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Abstract  
 

Tau pathology, neuroinflammation, and neurodegeneration are key aspects of Alzheimer’s disease. 

Understanding whether these features predict cognitive decline, alone or in combination, is crucial to 

develop new prognostic measures and enhanced stratification for clinical trials. Here, we studied how 

baseline assessments of in vivo tau pathology (measured by [18F]AV-1451 PET), neuroinflammation 

(indexed via [11C]PK11195 PET) and brain atrophy (derived from structural MRI) predicted 

longitudinal cognitive changes in patients with Alzheimer’s disease pathology. Twenty-six patients 

(n=12 with clinically probable Alzheimer’s dementia and n=14 with amyloid positive Mild Cognitive 

Impairment) and 29 healthy controls underwent baseline assessment with [18F]AV-1451 PET, 

[11C]PK11195 PET, and structural MRI. Cognition was examined annually over the subsequent 3 

years using the revised Addenbrooke’s Cognitive Examination. Regional grey-matter volumes, 

[18F]AV-1451 and [11C]PK11195 binding were derived from fifteen temporo-parietal regions 

characteristically affected by Alzheimer’s disease pathology. A Principal Component Analysis (PCA) 

was used on each imaging modality separately, to identify the main spatial distributions of pathology. 

A Latent Growth Curve model was applied across the whole sample on longitudinal cognitive scores 

to estimate the rate of annual decline in each participant. We regressed the individuals’ estimated 
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slope of cognitive decline on the neuroimaging components and examined univariable models with 

single-modality predictors, and a multi-modality model of prediction, to identify the independent and 

combined prognostic value of the different neuroimaging markers.  

PCA identified a single component for the grey-matter atrophy, while two components were found 

for each PET ligand: one weighted to the anterior temporal lobe, and another weighted to posterior 

temporo-parietal regions. Across the whole-sample, the single-modality models indicated significant 

correlations between the slope of cognitive decline and the first component of each imaging modality.  

In patients, both stepwise backward elimination and Bayesian model selection revealed an optimal 

predictive model that included both components of [18F]AV-1451 and the first (i.e., anterior temporal) 

component for [11C]PK11195. However, the MRI-derived atrophy component and demographic 

variables were excluded from the optimal predictive model of cognitive decline. We conclude that 

temporo-parietal tau pathology and anterior temporal neuroinflammation predict cognitive decline in 

patients with symptomatic Alzheimer’s disease pathology. This indicates the added value of PET 

biomarkers in predicting cognitive decline in Alzheimer’s disease, over and above MRI measures of 

brain atrophy and demographic data. Our findings also support the strategy for targeting tau and 

neuroinflammation in disease-modifying therapy against Alzheimer’s Disease. 

  

Introduction  

The pathological hallmarks of Alzheimer’s disease are tau neurofibrillary tangles (NFT) and 

amyloid-β plaques, but neuroinflammation has also emerged as a key process in Alzheimer’s disease 

and other neurodegenerative disorders (Pasqualetti et al., 2015; Ransohoff, 2016; Schain and Kreisl, 

2017). However, the differential role of these pathologies in predicting clinical progression of 

Alzheimer’s disease remains to be ascertained. This represents a critical step to develop new 

prognostic markers and test the effect of novel disease modifying therapies that target different 

pathologies in Alzheimer’s disease.  

The aggregation of misfolded tau protein plays a fundamental role in synaptic dysfunction and 

neuronal loss, and correlates with clinical severity in the Alzheimer’s disease clinical spectrum 

(Nelson et al., 2012; Spires-Jones and Hyman, 2014). A significant presence of amyloid-β plaques is 

also indicative of likely cognitive decline in mid- and later-life, although the association of both 

neurodegeneration and cognitive impairment has been found stronger with the distribution and burden 

of NFTs than it is for neuritic plaques (Nelson et al., 2012; Spires-Jones and Hyman, 2014). Microglia 

activation and neuroinflammation represent a third key determinant in the etio-pathogenesis of 

Alzheimer’s disease and in its progression (Heneka et al., 2015; Mhatre et al., 2015; Calsolaro and 

Edison, 2016), independently or synergistically with tau and amyloid pathology.  
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Each of these processes can now be quantified and localised indirectly in vivo using brain 

imaging, such as PET imaging with radioligands targeting tau pathology, amyloid burden, and 

microglial activation (see Chandra et al., 2019 for a review). The PET ligand [18F]AV-1451 is 

sensitive to cortical tau accumulation in Alzheimer’s disease, and has high affinity for the 

characteristic paired helical tau filaments (Xia et al., 2013; Marquié et al., 2015; Lowe et al., 2016).  

[18F]AV-1451 PET studies have shown marked tau accumulation in the entorhinal cortex in patients 

with mild cognitive impairment (MCI) which extends to temporo-parietal regions in Alzheimer’s 

disease (Hall et al., 2017). [18F]AV-1451 bindings also correlates with Braak staging of 

neurofibrillary tau (Schwarz et al., 2016; Schöll et al., 2018), and post-mortem patterns of 

Alzheimer’s disease pathology (Sander et al., 2016). This is also in keeping with evidence that tau 

deposition is evident as a continuum from normal aging through MCI to Alzheimer’s dementia 

(Schöll et al., 2018),  and correlates with cognitive impairment (Brier et al., 2016, Cho et al., 2016b; 

Johnson et al., 2016; Ossenkoppele et al., 2016; Pontecorvo et al., 2017). In addition, PET imaging 

supported the previous evidence on a stronger association of cognitive deficits with tau burden than 

with amyloid-β (Brier et al., 2016; Johnson et al., 2016). 

