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SUMMARY 

 

Objective: Seizure unpredictability is rated as one of the most challenging aspects of living 

with epilepsy. Seizure likelihood can be influenced by a range of environmental and 

physiological factors that are difficult to measure and quantify. However, some generalizable 

patterns have been demonstrated in seizure onset. A majority of people with epilepsy exhibit 

circadian rhythms in their seizure times and many also show slower, multiday patterns. 

Seizure cycles can be measured using a range of recording modalities, including self-reported 

electronic seizure diaries. This study aimed to develop personalized forecasts from a mobile 

seizure diary app. 

Methods:  Forecasts based on circadian and multiday seizure cycles were tested pseudo-

prospectively using data from 33 app users (mean of 103 seizures per subject). Individual’s 

strongest cycles were estimated from their reported seizure times and used to derive the 

likelihood of future seizures. The forecasting approach was validated using self-reported 

events and electrographic seizures from the Neurovista dataset, an existing database of long-

term electroencephalography that has been widely used to develop forecasting algorithms. 

Results: The validation dataset showed that forecasts of seizure likelihood based on self-

reported cycles were predictive of electrographic seizures. Forecasts using only mobile app 

diaries allowed users to spend an average of 62.8% of their time in a low-risk state, with 

16.6% of their time in a high-risk warning state. On average, 64.5% of seizures occurred 

during high-risk states and less than 10% of seizures occurred in low-risk states.  

Significance: Seizure diary apps can provide personalized forecasts of seizure likelihood that 

are accurate and clinically relevant for electrographic seizures. These results have immediate 

potential for translation to a prospective seizure forecasting trial using a mobile diary app. It 

is our hope that  seizure forecasting apps will one day give people with epilepsy greater 

confidence in managing their daily activities. 

 

KEYWORDS: epilepsy, seizure forecasting, seizure cycles, circadian rhythms, multiday 

rhythms, mobile health 
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INTRODUCTION 

Medically refractory epilepsy is a condition associated with persistent uncertainty. Most 

people with epilepsy report that, regardless of seizure frequency, it is the unpredictability of 

when seizures will occur that is the most debilitating aspect of their condition 1. A forecast of 

seizure likelihood could provide immense benefits to people with epilepsy, especially for 

those with refractory seizures. Over 30% of all people with epilepsy cannot control their 

seizures with medication 2 and, for decades, new drugs have mostly failed to improve overall 

rates of seizure freedom 3. Surveys have shown that seizure forecasting is considered a highly 

attractive management option by people with uncontrolled seizures 1. At the same time, 

epilepsy research has uncovered numerous factors affecting seizure likelihood from long-

term trends in behavioural, environmental and physiological data. For example, some people 

are more prone to seizures due to stress 4, poor sleep 5, exercise 6, diet 7, weather 8, alcohol 

use 9, poor drug adherence 10 and a multitude of other factors. Investigating the utility of 

these seizure risk factors and developing personalised forecasting devices is now a key goal 

for clinical epilepsy management 1. 

 

The first prospective clinical trial of seizure forecasting in humans used an intracranial 

implant to record long-term, continuous electroencephalography (EEG) 11. Using the same 

data, subsequent studies have improved the accuracy of seizure forecasts 12,13. A key 

development has been the understanding that seizure onset is modulated by patient-specific, 

cyclic patterns 14–16. The rhythmic nature of epilepsy has been well documented for centuries; 

however, it has only recently become clear that an individual’s seizure cycles can be used to 

develop personalized forecasts of future seizure likelihood 13,14,17,18. Although changes in 

EEG signal characteristics provide the clearest biomarker to track cycles of seizure likelihood 
16,18,19, it is possible to measure individual cycles using only self-reported seizure diaries 15. 

Therefore, for some people, seizure diaries alone may provide a clinically useful forecast of 

future high or low seizure risk periods. 

 

It is now recognised that estimating the probability of someone having a seizure in the near 

future is more feasible than trying to predict the exact timing of their next seizure 12,17,20. 

