
1 
 

Quantifying and characterizing hourly human exposure to malaria vectors bites in rural 1 

southwest Burkina Faso 2 

 3 

Soma D.D1,2,3§*, Zogo B3,4,5§, Taconet P1,3, Somé A1,6, Coulibaly S1, Baba-Moussa L5, 4 

Ouédraogo G.A2, Koffi A4, Pennetier C3,4, Dabiré K.R1, Moiroux N1,3 5 

 6 

1 Institut de Recherche en Sciences de la Santé (IRSS), Bobo-Dioulasso, Burkina Faso 7 

2 Université Nazi Boni (UNB), Bobo-Dioulasso, Burkina Faso 8 

3 MIVEGEC, Univ. Montpellier, CNRS, IRD, Montpellier, France 9 

4 Institut Pierre Richet (IPR), Bouaké, Côte d’Ivoire 10 

5 Université d’Abomey Calavi, Abomey-Calavi, Benin 11 

6 Université Saint Thomas d’Aquin, Ouagadougou, Burkina Faso 12 

§ These authors contributed equally to this work 13 

*Corresponding author 14 

Email: dieusoma@yahoo.fr (DDS) 15 

 16 

 17 

 18 

 19 

 20 

 21 

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 18, 2019. ; https://doi.org/10.1101/2019.12.17.19014845doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2019.12.17.19014845
http://creativecommons.org/licenses/by-nd/4.0/


2 
 

Abstract 22 

Background: To sustain the efficacy of malaria vector control, the World Health 23 

Organization (WHO) recommends the combination of effective tools. Before designing and 24 

implementing additional strategies in any setting, it is critical to monitor or predict when and 25 

where transmission occurs. However, to date, very few studies have quantified the 26 

behavioural interactions between humans and Anopheles vectors. Here, we characterized 27 

residual transmission in a rural area of Burkina Faso where long lasting insecticidal nets 28 

(LLIN) are widely used. 29 

Methods: We analysed data on both human and malaria vectors behaviours from 27 villages 30 

to measure hourly human exposure to vector bites in dry and rainy seasons using 31 

mathematical models. We estimated the protective efficacy of LLINs and characterised where 32 

(indoors vs. outdoors) and when both LLIN users and non-users were exposed to vector bites. 33 

Results: The percentage of the population who declared sleeping under a LLIN the previous 34 

night was very high regardless of the season, with an average LLIN use ranging from 92.43% 35 

to 99.89%. The use of LLIN provided > 80% protection against exposure to vector bites. The 36 

proportion of exposure for LLIN users was 29-57% after 05:00 and 0.05-12 % before 20:00. 37 

More than 80% of exposure occurred indoors for LLIN users and the estimate reached 90% 38 

for children under five years old in the dry cold season. 39 

Conclusions: This study supports the current use of LLIN as a primary malaria vector control 40 

tool. It also emphasises the need to complement LLIN with indoor-implemented measures 41 

such as indoor residual spraying (IRS) and/or house improvement to effectively combat 42 

malaria in the rural area of Diébougou. Furthermore, malaria elimination programmes would 43 

also require strategies that target outdoor biting vectors to be successful in the area. 44 

Keywords: Diébougou, LLIN, Anopheles, humans, behaviours, residual transmission 45 
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Background 46 

Massive distribution of long-lasting insecticidal nets (LLINs) is a core intervention for 47 

malaria control in Burkina Faso. Scaling-up of coverage with LLIN in sub-Saharan Africa has 48 

been very successful between 2000 and 2015 during which malaria morbidity and mortality 49 

have dropped considerably [1]. Unfortunately, this significant progress is stalling or even 50 

reversing in some countries. Burkina Faso is indeed one of the sixteen (16) in the world that 51 

documented an increase in malaria burden from 2016 to 2017 [2]. This trend might be 52 

attributed to the recent increases in prevalence and strength of pyrethroid resistance in malaria 53 

vectors [3–5]. Another possible cause is the development of behavioural resistance in vector 54 

populations [6–8]. In sub-Saharan Africa, there have been many reports of changes in vector 55 

species and/or vector biting behaviours to avoid contact with LLIN [6–8]. Such changes in 56 

vector populations are considered by many specialists as an important threat for indoor 57 

control strategies such as LLIN [9, 10]. 58 

To sustain the efficacy of vector control, the WHO recommends the combination of effective 59 

tools [11]. At present, there are a number of recommended tools available and many others 60 

under development that can potentially be combined with LLIN [12, 13]. However, national 61 

malaria control programs (NMCPs) are now facing challenges to design effective control 62 

strategies due to high variations in malaria epidemiology between and even within countries 63 

