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Abstract 29 

Objective: To detect potential hotspots of transmission of dengue and chikungunya in Barbados, 30 

and assess impact of input surveillance data and methodology on observed patterns of risk. 31 

Methods: Using two methods of cluster detection, Moran’s I and spatial scan statistics, we 32 

analyzed the geospatial and temporal distribution of disease cases and rates across Barbados for 33 

dengue fever in 2013–2016, and a 2014 chikungunya outbreak. 34 

Results: During years with high numbers of dengue cases, hotspots for cases were found with 35 

Moran’s I in south and central regions in 2013 and 2016, respectively. Using smoothed disease 36 

rates, clustering was detected every year for dengue. Hotspots were not detected via spatial scan 37 

statistics, but coldspots suggesting lower rates of disease activity were found in southwestern 38 

Barbados during high case years of dengue.  39 

Conclusions: Spatial analysis of surveillance data is useful in identifying outbreak hotspots, 40 

complementing existing early warning systems. We caution that these methods should be used in 41 

a manner appropriate to available data, and reflecting explicit public health goals – managing for 42 

overall case numbers, or targeting anomalous rates for further investigation. 43 

  44 
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Introduction 45 

Dengue fever threatens the health of communities throughout Latin America and the 46 

Caribbean, where all four serotypes of dengue virus (DENV 1–4) are in circulation following a 47 

regional resurgence of the pathogen in the 1980s 1,2. The Caribbean island of Barbados is 48 

challenged with managing endemic dengue fever, and other febrile mosquito-borne diseases 49 

including emerging chikungunya and Zika viral diseases 3,4. In small island nations like 50 

Barbados, outbreaks translate into increased morbidity and mortality, high costs to healthcare 51 

systems, and lost economic productivity 5–7. With approximately 40% of employment and gross 52 

domestic product linked to the tourism industry, Barbados is particularly vulnerable to the 53 

economic impacts of arbovirus outbreaks 8. In addition to lost domestic productivity, travel-54 

related cases and negative health perceptions associated with outbreaks deter potential visitors, 55 

further impacting the livelihoods of island residents 9,10. The emergence and subsequent 56 

establishment of novel arboviruses in the Caribbean exacerbates matters by complicating disease 57 

management while further impacting sources of income 3. In response to these social and 58 

economic burdens, the Ministry of Health and Wellness of Barbados (MoH) has a long history of 59 

engaging in public mosquito control and active disease surveillance, where suspected human 60 

cases are laboratory confirmed, and vector control interventions are conducted in response to 61 

both lab results and mosquito surveillance. Interagency collaborations are part of a 62 

comprehensive effort to mitigate the toll of endemic dengue11. Previous studies performed in 63 

Barbados have described climatological and seasonal drivers of dengue transmission, vital 64 

components of early warning systems and forecasting models 12. While large-scale 65 

climatological factors undoubtedly play a dominant role in driving outbreaks of mosquito-borne 66 

illness, this plays out at the local scale as a function of the human landscape 13,14. Therefore 67 
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understanding the local distribution of human cases is also necessary for understanding patterns 68 

of exposure risk and guiding vector abatement strategies.  69 

Aedes aegypti is the primary mosquito vector of medical concern throughout the 70 

Caribbean. Public health vector control programs are widely acknowledged as cost effective in 71 

controlling arboviruses transmitted by Ae. aegypti, relative to costs associated with the delivery 72 

of health services and supportive care 15. Nevertheless, public health resources are finite, calling 73 

for efficient intervention strategies to target mosquito populations and suppress transmission 74 

pathways. Aedes aegypti is a container-breeding mosquito, and successfully exploits 75 

anthropogenic environments for oviposition and larval rearing. The role of household-level 76 

characteristics, such as housing condition and water storage habits, in promoting mosquito 77 

production has been repeatedly demonstrated13,14. In some instances, favorable microhabitats 78 

enable mosquitoes, and subsequently disease transmission, to persist in spite of generally 79 

unfavorable environmental conditions 16. Thus, identifying spatial clusters of high disease 80 

activity, or “hotspots,” can prove invaluable when prioritizing the delivery of abatement and 81 

outreach services. Further additional challenges, while not unique in the context of integrated 82 

vector control, are essential to address for management of mosquito-borne diseases in Caribbean 83 

islands. Vector-borne disease risk can shift rapidly on small island like Barbados due to many 84 

factors including insecticide resistance, climate variability, climate change, high disease 85 

prevalence, and variable mosquito control efforts in response to herd immunity dynamics. Small 86 