There are increasing efforts to develop a clinical seizure forecasting device 1 and understand 

user requirements 21–23. Patient surveys have confirmed that probabilistic forecasts are 

considered useful and that perfect accuracy is not a requirement of such devices 21,23. For 

practical reasons, externally worn devices are rated more desirable than implanted recording 
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devices in surveys 23. There is increasing availability of wearable technology for seizure 

detection and forecasting 24–26. Furthermore, many seizure triggers that have been shown to 

be useful biomarkers of seizure likelihood can be measured non-invasively. For instance, 

self-reported stress is predictive of seizures 27,28. Heart rate 29,30 and other physiological 

signals monitored from a smartwatch device 31 have also been used to forecast seizure 

likelihood. It is possible that these non-cerebral biomarkers of seizure likelihood are useful 

because the same fundamental rhythms that modulate many aspects of human physiology 

also drive seizure risk. 

 

This study used long-term, self-reported data from a mobile seizure diary to determine 

whether seizure cycles can provide a useful forecast of future seizure likelihood. The results 

provide a proof-of-concept that forecasting seizure cycles is practical and accurate and has 

the potential to be used as a clinical management tool. Mobile tools to forecast seizure cycles 

have wide-ranging applications including for improved clinical trial design, treatment 

titration and long-term management for people with epilepsy. 

 

METHODS 

 

Data 

This study used long-term data from a mobile seizure diary app (Seer Medical) to develop 

and test seizure forecasts. Forecasts were also generated using only the self-reported events 

from the Neurovista dataset, an existing set of long-term, continuous EEG and seizure 

annotations that has been widely used to develop forecasting algorithms 11. The Neurovista 

dataset enabled forecasts based on self-reported seizures to be evaluated against 

electrographic seizures, and also provided a comparison of non-invasive forecasting 

performance to state-of-the-art seizure prediction. 

 

Mobile app data 

The Seer app is a freely available mobile diary for reporting seizures and medications. 

Currently, there are over 500 active users. This study used a subset of 33 users with a clinical 

epilepsy diagnosis, at least 30 reported seizures (mean 103 seizures), and at least 2-months 

recording duration (mean 42 weeks). Although users can report information such as seizure 

type and duration, this study only used the times of reported seizures. This study was 
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approved by the St Vincent’s Hospital Human Research Ethics Committee (HREC LRR 

165/19). 

 

Continuous EEG data 

The Neurovista study collected continuous intracranial EEG data from 15 subjects for a 

period of 6 months to 2 years. Further information on data collection and participants are 

reported by Cook et al (2013). This study only used the seizure times reported during the 6 

month – 2 year recording periods. Electrographic seizures were automatically annotated by 

an onboard EEG-based detection algorithm. All seizure detections were confirmed by trained 

epileptologists. Self-reported events were based on diaries kept by participants and 

caregivers, which were subsequently combined with EEG annotations and stored as 

electronic records. In addition to diary data, the Neurovista device included an audio 

recording feature that was automatically activated when suspect epileptiform EEG activity 

was detected by the onboard algorithm. The audio recordings were used to aid confirmation 

of clinical seizures; and, for some subjects, audio recordings provided substantial assistance 

in seizure detection. However, to provide a direct comparison with mobile app data, the 

current study primarily considered events based on participants’ diaries. The human research 

ethics committees of the participating institutes approved the Neurovista study and 

subsequent amendments. All patients gave written informed consent before participation. 

 

Forecasting seizure cycles 

 

Figure 1. Schematic of seizure forecasting method. A. Development of forecasts initially required 

at least 20 seizure times to be reported in the mobile app. B. Self-reported seizure times were 

represented as cyclic histograms with different periods. The strongest fast and slow cycles were 

estimated based on the synchronisation index of seizure histograms. In the example, a 24 hour and 7 

day cycle are shown. C. The estimated seizure likelihood was calculated by combining the fast and 

slow cycles. High and low risk forecasts (dashed red and green lines) were optimised based on 

historical data. 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted December 21, 2019. ; https://doi.org/10.1101/2019.12.19.19015453doi: medRxiv preprint 

https://doi.org/10.1101/2019.12.19.19015453


 

An overview of the forecasting method is shown in Fig. 1. An individual’s strongest 

circadian (“fast”) and multiday (“slow”) cycles were estimated from their reported seizure 

times using the magnitude of the resultant vector, or synchronisation index (SI), measured 

over a range of potential cycle periods. The synchronisation index is given by: 

 