[14]. To do so, NMCP must be able to monitor or predict when and where transmission 64 

occurs. Entomological data alone are not sufficient to address this question, missing 65 

information about behaviours of local human populations in order to measure/predict human 66 

exposure to malaria vectors bite [15–17]. Unfortunately, only few studies to date have 67 

quantified and characterized human exposure to malaria vectors bites by analysing data on 68 

both human and vector behaviours [17]. 69 
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The present work is a baseline study conducted in the Diébougou area, southwest Burkina 70 

Faso, to quantify the behavioural interactions between humans and Anopheles mosquitoes. 71 

Results of the entomological surveys previously reported [18] were used in combination with 72 

human behavioral data to study human exposure to Anopheles vector bites. The work is part 73 

of a large randomized control trial designed to investigate whether the combination of LLINs 74 

with other vector control tools can provide additional protection over malaria cases and 75 

transmission. The trial was carried out in Southwest Burkina Faso where malaria vectors 76 

shows high levels of pyrethroid resistance. 77 

 78 

Methods 79 

This study was conducted in 27 villages located in the Diébougou health district, southwest 80 

Burkina Faso in order to collect baseline data for a randomized controlled trial (Fig. 1). These 81 

villages were selected based on geographical (distance between two villages higher than 2 km 82 

and accessibility during the rainy season) and demographic (a population size ranging from 83 

200 to 500 inhabitants) criteria [18]. The climate in the study area is tropical with one dry 84 

season from October to April (including a cold period from December to February and a hot 85 

period from March to April) and one rainy season from May to September. Average daily 86 

temperature amplitudes are 18-36°C, 25-39°C and 23-33°C in dry cold, dry hot and rainy 87 

season, respectively. The mean annual rainfall is 1200 mm. The natural vegetation is 88 

dominated by wooded savannah dotted with clear forest gallery. The main economic activity 89 

is agriculture (cotton growing and cereals) followed by artisanal gold mining and production 90 

of coal and wood [19, 20]. 91 

Fig 1. Map of the study area and villages surveyed 92 

We conducted three entomological surveys in the dry cold (January 2017), dry hot (March 93 

2017) and rainy seasons (June 2017), respectively. During each survey, we collected human 94 
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landing mosquitoes both indoors and outdoors from 17:00 h to 09:00 h in 4 houses per 95 

villages during one night [18]. All the mosquitoes collected were morphologically identified 96 

[21,22] and Anopheles spp. mosquitoes were subsequently identified to the species level by 97 

polymerase chain reaction [23–25]. Detailed descriptions of the methods used are provided in 98 

our previous publication [18]. Overall, Anopheles funestus s.s was the main malaria vector in 99 

the study area during the dry cold season [18]. During the dry hot and rainy seasons, 100 

Anopheles coluzzii and Anopheles gambiae s.s were the dominant species. The mean 101 

endophagy rate (ER) of malaria vectors was 63.23%, 50.18% and 57.18% during the dry cold, 102 

dry hot and rainy seasons, respectively [18]. 103 

In order to obtain appropriate data regarding relevant human behaviours, we surveyed 401 104 

and 339 randomly selected households in dry (February to April 2017) and rainy (September 105 

2017) seasons, respectively (corresponding to an average of 15 and 13 households per 106 

village). Among people usually leaving in each selected household, we randomly selected 3 107 

persons (maximum) belonging to each of the 3 following age groups: 0-5 years old, 6-17 108 

years old and ≥ 18 years old. We asked the head of the household the time at which each 109 

selected person (1) entered and exited his own house the night preceding the survey and (2) 110 

the time each LLIN user entered and exited his sleeping space the night preceding the survey 111 

[16]. In order to know the relative weight of each age group in the population, we recorded 112 

the number of individuals belonging to these groups in each households. A total of 3045 and 113 

2880 individuals were surveyed representing 35.08% and 33.17 % of the 27 villages’ 114 

population according to a census carried out by our team in 2016 [18]. The human 115 

behavioural surveys were carried out using tablets running Open Data Kit (ODK) forms. 116 