island developing states in the Caribbean also face challenges to the elimination of Ae. aegypti, 87 

as reintroductions of pathogens and vectors are frequent due to inter-regional travel, unplanned 88 

urbanization, and limited resources for vector control 17. These management challenges demand 89 
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strategies that incorporate spatially and temporally sensitive methods of detecting transmission 90 

activity.  91 

Geographic information systems (GIS) offer a powerful tool in the visualization and 92 

incorporation of spatial epidemiological data into public health programs 18. While many health 93 

departments and ministries have readily adopted GIS methods into their surveillance and 94 

reporting activities, fewer have extended these methodologies to incorporate statistical tests of 95 

spatial dependency in human case data. Local Indicators of Spatial Association (LISA) statistics 96 

are routinely used in an exploratory framework to quantitatively describe patterns of spatial 97 

dependence and clustering, or dispersion, of disease cases within a defined area of study 19. 98 

Identifying spatially discrete areas of significantly high (i.e. hotspots), or low (i.e. coldspots), 99 

disease activity within functional administrative boundaries is a useful framework for crafting 100 

responses to outbreak events and future interventions, enabling agencies to focus their efforts 101 

more efficiently. Global and local Moran’s I tests have been applied in public health contexts to 102 

describe spatial distributions of mosquito-borne disease outbreaks, including dengue fever, and 103 

to detect the location of disease clusters 14,20,21. 104 

While LISA methods give us insight into the spatial structure of disease activity within a 105 

given time period, these analyses are temporally static. In instances where georeferenced disease 106 

surveillance data are available at regular time intervals, spatial scan statistics can be employed to 107 

identify local areas of clustering in multiple dimensions (i.e. space, time, or space-time). Spatial 108 

scan statistics are capable of detecting possible disease clustering in case-only surveillance data, 109 

using a series of variable search windows to evaluate spatial and temporal trends in the dataset 110 

22,23. Application of space-time scan statistics can be a powerful tool in disease surveillance and 111 
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outbreak detection, where we are interested in describing not only where, but also when clusters 112 

of events occur over a continuous period of time.  113 

To our knowledge, no previous efforts have described the spatial and temporal 114 

distribution of dengue or chikungunya outbreaks in Barbados. Using epidemiological case data 115 

collected by the MoH in Barbados from 2013 – 2016, we used exploratory LISA and space-time 116 

scan statistics to test for spatial and temporal autocorrelation of dengue and chikungunya cases 117 

within operational health districts.  The objectives of this study were to i) detect global spatial 118 

dependency, or clustering, of surveillance arbovirus cases reported in Barbados within each year 119 

of the study period; ii) when global spatial dependency is detected, identify the locations of 120 

hotspots (i.e. clustered) and coldspots (i.e. dispersed) of disease activity; iii) assess the effect of 121 

different input data on observed spatial patterns; and iv) detect spatiotemporal patterns in disease 122 

rates at finer temporal resolutions via spatial scan statistics. This also provides an important 123 

opportunity to discuss and showcase the implications of how these methods are implemented in 124 

situations where data are limited, simply as a function of small populations, as seen in small 125 

island nations. 126 

Methods 127 

Study Area and Epidemiological Data –  Barbados, situated in the Caribbean, has an 128 

estimated residential population of over 277,000 24. The most densely populated areas are found 129 

on the southern side of the island, with the highest population density found around Bridgetown, 130 

the capital city 24. Transmission of mosquito-borne diseases in Barbados is seasonal, with peak 131 

transmission typically associated with high numbers of mosquitoes during the rainy season (June 132 

–November), and fewer disease cases reported during the dry season (December–May) 12,25. The 133 

MoH of Barbados performs active and passive surveillance for dengue and other mosquito-borne 134 
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diseases via nine polyclinics. These serve seven polyclinic administrative catchment (PAC) areas 135 

(Branford Taitt, David Thompson, Eunice Gibson, Maurice Byer, Randall Philip, St. Philip, and 136 

Winston Scott), which are further divided into 63 health districts (Fig. 1). 137 

 138 

Fig. 1. Health districts and polyclinic administrative catchment (PAC) areas in Barbados. This 139 

figure was produced in ArcMap 10.4 (ESRI, Redlands, CA) using shapefiles from the GADM 140 

database of Global Administrative Areas, ver. 2.8 (gadm.org), and shapefiles provided by the 141 

