C, Naves ML, Barrios Y, Díaz JB, Fernández JL, Salido E, et al. Vitamin D receptor gene polymorphisms, bone mass, bone loss and prevalence of vertebral fracture: differences in postmenopausal women and men. Osteoporos Int. 1999;10(3):175–82. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s001980050213&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=10525708&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2019%2F10%2F24%2F19009746.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000083069800001&link_type=ISI) 29. 29.Poggi M, Aterini S, Nicastro L, Chiarugi V, Ruggiero M, Pacini S, et al. Lack of association between body weight, bone mineral density and vitamin D receptor gene polymorphism in normal and osteoporotic women. Dis Markers. 1999;15(4):221–7. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=10689545&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2019%2F10%2F24%2F19009746.atom) 30. 30.Aerssens J, Dequeker J, Peeters J, Breemans S, Broos P, Boonen S. Polymorphisms of the VDR, ER and COLIA1 genes and osteoporotic hip fracture in elderly postmenopausal women. Osteoporos Int. 2000;11(7):583–91. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s001980070079&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=11069192&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2019%2F10%2F24%2F19009746.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000089891300006&link_type=ISI) 31. 31.Fontova Garrofé R, Gutiérrez Fornés C, Broch Montané M, Aguilar Crespillo C, Pujol del Pozo A, Vendrell Ortega J et al. Polymorphism of the gene for vitamin D receptor, bone mass, and bone turnover in women with postmenopausal osteoporosis. Rev Clin Esp. 2000;200(4):198–202. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=10857403&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2019%2F10%2F24%2F19009746.atom) 32. 32.Huang X, Zhu W, Liu Y, An X, Chen X. Analysis of the correlation between vitamin D receptor gene polymorphisms and bone mineral density. Chin J Orthop. 2000;20:372–4. 33. 33.Langdahl BL, Gravholt CH, Brixen K, Eriksen EF. Polymorphisms in the vitamin D receptor gene and bone mass, bone turnover and osteoporotic fractures. Eur J Clin Invest. 2000;30(7):608–17. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1046/j.1365-2362.2000.00686.x&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=10886301&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2019%2F10%2F24%2F19009746.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000088005000009&link_type=ISI) 34. 34.Li Y, Yang Y, Li D, Cai X, Li Z, Xu L. Vitamin D receptor gene polymorphisms and bone mineral density in postmenopausal women. J Tianjin Med Univ. 2000;6:263–4. 35. 35.Zhang Q, Wang W, Kuang J, Shen H, Huang H, Jiang N. Relationship between the polymorphism of vitamin D receptor gene and bone mineral density in pre- and postmenopausal women. Acad J Sun Yat-Sen Univ Med Sci. 2000;21:376–9. 36. 36.Pollak RD, Blumenfeld A, Bejarano-Achache I, Idelson M, Celinke Hochner D. The BsmI vitamin D receptor gene polymorphism in Israeli populations and in perimenopausal and osteoporotic Ashkenazi women. Am J Nephrol. 2001;21(3):185–8. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=11423686&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2019%2F10%2F24%2F19009746.atom) 37. 37.Valimaki S, Tahtela R, Kainulainen K, Laitinen K, Loyttyniemi E, Sulkava R, et al. Relation of collagen type I alpha 1 (COLIA 1) and vitamin D receptor genotypes to bone mass, turnover, and fractures in early postmenopausal women and to hip fractures in elderly people. Eur J Intern Med. 2001;12:48–56. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/S0953-6205(00)00137-0&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=11173011&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2019%2F10%2F24%2F19009746.atom) 38. 38.Leng XW, Chen RY, Liya A, Hong L, Yinhua J, Guoshu T, et al. The relationship between vitamin D receptor gene and bone mineral density in osteoporosis in Urumchi area. Chin J Endocrinol Metab. 2002;18:123. 39. 