The PET ligand [11C]PK11195 is a well-established marker for microglial activation in 

Alzheimer’s disease via its binding to the 18-kDa translocator protein (TSPO), a mitochondrial 

membrane protein which is overexpressed in activated microglia (Scarf and Kassiou, 2011). In 

Alzheimer’s disease, [11C]PK11195 shows high binding in temporo-parietal regions and cingulate 

cortex (Stefaniak and O’Brien, 2015). Higher levels of neuroinflammation in these regions is also 

negatively associated with cognitive performance in MCI and Alzheimer’s dementia (Edison et al., 

2008; Okello et al., 2009, Fan et al., 2015a; Passamonti et al., 2018, 2019) although they do not  

correlate well with amyloid burden (Yokokura et al., 2011), suggesting an independent role of 

microglia activation in mediating cognitive deficit.  

There are extensive data on atrophy in Alzheimer’s Disease, measured in terms of volume loss in 

vivo by MRI, at MCI and dementia stages of progressive Alzheimer’s Disease pathology. MRI 

measures, for example of medial temporal lobe volumes, correlates with disease severity, and are 

predictive of future conversion from MCI to Alzheimer’s Disease (Frisoni et al., 2010; Leung et al., 

2013; Jack et al., 2015). However, cell loss and atrophy are a relatively late feature in a cascade of 

pathology, and it is not clear how MRI compares with measures of molecular pathology as a 

prognostic marker, especially in view of marked age-related structural changes (Raz et al., 2005; 

Walhovd et al., 2011). 

In this study, we use baseline in vivo measures of tau pathology, microglia activation, and brain 

atrophy to predict the rate of cognitive decline in patients with Alzheimer’s disease pathology, 
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ranging from MCI with biomarker evidence of amyloid pathology to clinically probable Alzheimer’s 

disease. Our hypothesis was that the PET biomarkers of tau pathology and neuroinflammation are 

strong predictors of cognitive impairment and decline, and that whereas MRI may be predictive in 

isolation, the prognostic information of MRI is better captured by direct measures of molecular 

pathology using PET (Bejanin et al., 2017; Mattsson et al., 2019). This hypothesis builds on the 

evidence that tau burden relates to age-related cognitive decline (Schöll et al., 2016; Aschenbrenner 

et al., 2018; Maass et al., 2018), and progression of dementia over 6 to 18 months in patients with 

Alzheimer’s disease (Koychev et al., 2017; Pontecorvo et al., 2019). In contrast to past studies that 

have assessed the relationship between longitudinal PET markers and clinical changes in Alzheimer’s 

Disease (Fan et al., 2015b, 2017; Chiotis et al., 2018; Jack et al., 2018; Southekal et al., 2018; Cho 

et al., 2019), we study how a multi-modal and cross-sectional assessment of distinct pathologies is 

able to predict longitudinal decline in Alzheimer’s Disease, examining the individual or combined 

prognostic contribution of tau pathology, neuroinflammation, and brain atrophy in predicting 

cognitive decline. 

A better characterisation of the factors predicting decline in Alzheimer’s disease will help to 

develop enhanced prognostic and outcome measures for clinical trials targeting more than one 

pathology. Although previous findings support the use of MRI and PET imaging in the diagnosis and 

monitoring of disease progression, the prognostic value of these in vivo measures and their combined 

effect in predicting clinical decline in Alzheimer’s disease remains undetermined. Previous studies 

which have evaluated the predictive values of neuroimaging markers in Alzheimer’s disease have 

typically assessed different neuroimaging modalities in isolation rather than exploiting the 

mechanistic and prognostic values that is offered by multi-modal neuroimaging. We therefore 

assessed the independent and combined predictive effects of baseline neuroimaging biomarkers for 

tau pathology ([18F]AV-1451 PET), neuroinflammation ([11C]PK11195 PET) and brain atrophy 

(structural MRI) on longitudinal cognitive changes over a period of three years in the clinical 

spectrum of Alzheimer’s disease.  

Focussing therefore on temporo-parietal regions, we predicted: 1) a significant association 

between baseline measures of each neuroimaging technique and longitudinal decline in cognition, 

assessed separately for each modality; 2) partially independent and additive effects of MRI and PET 

measures on cognitive decline, assessed with all modalities in a single multivariate model. Moreover, 

we predicted that the molecular markers of baseline tau and neuroinflammation PET could be more 

informative than structural MRI on longitudinal cognitive deterioration in Alzheimer’s disease. 
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Material and methods 

Participants 

We recruited 26 patients: twelve with a clinical diagnosis of probable Alzheimer’s dementia and 14 

with amnestic MCI and a positive amyloid PET scan as biomarker of Alzheimer’s Disease (Klunk et 

al., 2004). Probable Alzheimer’s dementia was diagnosed according to the National Institute on 

Aging-Alzheimer’s Association guidelines (McKhann et al., 2011) and confirmed in all patients 

during follow-up. Given the long-term and intensive nature of the longitudinal project, all patients at 

baseline had >12/30 on the Mini-Mental State Examination (MMSE) to be eligible to the study. MCI 

patients had MMSE score > 24/30, and memory impairment not ascribable another diagnosis (Albert 

et al., 2011). We also included 29 healthy controls with MMSE >26/30, absence of memory 

symptoms, no signs of dementia, or any other significant medical illnesses.  

All gave informed consent according to the Declaration of Helsinki. The NIMROD protocol 

(Neuroimaging of Inflammation in Memory and Related Other Disorders, (Bevan-Jones et al., 2017)) 

was approved by the NIHR National Research Ethic Service Committee and East of England 

(Cambridge Central).  

During the first visit, demographic information and medical history were collected. All 

participants underwent baseline neuropsychological assessment, MRI scan and one, two or three PET 

scans depending on the group. The clinical examination and neuropsychological battery were 

repeated annually for three follow-up visits (see Bevan-Jones et al., 2017 for more details). The 

revised Addenbrooke’s Cognitive Examination (ACE-R) (Mioshi et al., 2006) was used to assess the 

cognitive performance at each visit.  