MoH, Barbados. 142 

 143 

 Public vector control and health services are delivered at the level of health districts, which 144 

range in size from 0.40 km2 to 26.62 km2. The MoH oversees arbovirus sureveillance activities, 145 

where suspected human cases of dengue and chikungunya are recorded by the Ministry and 146 
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confirmed in the National Reference Laboratory by RT-PCR or ELISA. De-identified, monthly 147 

case totals for dengue fever in each health district were provided by the MoH for the years 2013 148 

– 2016, and we defined the location of cases as the centroid of a given district. Georeferenced 149 

data on lab-confirmed chikungunya cases, aggregated to health districts, were also made 150 

available for this study, but were only available for the 2014 outbreak. Additional GIS data were 151 

provided for this study by the MoH, including shapefiles of the administrative boundaries for 152 

health districts in Barbados. 153 

Global and Local Indicators of Spatial Association – Annual case totals for dengue and 154 

chikungunya in each health district were aggregated from monthly case data provided by the 155 

MoH for each year of the study. Annual per capita disease rates were derived from annual totals 156 

and population data from the most recent national census, conducted in 2010 24. The population 157 

of each health district ranged from 68 to 12,743, according to census data. Due to low population 158 

in some health districts, raw disease rates may be susceptible to instability due to high variance 159 

associated with small numerators or denominators (i.e. the “small number problem”) 26. 160 

Performing spatial analyses on raw rates with high instability can result in incorrectly identifying 161 

artefacts of the small number problem as statistically significant outliers. We performed 162 

Empirical Bayes smoothing (EB), where the variance of rate estimates is globally reduced via a 163 

priori probability functions, on raw disease rates in Geoda (ver. 1.12.0) to compensate for high 164 

variability in rates due to low health district population. EB smoothed rates were compared to 165 

raw disease rates, verifying the overall reduction of variance from smoothing.  166 

Global Moran’s I with inverse distance weighting (ArcMap, ver. 10.4) was used to test 167 

for spatial autocorrelation in both case counts and smoothed disease rates for dengue and 168 

chikungunya in Barbados for each year of the study. A global indicator of spatial dependence, 169 
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the Moran’s I statistic provides a measure of the degree of statistically significant clustering or 170 

dispersion in disease measures for the entire island. Local Moran’s I is a LISA statistic for 171 

identifying locations (e.g. health districts within the study area) with statistically similar spatial 172 

patterns (e.g. clustering or dispersion) of high and low values (i.e. hotspots or coldspots) on the 173 

island 27. This statistic is also useful for the detection of spatial outliers, locations with 174 

significantly extreme values compared to neighboring areas 27. Local Moran’s I with inverse 175 

distance weighting was performed for each reported year in ArcMap (ver. 10.4) to identify health 176 

districts that were hotspots, or coldspots, of dengue or chikungunya activity.  177 

Spatial Scan Statistics – We compared the spatial distribution of dengue and chikungunya 178 

found via LISA statistical analyses, calculated for each year of the study, to patterns of clustering 179 

and dispersion in continuous aggregated cases over the study period. Patterns of spatiotemporal 180 

clustering in monthly case totals within each year were tested using the univariate Kuldorrff 181 

space-time scan statistics in SaTScan (ver. 9.4.4), where we performed retrospective space-time 182 

analyses, scanning for both clustering and dispersion 28. A circular search window was specified 183 

to test for spatiotemporal clustering, comparing cases at each location (i.e. centroids of health 184 

districts) to neighboring areas within a variable window, using a time precision of one month. 185 

Clusters were constrained to a maximum cluster size of 50% of case data, a maximum temporal 186 

window of 50% of the study period, and allowed for geographic overlap with other clusters, 187 

provided that no neighboring cluster centers were included in a given cluster. Likelihood ratios 188 

and associated p-values were reported for each identified cluster, where maximum likelihood 189 

values were calculated via Monte Carlo simulation (999 replications). Statistically significant 190 

clusters (α=0.05) from the SaTScan analyses were mapped with LISA results for each year in 191 

ArcMap (ver. 10.4) for visual comparison. 192 
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Results 193 

The number of dengue cases in Barbados reported by the MoH fluctuated greatly during 194 

the study period, with large outbreaks occurring in 2013 (n=526) and 2016 (n=386), and lower 195 

case numbers in 2014 (n=147) and 2015 (n=58). Georeferenced cases of chikungunya (n=57) 196 

were only available for 2014. We detected statistically significant (α=0.05) global clustering (i.e. 197 