39.Liang W, Xiu L, Liang Y, Yu B. The association between Vitamin D receptor gene polymorphism and osteoporosis. Acad J Sun Yat-Sen Univ Med Sci. 2002;23:47–9. 40. 40.Zajickova K, Zofkova I, Bahbouh R, Krepelova A. Vitamin D receptor gene polymorphisms, bone mineral density and bone turnover: FokI genotype is related to postmenopausal bone mass. Physiol Res. 2002;51(5):501–9. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=12470203&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2019%2F10%2F24%2F19009746.atom) 41. 41.Alvarez-Hernández D, Naves M, Díaz-López JB, Gómez C, Santamaría I, Cannata-Andía JB. Influence of polymorphisms in VDR and COLIA1 genes on the risk of osteoporotic fractures in aged men. Kidney Int Suppl. 2003;(85):S14–8. 42. 42.Chen J, Li YH, Zhang LP, Qiu TF, Peng H, Deng ZL, et al. The relationship between vitamin D receptor gene and bone mineral density in osteoporosis in Chongqing area. Chongqing Med J. 2003;32:881–2. 43. 43.Douroudis K, Tarassi K, Ioannidis G, Giannakopoulos F, Moutsatsou P, Thalassinos N et al. Association of vitamin D receptor gene polymorphisms with bone mineral density in postmenopausal women of Hellenic origin. Maturitas. 2003;45(3):191–7. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=12818464&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2019%2F10%2F24%2F19009746.atom) 44. 44.Borjas-Fajardo L, Zambrano M, Fernandez E, Pineda L, Machin A, de Romero P, et al. Analysis of Bsm I polymorphism of the vitamin D receptor (VDR) gene in Venezuelan female patients living in the state of Zulia with osteoporosis, Investigacion Clinica. 2003;44:275–82. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=14727381&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2019%2F10%2F24%2F19009746.atom) 45. 45.Lisker R, López MA, Jasqui S, Ponce De León Rosales S, Correa-Rotter R, Sánchez S, et al. Association of vitamin D receptor polymorphisms with osteoporosis in mexican postmenopausal women. Hum Biol. 2003;75(3):399–403. 46. 46.Duman BS, Tanakol R, Erensoy N, Ozturk M, Yilmazer S. Vitamin D receptor alleles, bone mineral density and turnover in postmenopausal osteoporotic and healthy women. Med Princ Pract. 2004;13(5):260–6. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=15316258&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2019%2F10%2F24%2F19009746.atom) 47. 47.Zhu M, Yan X, Wang F, Chen Y, Huang Z. The relationship between VDR gene polymorphism and BMD in postmenopausal women in Zhuang and Han populations in Guangxi Area. Chin J Osteoporos. 2004;10:140–2. 48. 48.Garnero P, Munoz F, Borel O, Sornay-Rendu E, Delmas PD. Vitamin D receptor gene polymorphisms are associated with the risk of fractures in postmenopausal women, independently of bone mineral density. J Clin Endocrinol Metab. 2005;90(8):4829–35. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1210/jc.2005-0364&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=15886235&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2019%2F10%2F24%2F19009746.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000231068500060&link_type=ISI) 49. 49.Horst-Sikorska W, Wawrzyniak A, Celczyńska-Bajew L, Marcinkowska M, Dabrowski S, Kalak R, et al. Polymorphism of VDR gene – the most effective molecular marker of osteoporotic bone fractures risk within postmenopausal women from Wielkopolska region of Poland. Endokrynol Pol. 2005;56(3):233–9. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=16350715&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2019%2F10%2F24%2F19009746.atom) 50. 50.Liu J, Mao Y, He P, Gou S, Zhang Y, Chen L, et al. Study on the relationship between vitamin D receptor gene polymorphisms and bone mineral density in old men. Chin J Osteoporos. 2005;11:159–63. 51. 51.Mitra S, Desai M, Ikram Khatkhatay M. Vitamin D receptor gene polymorphisms and bone mineral density in postmenopausal Indian women. Maturitas. 2006;55(1):27–35. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=16464547&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2019%2F10%2F24%2F19009746.atom) 52. 