 

Imaging data acquisition and pre-processing 

At the baseline, all subjects underwent 3T MRI performed on a Siemens Magnetom Tim Trio or Verio 

scanner (Siemens Healthineers, Erlangen, Germany). MCI and AD subjects had both [18F]AV-1451 

PET and [11C]PK11195 PET, while, to minimise radiation exposure to healthy people, control 

subjects were divided into two groups: 14 underwent [18F]AV-1451 PET, while another 15 underwent 

[11C]PK11195 PET. PET scanning was undertaken on a GE Advance PET scanner (GE Healthcare, 

Waukesha, USA) and a GE Discovery 690 PET/CT (see (Passamonti et al., 2017, 2018) for more 

details). Patients with MCI also underwent 40-70 minutes post-injection [11C]PiB PET to quantify 

the density of fibrillar Aβ deposits for classification of Aβ status. [11C]PiB scans were classified as 

positive if the average standardized uptake value ratio (SUVR) across the cortex using a cerebellar 

grey matter reference region was > 1.5. MCI subjects with positive Aβ status were included in this 

study. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. was not certified by peer review)

(whichThe copyright holder for this preprint this version posted November 8, 2019. ; https://doi.org/10.1101/19011189doi: medRxiv preprint 

https://doi.org/10.1101/19011189
http://creativecommons.org/licenses/by-nc-nd/4.0/


T1-weighted MRI was used for tissue class segmentation into grey matter, white matter and 

cerebrospinal fluid (CSF) using SPM12. Segmented images were used to determine regional grey 

matter, white matter and CSF volumes, and to calculate brain volume (grey + white matter) and total 

intracranial volume (TIV = grey matter + white matter + CSF) in each participant. Grey and white 

matter segments from 33 representative subjects were imported to create an unbiased template (11 

controls, 11 patients with mild cognitive impairment and 11 patients with Alzheimer’s Dementia, 

matched for age and sex across the groups) using the DARTEL pipeline in SPM12. All other images 

were subsequently warped and aligned to the template. The group template was warped to the 

MNI152 template using 'Population to ICBM' function. The deformations from this transformation 

were combined with the flow fields of each individual and inverted. Eighty-three cortical and 

subcortical regions of interest (ROIs) were defined using a version of the Hammers atlas (Gousias et 

al., 2008) modified to include brainstem parcellation and the cerebellar dentate nucleus. All 

segmented images were modulated and warped to the modified Hammers atlas in MNI space. 

Individual regional grey matter volumes were then extracted from the spatially normalised and 

modulated grey matter segments, using the ‘spm summarise atlas’ function. 

For each subject, the aligned PET image series for each scan was rigidly co-registered to the 

T1-weighted MRI image. Prior to kinetic modeling regional PET data were corrected for CSF 

contamination by dividing by the mean region grey plus white matter fraction determined from SPM 

tissue probability maps smoothed to PET spatial resolution. For [11C]PK11195, supervised cluster 

analysis was used to determine the reference tissue time-activity curve and non-displaceable binding 

potential (BPND) was calculated in each ROI using a simplified reference tissue model that includes 

correction for vascular binding (Yaqub et al., 2012). For [18F]AV-1451, BPND was assessed in each 

ROI with the simplified reference tissue model (Gunn et al., 1997) using superior cerebellar cortex 

grey matter as the reference region. For more details about data acquisition and pre-processing steps 

see Passamonti et al. (Passamonti et al., 2017, 2018).  

 

Statistical analyses 

Descriptive statistics. Continuous variables (age, education, ACE-R) were compared between groups 

with an independent-samples t-test, and categorical variables (sex) with the Chi-square test. The effect 

size of each t-test comparison was computed to quantify differences between the two groups (Cohen's 

d > 0.8, valuable difference). ACE-R scores at follow-up were annualised to the nearest whole year.  

 

Principal components analysis. The number of ROIs was reduced from 83 to 15, by a) 

combining left and right regional values, as in our previous studies on Alzheimer’s disease 
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(Passamonti et al., 2017, 2018), and b) focussing on a priori regions related to Alzheimer’s disease 

pathology (see Supplementary Table 1). Considering the literature showing early neurodegeneration, 

tau pathology, and neuroinflammation in temporal and parietal brain regions in Alzheimer’s disease 

(i.e., temporo-parietal regions) we focused our analyses on those areas. Regional grey matter volume 

used the sum of the grey matter volumes in the corresponding left and right hemisphere ROIs, 

corrected for TIV. For both [11C]PK11195 and [18F]AV-1451, a volume-weighted mean of left and 

right regional BPND values was calculated. Values determined for the 15 bilateral ROIs from each 

imaging dataset were included in three principal component analyses (PCAs), run separately for grey 

matter volumes, [11C]PK11195 and [18F]AV-1451  BPND values. This reduces dimensionality and the 

problem of multiple comparisons, identifying a limited number of components that best explain the 

data variance. We applied an orthogonal Varimax rotation to maximize interpretability and specificity 

of the resulting components. We retained components with eigenvalues >1. To test whether correction 

for CSF affected the PCA results, we applied the same analyses on [18F]AV-1451 PET and 

[11C]PK11195 regional data not corrected for CSF partial volume. 

The individual component scores were corrected for the time interval in months between the 

scan and the baseline cognitive assessment. Mean and standard deviation of the time interval between 

the imaging scans and the baseline cognitive assessment were: 1.75 ± 2.50 months for MRI, 7.18 ± 

5.68 months for [18F]AV-1451 PET and 6.12 ± 9.07 months for [11C]PK11195 PET. The residuals 

extracted for each component were included in a multiple regression on cognitive decline as 

independent variables.  

 

Latent Growth Curve Model for cognitive data. An univariable LGCM was fitted on 

longitudinal ACE-R scores across all subjects (n=55), to obtain the (i) intercept; (ii) slope, quantifying 

the rate of change and its form (i.e. linear or nonlinear); (iii) the relation between intercept and slope. 