Moran’s I values > 0) in aggregated case counts during the years of large dengue outbreaks, 2013 198 

and 2016 (Table 1), while significant global clustering of EB smoothed rates was found in every 199 

year for dengue (Table 2). No significant clustering was detected during the 2014 chikungunya 200 

outbreak. 201 

Table 1. Global Moran’s I values for dengue and chikungunya case totals, aggregated to health 202 

district, in each year in the study. 203 

Arbovirus Year Total Cases Moran’s I† Z-Score P-value 

Dengue 2013 526 0.23 4.40 < 0.001* 

Dengue 2014 147 -0.04 -0.51 0.610 

Dengue 2015 58 0.04 1.06 0.291 

Dengue 2016 386 0.11 2.29 0.022* 

Chikungunya 2014 57 0.06 0.84 0.400 

† Moran’s I values range between -1 and 1, where negative values indicate dispersion and 204 

positive values indicate clustering.  205 

 206 

 207 
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Table 2. Global Moran’s I values for dengue and chikungunya EBS disease rates, aggregated to 208 

health district, in each year in the study. 209 

Arbovirus Year Total Cases Moran’s I† Z-Score P-value 

Dengue 2013 526 0.290 5.77 < 0.001* 

Dengue 2014 147 0.103 2.22 0.026* 

Dengue 2015 58 0.166 3.35 < 0.001* 

Dengue 2016 386 0.330 6.43 < 0.001* 

Chikungunya 2014 57 0.06 1.30 0.192 

† Moran’s I values range between -1 and 1, where negative values indicate dispersion and 210 

positive values indicate clustering.  211 

 212 

Local Moran’s I revealed shifting locations of dengue hotspots and coldspots at the health 213 

district level between years in both case totals (Fig. 2) and EB smoothed disease rates (Fig. 3). 214 

Localized spatial autocorrelation in dengue case counts was found during large outbreak years, 215 

while significant patterns of clustering in EB smoothed rates of dengue were found in every year.  216 
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 217 

Fig. 2. Patterns of clustering (red) and dispersion (blue) of dengue case totals were found at the 218 

level of health district in Barbados in 2013 and 2016, as determined by Local Moran’s I. 219 

Spatiotemporal coldspots (blue circles), found via the space-time spatial scan statistic, were 220 

found in both years. This figure was produced in ArcMap 10.4 (ESRI, Redlands, CA). 221 
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 222 

Fig. 3. Patterns of clustering (red) and dispersion (blue) of EB smoothed dengue rates were 223 

found at the level of health district in Barbados for all years of the study, as determined by Local 224 

Moran’s I. Spatiotemporal coldspots (blue circles), found via the space-time spatial scan statistic, 225 

were found in 2013 and 2016 for dengue. This figure was produced in ArcMap 10.4 (ESRI, 226 

Redlands, CA). 227 

The locations of hot and cold spots differed for case counts versus rates (Figs. 2 & 3). In years 228 

where both cases and rates had significant spatial autocorrelation (i.e. the 2013 and 2016 229 

outbreaks), the highest disease rates were clustered in health districts in the north of the island, 230 

while dengue case counts had hotspots and clustered outliers (i.e. health districts with a high 231 

number of cases relative to neighboring districts with low counts) in central and southern health 232 
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districts. Statistically significant spatial autocorrelation was only detected in smoothed rates in 233 

years of lower dengue burden (i.e. 2014 and 2015). During low burden years, hotspots were 234 

generally identified in northern health districts, while coldspots were detected in southern health 235 

districts (Fig. 3).  236 

In years with large outbreaks of dengue, health districts in the southernmost Randall 237 

Philip PAC area were identified as hotspots of cases in 2013 (n=4), and in the centrally located 238 

St. Philip PAC area in 2016 (n=1) (Fig. 2). Coldspots for dengue cases were detected in health 239 

districts located in the Maurice Byer (n=5), Branford Taitt (n=4), and Eunice Gibson (n=2) PAC 240 

areas in 2013. In 2016, only 3 districts, in the Branford Taitt (n=2) and Winston Scott (n=1) 241 

administrative regions, were significant coldspots of cases (Fig. 2). Three health districts, located 242 

in Branford Taitt, Eunice Gibson, and David Thompson catchment areas, were found to be 243 

clustered outliers in both 2013 and 2016 (Fig. 2). When performing LISA analyses on smoothed 244 

dengue rates, the northern Maurice Byer PAC area contained all health districts that were 245 

hotspots of disease rates in 2013 (n=4) and 2016 (n=4) (Fig. 3). Significantly low rates of dengue 246 

were consistently found in southern health districts throughout the study period (Fig. 3). 247 