52.Rass P, Pákozdi A, Lakatos P, Zilahi E, Sipka S, Szegedi G, et al. Vitamin D receptor gene polymorphism in rheumatoid arthritis and associated osteoporosis. Rheumatol Int. 2006;26(11):964–71. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s00296-006-0106-7&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=16447061&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2019%2F10%2F24%2F19009746.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000240536900003&link_type=ISI) 53. 53.Wengreen H, Cutler DR, Munger R, Willing M. Vitamin D receptor genotype and risk of osteoporotic hip fracture in elderly women of Utah: an effect modified by parity. Osteoporos Int. 2006;17:1146–53. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=16758135&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2019%2F10%2F24%2F19009746.atom) 54. 54.Wang X, Zhu X, Nie Y, Li X. Analysis of relationship between vitamin D receptor gene polymorphism and osteoporotic fracture. Chin J Osteoporos. 2007;13:692–5. 55. 55.Dincel E, Sepici-Dincel A, Sepici V, Ozsoy H, Sepici B. Hip fracture risk and different gene polymorphisms in the Turkish population. Clinics (Sao Paulo). 2008;63:645–50. 56. 56.Pérez A, Ulla M, García B, Lavezzo M, Elías E, Binci M, et al. Genotypes and clinical aspects associated with bone mineral density in Argentine postmenopausal women. J Bone Miner Metab. 2008;26(4):358–65. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s00774-007-0840-2&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=18600402&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2019%2F10%2F24%2F19009746.atom) 57. 57.Quevedo LI, Martinez BM, Castillo NM, Rivera FN. Vitamin D receptor gene polymorphisms and risk of hip fracture in Chilean elderly women. Rev Med Chil. 2008;136:475–81. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=18769790&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2019%2F10%2F24%2F19009746.atom) 58. 58.Uysal AR, Sahin M, Gursoy A, Gullu S. Vitamin D receptor gene polymorphism and osteoporosis in the Turkish population. Genet Test. 2008;12(4):591–4. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1089/gte.2008.0052&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=18976159&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2019%2F10%2F24%2F19009746.atom) 59. 59.Zambrano-Morales M, Borjas L, Fernández E, Zabala W, de Romero P, Pineda L, et al. Association of the vitamin D receptor gene BBAAtt haplotype with osteoporosis in post-menopausic women. Invest Clin. 2008;49(1):29–38. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=18524329&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2019%2F10%2F24%2F19009746.atom) 60. 60.Chatzipapas C, Boikos S, Drosos GI, Kazakos K, Tripsianis G, Serbis A. Polymorphisms of the vitamin D receptor gene and stress fractures. Horm Metab Res. 2009;41(8):635–40. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1055/s-0029-1216375&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=19391078&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2019%2F10%2F24%2F19009746.atom) 61. 61.Ge JR, Xie LH, Chen K, Zeng XA, Lai YL, Li SQ, et al. Association of genetic polymorphisms in several vitamin D receptor gene sites with bone mineral density and biochemical markers of bone turnover in postmenopausal women. J Clin Rehabil Tissue Eng Res. 2009;13(28):5593–6. 62. 62.Mencej-Bedrac S, Prezelj J, Kocjan T, Teskac K, Ostanek B, Smelcer M, et al. The combinations of polymorphisms in vitamin D receptor, osteoprotegerin and tumour necrosis factor superfamily member 11 genes are associated with bone mineral density. J Mol Endocrinol. 2009;42(3):239–47. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6Mzoiam1lIjtzOjU6InJlc2lkIjtzOjg6IjQyLzMvMjM5IjtzOjQ6ImF0b20iO3M6Mzk6Ii9tZWRyeGl2L2Vhcmx5LzIwMTkvMTAvMjQvMTkwMDk3NDYuYXRvbSI7fXM6ODoiZnJhZ21lbnQiO3M6MDoiIjt9) 63. 63.Musumeci M, Vadalà G, Tringali G, Insirello E, Roccazzello AM, Simpore J, et al. Genetic and environmental factors in human osteoporosis from Sub-Saharan to Mediterranean areas. J Bone Miner Metab. 