The estimated parameters are based on the individuals’ trajectory, indicating average change and 

individual difference. Covariates can be added to the model to assess their associations with both 

intercept and slope. Three time points and 5-10 cases per parameter are required for a standard LGCM 

(Bentler and Chou, 1987; Newsom, 2015). LGCM was implemented in Lavaan software (Rosseel, 

2012) using full information maximum likelihood estimation with robust standard errors for 

missingness and non-normality. We considered four indices of good model fit (Schermelleh-Engel et 

al., 2003): 1) the chi-square test with the p-value (good fit: > 0.05), 2) the root-mean-square error of 

approximation (RMSEA, acceptable fit: < 0.08, good fit: < 0.05), 3) the comparative fit index (CFI, 

acceptable fit: 0.95–0.97, good fit: > 0.97), and 4) the standardized root mean-square residual (SRMR, 

acceptable fit: 0.05–0.10, good fit: < 0.05). From the model fitting, variables “intercept” and “slope” 
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were created extracting the individual estimated values for each subject in the model. T-tests and 

analysis of variance tested for group differences in initial cognitive performance and annual change. 

 

One-step prediction procedure: Latent Growth Curve Model with predictors. First, across 

all subjects, we tested the predictive value of each imaging method on cognitive decline, applying 

five LGCMs with each scan-specific component’s values (corrected for months from the baseline) as 

predictor of cognitive intercept and slope. The models were tested separately for MRI (n=55), 

[11C]PK11195 PET (n=41) and [18F]AV-1451 PET (n=40) components. Second, in patients only 

(n=26), the individual scores of all imaging components were included as predictors in the LGCM on 

longitudinal ACE-R scores, to test the combined predictive effect of all imaging modalities.   

The one step procedure would be the ideal approach to answer our research questions, 

however, this leads to model estimation challenges in a cohort with a modest sample size. For this 

reason, we next applied a two-step prediction procedure: 1) extracting individual slope values from 

the initial LGCM for cognitive data across all the population, and 2) including these values as 

dependent variable in linear regression models with brain imaging components as predictors. We 

present both frequentist and Bayesian analyses to ensure inferential robustness and allowing us to 

quantify evidence in favour of the null hypothesis.  

 

Two-step frequentist prediction procedure: linear regression models on LGCM estimated 

parameters. First, across all subjects, the residual values of each scan-specific PCA component 

(corrected for months from the baseline) were included as single predictors in separated univariable 

linear regression models with the individual slope values extracted from the initial LGCM as 

dependent variable. The significance level was set at p<0.01 corrected for multiple comparisons with 

the Bonferroni correction (p=0.05/5). Next, the individual scores of the imaging methods’ 

components were included as independent variables in a multivariable regression analysis on patients 

alone (N=26), who underwent all three imaging scans. This model was fit to examine the individual, 

as well as combined, ability to explain variance in cognitive decline using brain marker components 

as well s age, education, and sex as independent variables. The model used stepwise backward 

selection (entry criterion p=0.05 and elimination criterion p=0.1). In a supplementary analysis, we 

also applied a “reduced” multivariable linear regression analysis with slope as dependent variable and 

only the first component of each imaging method as predictors to test that the different number of 

components between MRI and PET did not affect the estimation.  Given the challenges of stepwise 

model selection, and the limitations of sample size to utilize more optimal methods (e.g. regularized 
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model fitting), we ran the analysis using Bayesian methodology, to ensure inferential robustness of 

our findings and confidence in null results. 

 

Two-step Bayesian prediction procedure: linear regression models on LGCM estimated 

parameters. Finally, we applied a Bayesian multiple regression analysis with brain components and 

demographic variables as predictors, and the estimated slope values as dependent variable. This 

approach was used to test whether there was evidence for the absence of independent variables’ effect 

for those components excluded from the final models (as opposed to frequentist type II error). In the 

model comparisons, we considered as final model the one with the highest Bayes Factor compared to 

the null model (BF10). Then, we used a reduced Bayesian linear regression, mirroring the reduced 

model applied with the frequentist approach, which included only the first component of each imaging 

method as predictors of slope.  

 

See Supplementary Fig. 1 for a schematic representation of statistical analyses with one-step 

and two-step prediction procedures. 

 

Data availability 

Anonymized data may be shared by request to the senior author from a qualified investigator for non-

commercial use (data sharing is subject to participants’ prior consent to data sharing). 

 

Results 

Descriptive statistics. Significant differences between patient and control groups were found for 

education (t(53)=2.4, p=0.02, Cohen's d=0.64) and ACE-R scores (t(53)=8.6, p<0.001, Cohen's 

d=2.37), however, the effect size of the education difference was negligible (d < 0.08). There were 

not significant group differences in age (t(53)=-1.7, p=0.09, Cohen's d=-0.47) and sex (χ2(1)=0.17, 

p=0.68) (Table 1). Individual ACE-R scores at baseline and at each follow-up are shown in Fig. 1.  

 

Principal component analysis of Grey Matter Volumes, [18F]AV-1451 BPND and 

[11C]PK11195 BPND. For grey-matter volumes, the PCA on the pre-selected 15 AD-specific cortical 

regions identified only one component that encompassed all the temporo-parietal regions and 

explained 74% of the variance (Fig. 2, left panel). Two principal components were detected for 

[18F]AV-1451 BPND data, explaining 91% of the total variance (83% first component; 8% second 

component). The first component was loaded onto the posterior temporal and parietal regions, while 

the second component was weighted to the anterior temporal lobe, amygdala, insula and hippocampus 
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(Fig. 2, middle panel). For [11C]PK11195 BPND data, two principal components were identified, and 

these explained together the 76% of data variance (56% for the first component; 20% for the second 

component). The first component involved anterior and medial temporal lobe, while the second 

component was mainly loaded onto the posterior temporo-parietal regions and insula (Fig. 2, right 

panel). Using PET data without CSF correction yielded qualitatively similar results.  