Analysis of monthly case data in Barbados via spatial scan statistics did not identify 248 

statistically significant hotspots for either dengue or chikungunya. However, spatiotemporal 249 

coldspots of dengue cases were found in years with high case counts, indicating the duration and 250 

location of low disease activity during outbreak years (Table 3). In 2013, a coldspot spanning 251 

nine health districts across three PAC areas persisted from January to March (Table 3, Fig. 2). A 252 

large coldspot was also identified in 2016 from August-October, comprised of 29 health districts 253 

across five PAC areas, with a smaller, overlapping coldspot found in June to September of the 254 

same year.  255 
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Table 3. Statistically significant coldspots in monthly disease counts, calculated using the space-256 

time permutation spatial scan statistic in SaTScan. 257 

Arbovirus Year PAC Areas 

Health 

Districts 

Duration 

(mm/yyyy) 

Radius 

(km) 

p-value 

Dengue 2013 

SP, WS, EG 

9 

01/2013 – 

03/2013 

3.03 0.034 

Dengue 2016 

WS, RP, SP, BT,  

29 

08/2016 – 

10/2016 

5.90 < 0.001 

Dengue 2016 

BT, EG, WS 

17 

06/2016 – 

09/2016 

4.63 0.055* 

SP=St. Philip; WS=Winston Scott; EG=Eunice Gibson; RP=Randall Philip; BT=Branford Taitt 258 

Discussion 259 

In this study, we found that cases of dengue fever in Barbados detected via surveillance 260 

in 2013–2016 exhibit both spatial and temporal structure. Dengue cases showed significant 261 

clustering in the central and southwestern health districts only in years with elevated case counts. 262 

In constrast, smoothed rates of population-derived incidence revealed clustering in all years for 263 

dengue, with many hotspots found in northern health districts. The identification of spatial 264 

dependence in disease cases is highly relevant for public health professionals working to 265 

suppress arbovirus transmission in Barbados, where there is a call to allocate public health 266 

resources efficiently. 267 

Spatial discrepancies in data inputs (i.e. case numbers vs. population-derived rates) were 268 

driven in part by the small and spatially heterogeneous population density of Barbados. 269 
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Consequently, any analyses performed on this system are susecptible to the “small numbers 270 

problem,” where estimates of commonly reported epidemiological metrics such as disease 271 

prevalence and incidence rates can dramatically fluctuate as an artefact of either low density of 272 

underlying populations, or relatively low case detection in high density populations 26. 273 

Procedures to reduce variance in rates, such as EB smoothing, are recommended to reduce the 274 

effect of unstable rates in disease mapping and tests for spatial autocorrelation 29. However, 275 

broad geospatial prescriptive remedies for the small numbers problem may unintentionally 276 

subvert public health agency management priorities, particularly in small island systems with 277 

extreme spatial population heterogeneity. Even after smoothing, we observed consistent hotspots 278 

of disease activity in northern health districts, where population densities are very low. Health 279 

districts with significantly high disease rates in low populations may not represent pragmatic 280 

management targets, especially in years where resources are limited or outbreaks are focused in 281 

urban centers. Although statistically sound, practical application of such analyses should be 282 

tempered by the expectations and priorities of public health agencies. In this context, raw case 283 

counts may give us a better understanding of operational disease burden on Barbados despite the 284 

problems typically associated with disregarding underlying population in morbidity metrics, 285 

where we would expect to detect more cases in densely populated areas regardless of true risk.  286 

The differences observed in the spatial distribution of cases versus rates have critical 287 

implications with regards to intervention strategies and management goals. Although we 288 

accounted for inflated variance in rates by performing EB smoothing, hotspots in northern 289 

districts still reflect lower absolute case loads than found in densely populated areas in the south, 290 

especially in the vicinity of Bridgetown, the capital city. It is therefore imperative that 291 

management objectives are clearly specified before using spatial analyses on health surveillance 292 
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data for planning purposes. Prioritization of goals is particularly important in a small island with 293 

high heterogeneity in population density, where making management decisions based on 294 

unstable rates could drive misallocation of resources. When responding to endemic transmission 295 

or emerging pathogens, like chikungunya, targeting areas with the highest transmission rates (i.e. 296 

high numbers of cases relative to the underlying population) should be prioritized to prevent 297 

further spread. Conversely, when considering large outbreaks of endemic diseases, like dengue, 298 

the management focus may be instead on reducing the total number of infections, regardless of 299 

population density, to mitigate hyperendemic peak years and reduce costs associated with the 300 