We used data from the human and Anopheles spp behavioural surveys to measure the human 117 

exposure to Anopheles spp. bites in dry season (cold and hot) and rainy season using 118 

mathematical models as previously described in Killeen et al. [15] and Moiroux et al. [16]. 119 
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We estimated the average true personal protection of using a LLIN (i.e. the proportion of 120 

exposure to all bites occurring both indoors and outdoors that is prevented by using a LLIN) 121 

as well as the proportion of exposure which occurred indoors for LLIN users either 122 

accounting for the personal protection provided by net use or ignoring it to compare with 123 

available estimates for unprotected people. Exposure when sleeping under a LLIN was 124 

assumed to be reduced by 92% [16]. Moreover, to characterize residual transmission, we 125 

calculated the proportion of exposure occurring before 20:00 and after 5:00 (i.e. the times 126 

preceding and following the period when most (>50%) of LLIN users are protected). 127 

All the exposure values were calculated at the village and study area levels, for each age 128 

group as well as for the total population. Because the number of individuals sampled per age 129 

group in each household is the same, the relative proportions of each age group in our sample 130 

are equal and do not reflect the relative proportions in the population. We therefore predicted 131 

the average number of people being indoors, outdoors and under nets at the population levels 132 

by summing weighted numbers of people of each age group. For these calculation and to 133 

produce figures, we used an R [26] package named “biteExp” developed by our team. 134 

 135 

Results 136 

The average declared LLIN use rate was very high in the study population ranging from 137 

95.49% in the dry season to 99.67% in the rainy season (Table 1). The declared LLIN use rate 138 

was higher in the 0-5 years old age group (97.87% in the dry season to 100% in the rainy 139 

season) compared to children aged 6-17 years old (95.36% in the dry season to 99.79% in the 140 

rainy season) and adults (92.45% in the dry season to 99.19% in the rainy season) (Table 1). 141 

However, we found that the LLIN use rate varied among villages (see Additional file 1) with 142 

the lowest rates observed in Kpédia (68.42%), Palembera (71.73%) and Diagnon (78.78%) in 143 

the adults group during the dry season. In the other villages, during dry and rainy seasons, 144 
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LLIN use rates ranged from 80 to 100% whatever the season (see Additional file 1). Figure 2 145 

shows humans and Anopheles behavior profiles as well as average hourly exposure and 146 

prevented exposure to bites for LLIN users in our study area. 147 

The majority of the population was indoors from 20:00 in both dry and rainy seasons (Figs. 148 

2A, 2B and 2C). These populations woke up around 05:00 in the early morning in all seasons 149 

(Figs. 2A, 2B and 2C). Most of the total exposure to Anopheles bites occurred indoors (> 150 

94%, Table 1) but was largely preventable by using of LLIN (Figs. 2D, 2E and 2F). Indeed, 151 

LLIN were estimated to provide average ‘true’ personal protection against 84.93%, 80.89% 152 

and 82.82% of exposure in dry cold season, dry hot season and rainy season, respectively 153 

(Table 1, Additional file 2). The peak of exposure for users occurred indoors between 05:00 154 

and 06:00 just before sunrise whatever the season (Figs.2D, 2E and 2F). On average, between 155 

33 and 57% of residual exposure of LLIN users occurred after wake up (after 5:00) depending 156 

on age groups. Early bites (before 20:00) represented less than 12 % of the residual exposure 157 

of LLIN users (Table 1). 158 

 159 

 160 

Fig. 2 Hourly human and Anopheles spp behavior (A, B, C) and hourly exposure to bites 161 

of LLIN users (D, E, F) in the Diébougou health District, Burkina Faso 162 

Human behavioural data plotted in panel A and B are the same (only one dry season survey) but 163 

plotted with different entomological data. 164 

 165 
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Table 1 Average LLIN use rates, true average protection efficacy of LLINs against exposure to vector bites and proportions of indoors, “before 166 

bed” and “after bed” exposure to Anopheles bites for both LLIN users and non-users in 27 villages of the Diébougou area, Burkina Faso 167 

Season 
Age 

(years) 

LLIN use rate 

(%[min-max]) 

*True average LLIN 

personal protection  

efficacy (% [min-max]) 

Exposure indoors (%[min-max]) 
 

Exposure before 20:00h 

(%[min-max])   

Exposure after 05:00h 

 (%[min-max]) 

LLIN users Non-users   LLIN users Non-users   LLIN users Non-users 

Dry cold 

season 

18+ 92.45 [68-100] 83.44 [0-92] 79.92 [0-100] 96.67 [0-100] 0.07 [0-0.13] 0.04 [0-0.34] 44.99 [0-100] 8.16 [0-100] 

6 to 17 95.36 [71-100] 83.79 [0-92] 85.44 [0-100] 97.64 [0-100] 0.58 [0-1] 0.12 [0-0.73] 48.93 [0-100] 9.01 [0-100] 