 

Subject-specific rate of cognitive decline. The LGCM of longitudinal ACE-R scores fitted 

the data adequately (χ2(8)=10.93, p=0.206; RMSEA=0.09 [0.00 – 0.21], CFI=0.99, SRMR=0.04). 

The mean of the intercept was 86.40 (Standard Error (SE)=1.44, z-value=60.02, fully standardized 

estimate (Std Est) =8.28, p<0.001) and average cognition declined over time (slope, estimate (est)=-

3.01, SE=0.80, z-value=-3.75, Std Est=-0.54, p<0.001). The intercept significantly co-varied with the 

slope (est=38.51, SE=9.24, z-value=4.17, Std Est (correlation)=0.67, p<0.001, such that individuals 

with higher (better) baseline performance showed less steep decline. As expected, patients 

significantly differed from controls in their intercept (t(53)=9.39, p<0.001) and slope (t(53)=6.42, 

p<0.001) indicating a faster and more severe cognitive decline (Fig. 3). Across three groups, ANOVA 

confirmed group differences in the intercept (F(2)=63.44, p<0.001; mean (SD) for: HC=94.18 (3.27); 

MCI+=81.25 (6.17); AD=73.60 (8.96)) and slope (F(2)=53.74, p<0.001; mean (SD) for: HC=0.40 

(0.82); MCI+=-3.56 (3.08); AD=-10.62 (5.71)), with post-hoc confirmation of differences between 

each pair of groups (all p<0.005).  

 

One-step prediction Latent Growth Curve Model with predictors. The LGCM including MRI 

fitted the data marginally well (χ2(10)=18.33, p-value=0.05, RMSEA=0.13 [0.01-0.23], CFI=0.98, 

SRMR=0.03). Individual differences in the summary brain measure were strongly and positively 

associated with both slope (path Std Est=0.58, p<0.001) and intercept (path Std Est=0.67, p<0.001). 

This suggested that individuals with greater grey matter volumes showed better baseline performance, 

and slower longitudinal decline, than those with smaller volumes. 

The LGCM of the posterior [18F]AV-1451 component fitted the data adequately 

(χ2(10)=16.30, p-value=0.09, RMSEA=0.12 [0.00-0.22], CFI=0.98, SRMR=0.03). Here too, both the 

slope (path Std Est=-0.62, p=0.001) and intercept (path Std Est=-0.53, p<0.001) were strongly 

governed by individual differences in the first component. In contrast, in the model with only the 

anterior [18F]AV-1451 component (χ2(10)=21.75, p-value=0.01, RMSEA=0.17 [0.07-0.27], 

CFI=0.96, SRMR=0.05), there was no association between the scores on the neural component and 

either the intercept (path Std Est=-0.12, p=0.431) or the slope (path Std Est=-0.39, p=0.057).  
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Finally, the LGCM with the anterior [11C]PK11195 component fitted the data adequately 

(χ2(10)=16.32, p-value=0.09, RMSEA=0.13 [0.00-0.23], CFI=0.97, SRMR=0.02). Individual 

differences in the [11C]PK11195 component governed both slope (Std Est=-0.51, p=0.002) and 

intercept (Std Est=-0.43, p<0.001) correlated with the component #1. In the model with the posterior 

[11C]PK11195 component as regressor (χ2(10)=9.33, p-value=0.50, RMSEA=0.00 [0.00-0.17], 

CFI=1.00, SRMR=0.03), the slope resulted significantly correlated with the component (Std Est=-

0.45, p=0.009), but not the intercept (Std Est=-0.010, p=0.951). 

In patients, an LGCM including the components of all three imaging methods did not fit well 

(χ2(18)=34.76, p-value=0.01, RMSEA=0.17 [0.08 – 0.26], CFI=0.92, SRMR=0.04). With this 

caveat, cognitive decline (slope) was predicted by baseline posterior [18F]AV-1451 (path Std Est=-

0.49, p=0.025) and anterior [11C]PK11195 (path Std Est=-0.40, p=0.017) components’ scores, but not 

the posterior [11C]PK11195, the MRI (path Std Est=0.10, p=0.52) or the anterior [18F]AV-1451 (Std 

Est=-0.22, p=0.23) components.  

 

Two-step prediction: linear regression. Across all subjects, the rate of cognitive decline 

(slope from LGCM) was significantly associated with: 1) the MRI weighting (Std Beta=0.61, 

p<0.001); 2) the posterior [18F]AV-1451 (Std Beta=-0.60, p<0.001); 3) and anterior [11C]PK11195 

(R=-0.47, p=0.002). All these results survived Bonferroni’s correction. Correlations of slope with the 

anterior [18F]AV-1451 (Std Beta=-0.36, p=0.022), and the posterior [11C]PK11195 (Std Beta=-0.39, 

p=0.012) did not survive correction for multiple comparisons (p<0.01). See Fig. 4 for a graphical 

representation of the significant associations between individual scores (x axis) of imaging-specific 

principal components and slope in ACE-R scores (y axis) extracted by LGCM. Model summary and 

coefficients for all univariable models with slope as dependent variable are reported in Table 2. 

In patients, the final model of multiple regression on cognitive slope (adjusted R2 = 0.418, Std 

Error= 4.18; p=0.001) included both [18F]AV-1451 components (#1: Est=-2.57, Std Error=0.71, 

p=0.002; #2: Est=-1.64, Std Error=0.74, p=0.038), and the anterior [11C]PK11195 (#1: Est=-1.92, Std 

Error=0.74, p=0.017) as predictors (Fig. 5 and Table 3). Of note age, education, sex, the MRI 

component, and the posterior [11C]PK11195 component were excluded from the final model.   