delivery of health services. In Barbados, these fundamental management distinctions may be 301 

subtle, but as our analyses demonstrate, can require vastly different spatial representations of 302 

disease clustering in the study area. This would directly translate to choices of where to allocate 303 

resources in particular health districts.  304 

While we observed shifts in the clustering and dispersion of disease activity in Barbados 305 

between years, there were nevertheless consistencies in the location of health districts with 306 

clustered dengue cases or rates, especially in outbreak years. In particular, health districts 307 

identified as high clustering outliers during peak years were identical in 2013 and 2016, 308 

suggesting that some areas may have an underlying susceptibility to localized outbreaks when 309 

transmission is high (Fig. 2). Although the analyses presented here represent a reactive 310 

management approach, in which there is lagged decision-making in response to previously 311 

reported case data, spatial methodologies can also be incorporated into proactive strategies as 312 

part of an early warning system framework. Predictive climatological models of dengue risk 313 

have been developed for Barbados, enabling the anticipation of large outbreak events driven by 314 

environmental factors 12. Although useful in terms of triggering agency response ahead of major 315 
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island wide outbreak events, current probabilistic forecast models do not provide information on 316 

where to intervene. Here, our spatial analyses point to consistent areas of transmission peaks, 317 

providing complementary analyses to predictive climate modeling efforts, which can be 318 

incorporated into MoH decision making, targeting discrete locations for mosquito control ahead 319 

of anticipated outbreak events. 320 

We did not identify significant spatiotemporal clustering of dengue or chikungunya with 321 

spatial scan statistics within the study period, although coldspots of low dengue activity were 322 

found in years with higher case totals. Previous studies have indicated that spatial scan statistics 323 

are often more sensitive to the detection of hotspots, particularly when relative risk is low, 324 

compared to other exploratory methods of spatial analysis 30,31. Spatial scan statistics have also 325 

been used to successfully identify hotspots of mosquito-borne diseases at fine temporal 326 

resolutions in systems where diseases are endemic 32,33. Our inability to detect disease clustering 327 

at higher temporal resolutions, even in years with high case counts, perhaps points to a lack of 328 

within season localized clustering. The coldspots detected in 2016 for dengue coincide with the 329 

rainy season in Barbados, when we would expect to see increased transmission (Table 3). 330 

Coldspots arise as a result of spatial uniformity in risk outside these areas of unexpectedly low 331 

transmission. Our ability to detect spatial clustering at subseason scales may alternatively be 332 

hindered by human movements, reflecting the difficulty of performing local disease surveillance 333 

in transient populations (e.g. commuters and international travelers) 34. Although the inability to 334 

detect monthly clustering of arbovirus cases may limit the utility of spatial scan statistics to 335 

direct mosquito control activities at fine temporal scales in Barbados, our identification of 336 

coldspots during active transmission seasons warrants investigation and future research into 337 

potential drivers.  338 
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Aggregated surveillance data are routinely collected in a public health context, but are not 339 

free from limitations. The MoH verifies dengue and chikungunya cases in the laboratory, but 340 

underreporting of cases is a commonly encountered issue with passive surveillance data in Latin 341 

America and the Caribbean, resulting in an underestimation of true disease risk in some areas 35. 342 

The availability of current population data for calculating disease rates is also a limitation of this 343 

work. Although the projected population growth for Barbados is quite low, the most recent 344 

census data were collected in 2010, nearly a decade ago 24. In a spatial analysis context, 345 

aggregation of cases to health districts prevents us from drawing conclusions at finer scales. 346 

Although this limits our ability to inform household-level interventions within disease clusters, 347 

identifying health districts with high level of disease transmission is nevertheless relevant to the 348 

operational scale of health services delivered by the MoH in Barbados. Despite these limitations, 349 

the data used in this study represent the most accurate, and up-to-date estimates of population 350 

and disease risk in Barbados.  351 

Public Health Implications 352 

These initial results serve as the foundation for incorporating spatial analyses into the 353 

existing arbovirus surveillance network in Barbados. Moving forward, these methodologies 354 

provide us not only with a means of guiding ministry responses to outbreaks of mosquito-borne 355 

diseases, but also the impetus for future geospatial analytical health studies in Barbados. 356 

Exploratory spatial analyses allow us to test hypotheses related to dominant social-ecological 357 

drivers of spatial clustering in health districts. Understanding the human characteristics that 358 

underlie observed spatial patterns can contribute to the development of better intervention 359 

methods.  360 

 361 
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