0 to 5 97.87 [81-100] 86.73 [0-92] 90.52 [0-100] 98.74 [0-100] 3.93 [0-100] 0.62 [0-100] 40.23 [0-100] 12.20 [0-100] 

population 95.49 [77-100] 84.93 [0-92] 85.62 [0-100] 97.83 [0-100]   1.66 [0-100] 0.31 [0-100]   44.50 [0-100] 10.11 [0-100] 

Dry hot 

season 

18+ 92.45 [68-100] 78.00 [0-92] 69.57 [19-100] 93.31 [75-100] 3.38 [0-26] 0.82 [0-1] 57.20 [0-100] 13.19 [0-100] 

6 to 17 95.36 [71-100] 79.88 [2-92] 82.70 [21-100] 96.52 [72-100] 4.57 [0-5] 0.99 [0-2] 56.20 [0-100] 12.27 [0-100] 

0 to 5 97.87 [81-100] 83.63 [13-92] 88.73 [29-100] 98.15 [82-100] 11.30 [0-20] 2.13 [0-3] 43.95 [0-100] 12.32 [0-100] 

population 95.49 [77-100] 80.89 [5-92] 80.54 [24-100] 96.28 [78-100] 6.56 [0-30] 1.41 [0-2]   52.19 [0-100] 12.55 [0-100] 

Rainy  

season 

18+ 99.19 [92-100] 79.13 [53-92] 75.61 [11-100] 94.91 [62-100] 10.08 [0-23] 2.17 [0-5] 42.90 [0-90] 9.81 [0-44] 

6 to 17 99.79 [94-100] 81.83 [51-92] 83.28 [45-100] 96.96 [91-100] 10.24 [0-25] 2.22 [0-8] 48.59 [0-91] 10.42 [0-50] 

0 to 5 100.00 87.00 [72-92] 89.21 [69-100] 98.60 [96-100] 11.33 [0-19] 2.31 [0-11] 33.88 [0-85] 10.55 [0-50] 

population 99.67 [97-100] 82.82 [58-92] 81.93 [27-100] 96.90 [82-100] 10.47 [0-23] 2.23 [0-9]   42.40 [0-89] 10.27 [0-48] 

Min and max reported in brackets give the value recorded in the village with the lower and the higher average value, respectively. 168 

*True average LLIN personal protection efficacy: estimated proportion of Anopheles bites prevented by the use of a LLIN. 169 

 170 

 171 
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Discussion 172 

The average declared LLIN use rate was very high (>95%) in all age groups of our study 173 

population. The LLIN use rate was slightly higher in children under five years of age than the 174 

rest of the population. This finding is consistent with results from a multi-country analysis 175 

that revealed that the most vulnerable groups are preferentially protected by LLIN in sub-176 

Saharan Africa [27]. At the village level, the use rate rarely fall under 80%, being consistently 177 

higher than the nationwide LLIN use value of 67% published by WHO in 2017 [28]. This 178 

may be explained by the fact that the study was conducted approximately 6 months after a 179 

wide LLIN distribution. However, our reported LLIN use may be overestimated because it 180 

was based on self-reported survey questions, the most commonly used method to assess 181 

bednet use [29]. To more accurately estimate LLIN use, future studies quantifying human 182 

exposure to mosquito bites should consider using other measurement methods such as 183 

electronic monitoring devices [30, 31]. 184 

This study shows that the overall protective efficacy of LLINs against vector bites in the rural 185 

area of Diébougou was high (80-85 %) during the three seasons. Our estimates for LLIN 186 

personal efficacy were comparable with those found in Benin (80% and 87%) [16] but were 187 

higher than those reported elsewhere such as in Kenya (51 %) [32] and Tanzania (70%, 59% 188 

and 38%) [15, 33]. Our results support strongly the use of LLIN as a primary malaria vector 189 

control tool in the area. Nevertheless, such a protection level (85% in average) has to be put 190 

into perspective with the high malaria transmission and endemicity [18] in order to 191 

measure/realize the importance of malaria residual transmission in the area.   192 