Model summary and coefficients for both the initial model (adjusted R2 = 0.389, Std Error= 4.43; 

p=0.027), the full model with only brain predictors (adjusted R2 = 0.474, Std Error= 4.12; p=0.002), 

and the final model are reported in Supplementary Table 2. Either in the initial model with covariates 

or in the full model with only brain measures as predictors, the posterior [18F]AV-1451 component 

and the anterior [11C]PK11195 component showed the highest estimated coefficients (Supplementary 

Table 2). In addition, the reduced multiple regression analysis, with the first component of each 
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imaging method only, included the [18F]AV-1451 component (Est=-2.42, Std Error=0.77, p=0.004) 

and the [11C]PK11195 component (Est=-1.71, Std Error=0.80, p=0.042) in the final model (adjusted 

R2 = 0.366, Std Error=4.52; p=0.002), while the MRI component was discarded.  

  

Two-step Bayesian prediction. With all brain components and demographic variables as 

candidate predictors of cognitive decline, model comparison using Bayes factors indicated that the 

best model included both [18F]AV-1451 components (#1: Mean (SD) = -2.15 (0.65); BF inclusion = 

24.70; #2: Mean (SD) = -1.37 (0.68); BF inclusion = 4.20), and the anterior [11C]PK11195 component 

(Mean (SD) = -1.61 (0.68); BF inclusion=6.44) as predictors (BF10 = 46.56; R2 = 0.52). Hence, the 

best model in this statistical framework did not contain structural MRI data. See Table 3 for details 

on the final model and Supplementary Table 3 for a list of models evaluated and the corresponding 

BF10. The reduced Bayesian regression analysis with only the first component of each imaging 

method as predictor was in accord with the frequentist approach. The best model identified with BF10 

criteria was the one with only the posterior [18F]AV-1451 and the anterior [11C]PK11195 components 

only as predictors of slope (BF10 = 20.81; R2 = 0.42), not the MRI component. 

 

Discussion 

This study demonstrates the independent and combined prognostic value of neuroimaging biomarkers 

for tau pathology ([18F]AV-1451 PET), neuroinflammation ([11C]PK11195 PET) and brain atrophy 

(structural MRI), in predicting longitudinal cognitive decline in patients with Alzheimer’s disease.  

Baseline markers for tau pathology, neuroinflammation and atrophy in temporo-parietal regions 

individually predicted cognitive decline. Faster cognitive decline was associated with higher baseline 

tau pathology in posterior temporo-parietal regions and increased neuroinflammation in the anterior 

temporal structures. The Bayesian analysis confirmed the evidence against the predictive value of 

MRI atrophy over and above the PET markers of tau pathology and neuroinflammation.  

PCA was used to derive the most parsimonious neuroanatomical patterns of pathology that 

explain most of the imaging variance across the cohort. PCA indicated separate sets of regions (i.e., 

components) in which tau pathology and neuroinflammation clustered in anterior vs. posterior 

temporo-parietal regions, and this pattern is consistent with the well-established distribution of 

pathology in Alzheimer’s disease (Garibotto et al., 2017; Jagust, 2018; Whitwell, 2018). This 

distinction would be lost in a global average measure, while the use of separate regional values would 

have led to redundant multiple comparisons. In keeping with previous studies (see Chandra et al., 

2019 and Melis et al., 2019 for reviews), our analyses showed that the participants’ weighting on 

atrophy, posterior [18F]AV-1451 and anterior [11C]PK11195 components were separately associated 
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with more rapid cognitive decline (Fig. 4, Table 2). This result was confirmed by both the one- and 

two-step univariable prediction approaches. This corroborates the previously reported associations 

between cognitive deficits in Alzheimer’s disease and the individual effects of tau pathology, 

neuroinflammation, and downstream cortical atrophy (Femminella et al., 2016; Bejanin et al., 2017). 

Although cross-sectional imaging studies with different PET ligands have reported single 

associations of cognitive performance with in vivo tau (Brier et al., 2016, Cho et al., 2016b; Johnson 

et al., 2016; Ossenkoppele et al., 2016; Pontecorvo et al., 2017, see Chandra et al., 2019 for a review) 

and microglial activation (Edison et al., 2008; Okello et al., 2009, Fan et al., 2015a; Passamonti et 

al., 2018, 2019; see Chandra et al., 2019 for a review), less is known about their relationship to 

longitudinal cognitive changes. Previous PET studies in patients with Alzheimer’s dementia and MCI 

showed that baseline [18F]AV-1451 PET uptake correlates with cognitive decline over a period of six 

(Koychev et al., 2017) or 18 months (Pontecorvo et al., 2019). Conversely, microglial activation (as 

measured by [11C]PK11195 PET) shows progression over 14-16 months (Fan et al., 2015b, 2017), 

although the predictive value of baseline measures of inflammation on longitudinal cognitive decline 

has not been investigated yet. Other studies using [11C]-PBR28 to quantify neuroinflammation over 

a period of at least one year (median 2.7 years) in MCI and Alzheimer’s Disease reported increased 

microglial activation as a function of a significant worsening on the Clinical Dementia Rating scale 

(Kreisl et al., 2016). Likewise, binding of [18F]DPA-714, another TSPO PET ligand, is negatively 

associated with cognitive performance (Hamelin et al., 2018).  