2009;27(4):424–34. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=19255718&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2019%2F10%2F24%2F19009746.atom) 64. 64.Seremak-Mrozikiewicz A, Drews K, Mrozikiewicz PM, Bartkowiak-Wieczorek J, Marcinkowska M, Wawrzyniak A, et al. Correlation of vitamin D receptor gene (VDR) polymorphism with osteoporotic changes in Polish postmenopausal women. Neuro Endocrinol Lett. 2009;30(4):540–6. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=20010502&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2019%2F10%2F24%2F19009746.atom) 65. 65.Mansoura L, Sedky M, AbdelKhader M, Sabry R, Kamal M, El-Sawah H. The role of vitamin D receptor genes (FOKI and BSMI) polymorphism in osteoporosis. Middle East Fertil Soc J. 2010;15(2):79–83. 66. 66.Tanriover MD, Tatar GB, Uluturk TD, Erden DD, Tanriover A, Kilicarslan A et al. Evaluation of the effects of vitamin D receptor and estrogen receptor 1 gene polymorphisms on bone mineral density in postmenopausal women. Clin Rheumatol. 2010;29(11):1285–93. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=20697762&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2019%2F10%2F24%2F19009746.atom) 67. 67.Efesoy A, Yilmaz O, Erden G, Güçtekin A, Bodur H, Yildirimkaya M. Relationship of the vitamin D receptor and collagen I(alpha)1 gene polymorphisms with low bone mineral density and vertebral fractures in postmenopausal Turkish women. Turk J Rheumatol. 2011;26(4):295–303. 68. 68.Yoldemir T, Yavuz DG, Anik G, Verimli N, Erenus M. Vitamin D receptor gene polymorphisms in a group of postmenopausal Turkish women: association with bone mineral density. Climacteric. 2011;14(3):384–91. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=21413862&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2019%2F10%2F24%2F19009746.atom) 69. 69.Zhang H, Su PJ, Chen F. Relationship between vitamin D receptor gene polymorphism and bone mineral density and traditional Chinese medicine differentiation type in postmenopausal women in Zhongshan area of Guangdong. Chin J Tradit Med Traumatol Orthop. 2011;2:19–21. 70. 70.González-Mercado A, Sánchez-López JY, Regla-Nava JA, Gámez-Nava JI, González-López L, Duran-Gonzalez J, et al. Association analysis of vitamin D receptor gene polymorphisms and bone mineral density in postmenopausal Mexican-Mestizo women. Genet Mol Res. 2013;12(3):2755–63. 71. 71.Hussien YM, Shehata A, Karam RA, Alzahrani SS, Magdy H, El-Shafey AM. Polymorphism in vitamin D receptor and osteoprotegerin genes in Egyptian rheumatoid arthritis patients with and without osteoporosis. Mol Biol Rep. 2013;40:3675–80. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s11033-012-2443-9&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=23271131&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2019%2F10%2F24%2F19009746.atom) 72. 72.Marozik, P, Mosse I, Alekna V, Rudenko E, Tamulaitienė M, Ramanau H, et al. Association Between Polymorphisms of VDR, COL1A1, and LCT genes and bone mineral density in Belarusian women with severe postmenopausal osteoporosis. Medicina (Kaunas, Lithuania). 2013;49(4):177–84. 73. 73.Pouresmaeili F, Jamshidi J, Azargashb E, Samangouee S. Association between Vitamin D Receptor Gene BsmI Polymorphism and Bone Mineral Density in A Population of 146 Iranian Women. Cell J. 2013;15(1):75–82. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=23700563&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2019%2F10%2F24%2F19009746.atom) 74. 74.Mosaad YM, Hammad EM, Fawzy Z, Abdal Aal IA, Youssef HM, ElSaid TO, et al. Vitamin D receptor gene polymorphism as possible risk factor in rheumatoid arthritis and rheumatoid related osteoporosis. Hum Immunol. 2014;75(5):452–61. 75. 75.Boroń D, Kamiński A, Kotrych D, Bogacz A, Uzar I, Mrozikiewicz PM et al. Polymorphism of vitamin D3 receptor and its relation to mineral bone density in perimenopausal women. Osteoporos Int. 2015;26:1045–52. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s00198-014-2947-3&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=25407264&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2019%2F10%2F24%2F19009746.atom) 76. 