We estimated that 33-57% of residual exposure to Anopheles bites of LLIN users occurred 193 

after 5:00 and 0.07-12% occurred before 20:00 when most of users are awake. The proportion 194 

of exposure for LLIN users has been higher in the late part of the morning than in the early 195 

part of the evening in some settings while the opposite trend has been observed in other 196 
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settings [15, 16, 34, 35]. In our study area, over 80% of human exposure to vector bites 197 

occurred indoors for LLIN users. For children under five years who use LLINs, the exposure 198 

rate occurring indoors reached 90%. Therefore, these results suggest that adding other indoor 199 

intervention such as indoor residual spraying (IRS) to LLINs would be relevant to reduce 200 

malaria transmission in the rural area of Diébougou. In 2017, 28 countries in the world have 201 

implemented IRS in combination with LLINs to combat malaria [2]. IRS contributed to an 202 

estimated 10 (5–14)% of the reduction in malaria burden achieved recently [36]. When used 203 

together, IRS and LLINs are expected to target vectors at different stages of their gonotrophic 204 

cycle using insecticides with different mode of action. However, trials assessing the impact of 205 

the combination IRS+LLIN over LLIN use alone have yielded conflicting results [37–42]. 206 

House improvement is another indoor measure which needs careful consideration and deep 207 

investigations. Indeed, house improvement has been strongly associated with reduced malaria 208 

transmission and disease in many studies [44–46]. The main house improvement interventions 209 

studied are closed eaves, closed ceilings, window screens and metal-roof houses as opposed to 210 

eaves, ceilings, windows openings and thatched-roof houses. Such improvements protect 211 

against malaria by providing physical barriers that prevent vectors from entering houses and 212 

can reduce vector survivorship [44, 47]. Nonetheless, there is compelling evidence that even a 213 

full coverage of effective measures within houses would not be sufficient to suppress 214 

transmission of malaria in Africa [43]. 215 

In this study, we evidenced that a significant proportion of LLIN users exposure to vector 216 

bites occurred outdoors (ranging from 9.48% to 30.43%), with the highest estimate recorded 217 

in adults (over the age of 18 years old) during the dry hot season. Many studies conducted in 218 

various areas of Africa reported similar or even higher estimates of exposure occurring 219 

outdoors [15, 33, 35, 48]. Recently, a systematic review categorized Burkina Faso along with 220 

Eritrea, Ethiopia, Gabon, and Tanzania as countries with high levels of outdoor vector biting 221 
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[10]. However, our results do not fully support this categorization since we show that both 222 

LLIN users and LLIN non users are far more exposed to vector bites indoors than outdoors in 223 

the study area. Nevertheless, strategies targeting outdoor bites would probably be required to 224 

achieve malaria elimination in the area. 225 

Almost all the existing indoor vector control strategies face two important evolutive 226 

challenges. First, they induce a strong selective pressure on physiological resistance in vector 227 

populations because they almost all rely on synthetic chemicals [49]. Second, they also 228 

induced selective pressure for behavioral changes in vector populations resulting in a reduced 229 

contact with interventions [49]. In this context, there is a crucial need to monitor these 230 

resistance mechanisms, as well as residual transmission, after the deployment of strategies to 231 

inform decision makers in order to allow them to adapt their strategic plans. 232 

 233 

Conclusions 234 

This study showed that most of the population of the rural area of Diébougou reported using 235 

LLINs the previous night. The use of LLIN prevented more than 80% of Anopheles bite 236 

exposure. Nevertheless, LLIN users are still exposed to vector bites which occurred mostly 237 

indoors in late morning. Therefore, complementary strategies that target indoor biting vectors 238 

in combination with LLIN should be prioritized to control malaria in this area.  However, as 239 

vectors are able to behaviourally evolve in response to indoor control tool implementation, 240 

successful malaria control programmes should also integrate monitoring of malaria vector 241 

behaviours. Moreover, as it is predictable that outdoor biting phenotypes will be selected, it 242 

urges to also evaluate and implement outdoor measures. 243 

 244 
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Figures, tables and additional files 440 

 441 

Fig. 1 Map of the study area and villages surveyed 442 

 443 

Fig. 2 Hourly human and Anopheles spp behavior (A, B, C) and hourly exposure to bites 444 

of LLIN users (D, E, F), Burkina Faso 445 

Human behavioural data in panel A and B are the same (only one dry season survey) but plotted with 446 

different entomological data. 447 

 448 

Table 1 Average LLIN use rates, true average protection efficacy of LLINs against 449 

transmission and proportions of indoors, early evening and late morning exposure to 450 

Anopheles bites for both LLIN users and non-users in 27 villages of the Diébougou area, 451 

Burkina Faso 452 

 453 

Additional file 1. LLIN Use rate per village 454 

 455 
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Additional file 2. True average protection efficacy of LLINs against transmission and 456 

Proportions of indoors, early evening and late morning exposure to Anopheles bites per 457 

village 458 
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