 Improving our knowledge of how baseline measures of tau, neuroinflammation, and brain 

atrophy predict cognitive decline in Alzheimer’s disease may inform future cost-effectiveness studies 

in large and epidemiologically representative cohorts of patients. Although other studies have 

assessed the predictive value of different brain markers on longitudinal cognitive decline in 

Alzheimer’s disease (see Chandra et al., 2019 and Melis et al., 2019 for reviews), this study is the 

first one, to our knowledge, to evaluate and compare three biomarkers simultaneously (i.e., tau 

pathology, neuroinflammation, brain atrophy). Overall, our data are consistent with past research and 

highlight the added value of PET imaging over and above MRI markers. Although brain atrophy do 

show in isolation predictive value for cognitive decline in Alzheimer’s disease (Jack et al., 2015), 

when the models included tau burden, microglial activation and atrophy jointly, only PET was found 

to be predictive, but not MRI (Fig. 5, Table 3). This critical result was confirmed by both frequentist 

and Bayesian analyses which showed evidence against the added value of MRI data on predicting 

cognitive decline over and above PET assessments. This aligns with cross-sectional studies that report 

a stronger association of tau molecular imaging than structural MRI with cognitive performance in 

patients with Alzheimer’s disease (Bejanin et al., 2017; Mattsson et al., 2019). More specifically, in 
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patients with MCI and Alzheimer’s dementia, Benjanin and colleagues reported an association 

between regional tau PET binding and cognitive impairment, which was partly mediated by grey 

matter volumes (Bejanin et al., 2017). Cognition was equally explained by brain atrophy and tau 

pathology, but after accounting for grey-matter values, in vivo tau pathology remained correlated with 

cognitive performance (Bejanin et al., 2017). Likewise, Mattson et al. (2019) found that both 

[18F]AV-1451 PET and structural brain MRI are associated with cognition in Alzheimer’s disease 

(spanning preclinical, prodromal, and dementia stages), although associations of tau PET indices were 

stronger than those for MRI markers (Mattsson et al., 2019).  

Our data suggest that posterior temporo-parietal [18F]AV-1451 binding and anterior temporal 

[11C]PK11195 binding were associated with cognitive decline. In patients with Alzheimer’s disease, 

temporo-parietal cortical tau PET signal is consistent with Braak stage III and above, while in 

cognitively healthy older people, the signal is localised to entorhinal cortex and inferior temporal 

cortex (Cho et al., 2016a; Johnson et al., 2016; see Jagust, 2018 for a review). Post mortem studies 

have likewise reported tau deposition in the medial temporal cortex in healthy elderly people and 

Alzheimer’s dementia (Jagust, 2018). Tau burden in the entorhinal, limbic, and temporal neocortex 

relates to cortical atrophy in patients with MCI and Alzheimer’s disease, although not in cognitively 

normal controls (Timmers et al., 2019). These findings suggest that tauopathy in the medial part of 

the temporal lobe may be an age-related norm, rather than indicative of Alzheimer’s disease cognitive 

decline (Femminella et al., 2018). For this reason, tau PET binding here may be a weaker predictor 

for cognitive decline than tau in the posterior temporo-parietal regions. The co-occurrence with 

amyloid-β and neuroinflammation may induce the tau spreading from the medial temporal lobe to 

other cortical regions, which may be associated with downstream neurodegenerative processes and 

cognitive decline (Mhatre et al., 2015; Jagust, 2018; Perea et al., 2018). This suggests a driving role 

of neuroinflammation in tau spread and neurodegeneration in Alzheimer’s disease (Yoshiyama et al., 

2007; Asai et al., 2015; Maphis et al., 2015), in which activated microglia facilitate tau spread 

(Maphis et al., 2015; Perea et al. 2018).  

There are limitations to our study. [11C]PK11195 PET is not only tracer for microglial 

activation. Several second-generation PET radioligands for TSPO have been developed since  

[11C]PK11195 (e.g., [11C]PBR28 and [18F]DPA-714), and used in human studies (Vivash and OBrien, 

2016). They are characterised by higher signal-noise ratio and lower lipophilicity than [11C]PK11195. 

However, they require genetic analysis to assess a single-nucleotide polymorphism (rs6971), which 

influences their binding affinity and causes heterogeneity in PET data (Dupont et al., 2017). In 

contrast, [11C]PK11195 is not significantly affected by this polymorphism and hence can be used 

across the whole patient population, making it our preferred method to study microglia activation. 
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Second, the cross-sectional nature of our imaging assessment did not enable mediation analysis of 

the causality between tau pathology, microglial activation progression and their effect on cognitive 

decline. However, we speculate that both processes are directly involved in mediating the rate of 

cognitive deterioration in Alzheimer’s disease, carrying some unique information across the disease 

spectrum. Third, the modest sample size of our cohort limited the applicability of the one-step 

prediction procedure with multiple predictors, which may lead to a more precise prediction than the 

two-step procedures. However, both frequentist and Bayesian multivariable approaches give similar 

results, aligning with those obtained by the one-step prediction.  The convergence between all 

statistical models (i.e., LGCM with predictors, linear regression and Bayesian model) mitigates 

against sample-dependant biases on the estimation of the most parsimonious model. 

We conclude that the PET markers of regional pathological processes are stronger predictors 

than atrophy as measured by MRI. The models were convergent in identifying tau burden in posterior 

cortical regions and neuroinflammation in the anterior temporal lobe as key imaging predictors of 

cognitive decline in the clinical spectrum of Alzheimer’s disease. In contrast, atrophy measures 

predicted cognitive decline only if considered individually but not over and above the effects of tau 

burden and inflammation when we consider all processes together. Our findings support the use of 

PET imaging of tau pathology and microglial activation for prognostication and patients’ 

stratification in clinical trials.  
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Table 1. Demographic and clinical characteristics for the patient and control groups (n.s.= non-

significant difference between patients and controls, defined as p-value > 0.05 or Choen’s d < 0.8).  

 

 Patients Controls Difference 

N 26 29  

Disease Duration 

(years - mean ± SD) 
3.6±2.1 -  

Sex 

(Female/Male) 
12/14  15/14  n.s. 

Age 

(years - mean ± SD) 
72.1±8.7 68.3±7.2  n.s. 

Education 

(years - mean ± SD) 
13.1±3.2 14.9±2.6  n.s. 