76.Kim SW, Lee JM, Ha JH, Kang HH, Rhee CK, Kim JW, et al. Association between vitamin D receptor polymorphisms and osteoporosis in patients with COPD. Int J Chron Obstruct Pulmon Dis. 2015;10:1809–17. 77. 77.Moran JM, Pedrera-Canal M, Rodriguez-Velasco FJ, Vera V, Lavado-Garcia JM, Fernandez P, et al. Lack of association of vitamin D receptor BsmI gene polymorphism with bone mineral density in Spanish postmenopausal women. PeerJ. 2015;3:e953. 78. 78.Dehghan M, Pourahmad-Jaktaji R. The Effect of Some Polymorphisms in Vitamin D Receptor Gene in Menopausal Women with Osteoporosis. J Clin Diagn Res. 2016;10(6):RC06–10. 79. 79.Di Spigna G, Del Puente A, Covelli B, Abete E, Varriale E, Salzano S, et al. Vitamin D receptor polymorphisms as tool for early screening of severe bone loss in women patients with rheumatoid arthritis. Eur Rev Med Pharmacol Sci. 2016;20(22):4664–9. 80. 80.Marozik PM, Tamulaitiene M, Rudenka E, Alekna V, Mosse I, Rudenka A, et al. Association of Vitamin D Receptor Gene Variation With Osteoporosis Risk in Belarusian and Lithuanian Postmenopausal Women. Front Endocrinol (Lausanne). 2018;9:305. 81. 81.Techapatiphandee M, Tammachote N, Tammachote R, Wongkularb A, Yanatatsaneejit P. VDR and TNFSF11 polymorphisms are associated with osteoporosis in Thai patients. Biomed Rep. 2018;9(4):350–6. 82. 82.Xie YM, Hu SN, Han H, Kou QA, Gao R, Du BJ. The relationship between VDR I, VDR II-1, VDR II-2 and bone mineral density in osteoporosis in Beijing, Wuhan and Fujian. Chin J Osteoporos. 2005;11:54–7. 83. 83.Zhai M, Liang L, Yang R. Association of vitamin D receptor gene polymorphism with osteoporosis in patients with diabetes mellitus. Zhong Guo Lin Chuang Kang Fu. 2005;9:177–9. 84. 84.Chen Z, Chen X, Wang D, Chen Y, Zhang H, Zhou Z. The study of the association between Apa I polymorphism of vitamin D receptor gene and osteoporosis. Chin J Osteoporos. 2007;13(6):402–5. 85. 85.Luan J, Fan X, Chen Z. The associations between VDR gene polymorphisms and osteoporosis. Zhong guo zu zhi gong cheng yan jiu. 2011;15:9486–90. 86. 86.Castelan-Martinez OD, Vivanco-Munoz N, Falcon-Ramirez E, Valdes-Flores M, Clark P. Apa1 VDR polymorphism and osteoporosis risk in postmenopausal Mexican women. Gaceta medica de Mexico. 2015’151:472–6. 87. 87.Sassi R, Sahli H, Souissi C, Sellami S, Ben Ammar El Gaaied A. Polymorphisms in VDR gene in Tunisian postmenopausal women are associated with osteopenia phenotype. Climacteric. 2015;18(4):624–30. 88. 88.Dabirnia R, Mahmazi S, Taromchi A, Nikzad M, Saburi E. The relationship between vitamin D receptor (VDR) polymorphism and the occurrence of osteoporosis in menopausal Iranian women. Clin Cases Miner Bone Metab. 2016;13(3):190–4. 89. 89.Wu J, Shang DP, Yang S, Fu DP, Ling HY, Hou SS, et al. Association between the vitamin D receptor gene polymorphism and osteoporosis. Biomed Rep. 2016;5(2):233–6. 90. 90.Ahmad I, Jafar T, Mahdi F, Arshad M, Das SK, Waliullah S, et al. Association of Vitamin D Receptor (FokI and BsmI) Gene Polymorphism with Bone Mineral Density and Their Effect on 25-Hydroxyvitamin D Level in North Indian Postmenopausal Women with Osteoporosis. Indian J Clin Biochem. 2018;33(4):429–37. 91. 91.Gennari L, Becherini L, Mansani R, Masi L, Falchetti A, Morelli A, et al. FokI polymorphism at translation initiation site of the vitamin D receptor gene predicts bone mineral density and vertebral fractures in postmenopausal Italian women. J Bone Mine Res. 1999;14(8):1379–86. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1359/jbmr.1999.14.8.1379&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=10457270&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2019%2F10%2F24%2F19009746.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000081682000014&link_type=ISI) 92. 92.Lucotte G, Mercier G, Burckel A. The vitamin D receptor FokI start codon polymorphism and bone mineral density in osteoporotic postmenopausal French women. Clinical genetics. 1999;56:221–4. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=10563482&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2019%2F10%2F24%2F19009746.atom) 93. 93.Choi YM, Jun JK, Choe J, Hwang D, Park SH, Ku SY, et al. Association of the vitamin D receptor start codon polymorphism (FokI) with bone mineral density in postmenopausal Korean women. J Hum Genet. 2000;45(5):280–3. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s100380070016&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=11043509&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2019%2F10%2F24%2F19009746.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000089626300003&link_type=ISI) 94. 94.Yasovanthi J, Venkata Karunakar K, Sri Manjari K, Pulla Reddy B, Ajeya Kumar P, Sesha Charyulu M, et al. Association of vitamin D receptor gene polymorphisms with BMD and their effect on 1, 25-dihydroxy vitamin D3 levels in pre- and postmenopausal South Indian women from Andhra Pradesh. Clin Chim Acta. 2011;412(7-8):541–4. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=21130756&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2019%2F10%2F24%2F19009746.atom) 95. 95.Mohammadi Z, Keshtkar A, Fayyazbakhsh F, Ebrahimi M, Amoli MM, Ghorbani M, et al. Prevalence of osteoporosis and vitamin D receptor gene polymorphisms (FokI) in an Iranian general population based study (Kurdistan) (IMOS). Med J Islam Repub Iran. 2015;29:238. 96. 96.Masi L, Becherini L, Colli E, Gennari L, Mansani R, Falchetti A, et al. Polymorphisms of the calcitonin receptor gene are associated with bone mineral density in postmenopausal Italian women. Biochem Biophys Res Commun. 1998;248(1):190–5. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1006/bbrc.1998.8880&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=9675109&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2019%2F10%2F24%2F19009746.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000074758800035&link_type=ISI) 97. 97.Ziablitsev DS, Larin OS. Influence of single nucleotide polymorphisms of vitamin D receptor-gene on the level of osteoassociated hormones linkage with postmenopausal osteoporosis. Fiziol Zh. 2015;61(5):21–7. 98. 98.Nejentsev S, Godfrey L, Snook H, Rance H, Nutland S, Walker NM, et al. Comparative high resolution analysis of linkage disequilibrium and tag single nucleotide polymorphisms between populations in the vitamin D receptor gene. Hum Mol Genet. 2004;13:1633–9. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1093/hmg/ddh169&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=15175274&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2019%2F10%2F24%2F19009746.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000222558800009&link_type=ISI) 99. 99.Carlberg C, Dunlop TW. An integrated biological approach to nuclear receptor signaling in physiological control and disease. Crit Rev Eukaryot Gene Expr. 2006;16(1):1–22. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1615/CritRevEukarGeneExpr.v16.i1.10&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=16584379&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2019%2F10%2F24%2F19009746.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000236159400001&link_type=ISI) 100.100.McKay JD, McCullough ML, Ziegler RG, Kraft P, Saltzman BS, et al. Vitamin D receptor polymorphisms and breast cancer risk: results from the National Cancer Institute Breast and Prostate Cancer Cohort Consortium. Cancer Epidemiol Biomarkers Prev. 2009;18(1):297–305. [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NDoiY2VicCI7czo1OiJyZXNpZCI7czo4OiIxOC8xLzI5NyI7czo0OiJhdG9tIjtzOjM5OiIvbWVkcnhpdi9lYXJseS8yMDE5LzEwLzI0LzE5MDA5NzQ2LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 101.101.Angel B, Lera L, Márquez C, Albala C. The association of VDR polymorphisms and type 2 diabetes in older people living in community in Santiago de Chile. Nutr Diabetes. 2018;8(1):31. 102.102.Dorsch MP, Nemerovski CW, Ellingrod VL, Cowger JA, Dyke DB, Koelling ™, et al. Vitamin D receptor genetics on extracellular matrix biomarkers and hemodynamics in systolic heart failure. J Cardiovasc Pharmacol Ther. 2014;19(5):439–45. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1177/1074248413517747&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=24500905&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2019%2F10%2F24%2F19009746.atom) 103.103.Zaki M, Kamal S, Basha WA, Youness E, Ezzat W, El-Bassyouni H, et al. Association of vitamin D receptor gene polymorphism (VDR) with vitamin D deficiency, metabolic and inflammatory markers in Egyptian obese women. Genes Dis. 2017;4(3):176–82. 104.104.Yadav U, Kumar P, Yadav SK, Mishra OP, Rai V. Polymorphisms in folate metabolism genes as maternal risk factor for neural tube defects: an updated meta- analysis. Metab Brain Dis. 2015;30:7–14. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/s11011-014-9575-7&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=25005003&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2019%2F10%2F24%2F19009746.atom) 105.105.Kumar P, Yadav U, Rai V. Prevalence of glucose-6-phosphate dehydrogenase deficiency in India: An updated meta-analysis. Egypt J Med Hum Genet. 2016;17:295–302. 106.106.Rai V. Genetic polymorphisms of methylenetetrahydrofolate reductase (MTHFR) gene and susceptibility to depression in Asian population: a systematic meta-analysis. Cell Mol Biol, 2014;60(3):29–36. 107.107.Rai V, Yadav U, Kumar P, Yadav SK, Gupta S. Methylenetetrahydrofolate reductase A1298C genetic variant & risk of schizophrenia: A meta-analysis. Indian J Med Res. 2017;145(4):437–47. 108.108.Rai V. Folate pathway gene methylenetetrahydrofolate reductase C677T polymorphism and Alzheimer disease risk in Asian population. Indian J Clin Biochem. 2016;31(3):245–52. 109.109.Rai V. Methylenetetrahydrofolate Reductase A1298C Polymorphism and Breast Cancer Risk: A Meta-analysis of 33 Studies. Ann Med Health Sci Res. 2014;4(6):841–51. 110.110.Rai V. Evaluation of the MTHFR C677T Polymorphism as a Risk Factor for Colorectal Cancer in Asian Populations. Asian Pac J Cancer Prev. 2016;16(18):8093–100. 111.111.Kumar P, Rai V. MTHFR C677T Polymorphism and Risk of Esophageal Cancer: An Updated Meta-analysis. Egypt J Med Hum Genet. 2018;19:273–84. 112.112.Yadav U, Kumar P, Rai V. Role of MTHFR A1298C gene polymorphism in the etiology of prostate cancer: a systematic review and updated meta-analysis. Egypt J Med Hum Genet. 2016;17(2):141–8. 113.113.Zintzaras E, Rodopoulou P, Koukoulis GN. BsmI, TaqI, ApaI and FokI polymorphisms in the vitamin D receptor (VDR) gene and the risk of osteoporosis: a meta-analysis. Dis Markers. 2006;22(5-6):317–26. [PubMed](http://medrxiv.org/lookup/external-ref?access_num=17264402&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2019%2F10%2F24%2F19009746.atom) [Web of Science](http://medrxiv.org/lookup/external-ref?access_num=000246444200005&link_type=ISI) 114.114.Jia F, Sun RF, Li QH, Wang DX, Zhao F, Li JM, et al. Vitamin D receptor BsmI polymorphism and osteoporosis risk: a meta-analysis from 26 studies. Genet Test Mol Biomarkers. 2013;17(1):30–4. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1089/gtmb.2012.0267&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=23134477&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2019%2F10%2F24%2F19009746.atom) 115.115.Yu M, Chen GQ, Yu F. Lack of association between vitamin D receptor polymorphisms ApaI (rs7975232) and BsmI (rs1544410) and osteoporosis among the Han Chinese population: A meta-analysis. Kaohsiung J Med Sci. 2016;32(12):599–606. 116.116.Zhao B, Zhang W, Du S, Zhou Z. Vitamin D receptor BsmI polymorphism and osteoporosis risk in post-menopausal women. Arch Med Sci. 2016;12(1):25–30. 117.117.Wang QX, Zhao SM, Zhou YB, Zhang C. Lack of association between vitamin D receptor genes BsmI as well as ApaI polymorphisms and osteoporosis risk: A pooled analysis on Chinese individuals. Int J Rheum Dis. 2018;21(5):967–74. 118.118.Zhang L, Yin X, Wang J, Xu D, Wang Y, Yang J, et al. Associations between VDR Gene Polymorphisms and Osteoporosis Risk and Bone Mineral Density in Postmenopausal Women: A systematic review and Meta-Analysis. Sci Rep. 2018;8(1):981.