ACE-R Baseline 

(mean ± SD) 
77.8±9.1 94.4±4.0 t(53)=8.6; p<0.001 

 

Abbreviations ACE-R: Addenbroke’s Cognitive Examination – Revised; SD: standard deviation 
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Table 2. Results for the univariable regression models on slope across all population (p=uncorrected 

p-values, *= Bonferroni corrected, significance threshold p<0.01). 

Model Estimate 
Std 

Error 

Std 

Beta 
t value p 

Adj R2 

(std err) 
F p 

MRI 

(N=55) 

(Intercept) -3.01 0.58  -5.23 0.000 0.358 

(4.27) 

31.18 <0.001* 

MRI component 3.48 0.63 0.61 5.58 0.000 
  

AV 1 

(N=40) 

(Intercept) -4.31 0.73  -5.88 0.000 0.341 

(4.64) 

21.22 <0.001* 

AV component 1 -3.43 0.74 -0.60 -4.61 0.000 
  

AV 2 

(N=40) 

(Intercept) 
-4.31 0.85  -5.05 

0.000 0.108 

(5.40) 

5.72 0.022 

 
AV component 2 -2.08 0.87 -0.36 -2.39 0.022 

  

PK 1 

(N=41) 

(Intercept) -4.15 0.80  -5.19 0.000 0.204 

(5.13) 

11.26 0.002* 

PK component 1 -2.72 0.81 -0.47 -3.36 0.002 
  

PK 2 

(N=41) 

  

(Intercept) -4.15 0.84 
 

-4.96 0.000 0.128 

(5.36) 

6.87 0.012 

PK component 2 -2.36 0.90 -0.39 -2.62 0.012 
 

 

 Abbreviations AV: [18F]AV-1451; PK: [11C]PK11195; Std: standard; Adj: adjusted 

 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. was not certified by peer review)

(whichThe copyright holder for this preprint this version posted November 8, 2019. ; https://doi.org/10.1101/19011189doi: medRxiv preprint 

https://doi.org/10.1101/19011189
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 3. Results of the multivariable regression models on the regression slope in patients. For 

both frequentist (top) and Bayesian (bottom) the estimated coefficients for variables included in the 

final (“best”) models are reported. 

 

Abbreviations AV: [18F]AV-1451; PK: [11C]PK11195; BF: Bayesian factor; Std: standard; Adj: adjusted 

 

 

  

Frequentist regression 

Final model 

(Stepwise Backward 

selection) 

 

Estimate 
Std 

Error 
Std Beta t value p 

Adj R2 

(std err) 
F p 

(Intercept) -5.41 0.87 
 

-6.19 0.000 0.418 

(4.18) 

8.05 0.001 

AV component 1 -2.57 0.71 -0.54 -3.60 0.002 

AV component 2 -1.64 0.74 -0.33 -2.21 0.038 

PK component 1 -1.92 0.74 -0.39 -2.59 0.017 

Bayesian regression 

Final model 

(Bayesian Factor based 

selection) Mean 
Std 

Deviation 
BFinclusion 

95% Credible 

interval R2 BF10 
 

 Lower Upper 

(Intercept) -6.82 0.82 1 -8.502 -5.129 0.523 46.56 

AV component 1 -2.15 0.65 24.70 -3.491 -0.802  

AV component 2 -1.37 0.68 4.20 -2.774 0.026 

PK component 1 -1.61 0.68 6.44 -3.001 -0.210 
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Figure 1. Longitudinal cognitive changes in patients and controls, as measured by revised 

Addenbrooke’s Cognitive Examination (ACE-R). Points represent annualised ACE-R scores at 

baseline, 1-year, 2-years and 3-years follow-up for each subject in control (blue) and patient (red) 

groups. 
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Figure 2. Regional weights of the structural MRI component (left), and rotated regional weights of 

[18F]AV-1451 components (middle) and the [11C]PK11195 components (right). Components were 

identified applying three independent principal component analyses on 15 temporo-parietal regions. 

For structural MRI, regional grey matter (GM) volumes were included in the analysis, while for each 

PET tracer, the binding potential values in those regions were considered, separately for each 

modality. 
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Figure 3. Latent growth curve model to test the initial values (intercept – “i”) and longitudinal 

changes (slope – “s”) in scores of revised Addenbrooke’s Cognitive Examination (ACE-R) across 

all sample. Circles indicate latent variables, rectangles indicate observed variables, and triangles 

denote intercepts (means). Thick single-headed arrows indicate regressions while thick double-

headed arrows indicate variance and covariance (grey for intercept and black for slope). Values in 

Roman are standardized parameter estimates, and values in italics are unstandardized parameter 

estimates (with standard errors in parentheses). The annual rate of change was positively associated 

with performance at baseline (lower initial cognitive scores were associated with a higher annual 

rate of cognitive changes). 
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Figure 4. Regression analyses with annual change in scores of revised Addenbrooke’s Cognitive 

Examination (Slope ACE-R, y axis) and individual baseline scores for each modality-specific 

principal component (x axis): structural MRI (left panel), [18F]AV-1451 PET (middle panel), and 

[11C]PK11195 PET (right panel). Different colours represent different diagnostic groups (patients 

with Alzheimer’s disease = red circles, patients with amyloid-positive mild cognitive impairment = 

red squares, controls = blue triangles). 
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Figure 5. Results of the multiple linear regression in patients, with cognitive slope (annual cognitive 

change) extracted by the Latent Growth Curve Model as dependent variable, and brain components’ 

scores, age and education as independent variables. Solid arrows indicate significant coefficients of 

brain imaging measures indicated by the stepwise backward elimination, while dashed arrows 

indicate variables excluded by the final model. Values in Roman are standardized estimates, and 

values in italics are unstandardized beta estimates (standard errors in parentheses).  
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