SI � 1N � � e���  
�

���

�, 
where N is the total number of seizures and each seizure is represented as a vector on the unit 

circle, e���. The angle, θ�, ranges from 0 to the period of the cycle being estimated; i.e., 24 

hours for a circadian cycle. For this study, fast cycle periods were assumed to be between 6 

hours and 48 hours, with a 6-hour increment; i.e. the strongest cycles were selected from 8 

candidate periods (6,12,18, 24, 36, 42 and 48 hours). This range of fast cycle periods enabled 

the detection of approximate daily cycles rather than true circadian rhythms. Slow cycles 

were assumed to have periods of greater than 3 days, with a maximum allowed period of 2 

months or 1/5 of the recording duration (whichever was lowest). For instance, a person with 

10 weeks of data could have a maximum slow cycle of 2 weeks, whereas someone with 1 

year of data could have a slow cycle of up to 2 months. The increment for slow cycles was 1 

day; i.e. the strongest cycles were selected from candidate periods of [3 days, 4 days, 5 days, 

…] up to the maximum allowed period. Only significant cycles were used to develop seizure 

forecasts. Significance was assessed using the Rayleigh test for non-uniformity of circular 

distributions (p < 0.05) 32.  

 

Individuals’ strongest cycles were iteratively updated with each new seizure based on an 

exponentially weighted history of past seizure times; i.e., the sum for the synchronisation 

index of N seizures became: 

SI � 1∑ �

 � � w�e���  
�

���

�, 
where w� � 1 � �1 � α�� is the weight applied to the n�	 seizure and α � 0.8. To estimate 

seizure likelihood, the phases of the fast and slow cycles, �
�� and ���
�, were derived for 

each hour over the recording duration: 

���t� �  2π �t � t�T� �, 
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where T� is the period of the strongest cycle (i.e. T��
� or T
��� and  ·" indicates the modulo 

operator (the remainder after division). The phase, �� is a function of time, t (hours), and t� 

represents the time of the most recent seizure (as the estimated fast and slow cycle periods, 

T�, were updated after each seizure). The phase was then quantized into 20 equally spaced 

bins, from 0 to 2π. The probability of seizure occurrence with respect to each phase, 

P��
��� and P����
��, was calculated from the histogram of previous seizure times. 

 

The final probability of seizure occurrence at each time, P�t�, was obtained as the product of 

the log-odds of each probability, P��
��� and P����
�� 33. 

P�t� � p1 % p, 
p �  & P'���
��t�(

1 � P'���
��t�()�/� & P'�
���t�(
1 � P'�
���t�()�/�. 

High and low risk warning thresholds were computed using a pseudoprospective brute force 

optimization that maximized the time spent in low risk periods and number of seizures 

classified in high risk periods 18.  

 

Forecasts were updated every hour and evaluated pseudoprospectively, using only the 

historical seizure record to compute the likelihood of future seizure occurrence. At least 10 

seizures were required to initiate the seizure forecast, which was then iteratively updated after 

each seizure. Only the lead seizure within each 1 hour window was used, subsequent seizures 

within the same hour were removed before calculating and evaluating forecasts. Performance 

was evaluated based on the percentage of seizures in high (low) risk and the total duration 

spent in high (low) risk, after setting optimal thresholds for high and low risk warnings. A 5 

minute intervention period was used for evaluation; i.e., seizures were only considered to be 

correctly predicted if the high risk warning was on for at least 5 minutes before onset. Note 

that because seizure likelihood was calculated hourly, this intervention period effectively 

meant that if a seizure occurred less than 5 minutes past the hour, the high risk threshold 

needed to be exceeded in the previous hour to be considered a true positive. Seizures more 

than five minutes past the hour were assessed as true positives if the high risk threshold was 

exceeded within the same hour. Sensitivity improvement over chance was calculated based 

on the proportion of seizures and time in high risk to assess whether the high risk forecast 

sensitivity was significantly better than chance performance 34. 
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Performance was also measured using the receiver-operating characteristic (area under the 

curve, AUC). The AUC addresses the ability of a classifier to discriminate between inter-ictal 

and pre-ictal data and is the preferred measure for many studies benchmarking multiple 

seizure forecasting algorithms 34. The AUC was also used to assess the significance of 

forecasting performance compared to chance level forecasting. Significance was tested using 

95% confidence intervals of the AUC using 1000 bootstrap replicas (using perfcurve in 

MATLAB). The AUC was compared between actual and random forecasts using non-

overlapping confidence intervals (a conservative measure) and the one-tailed t-test (p < 0.05). 

 

RESULTS 

 

Can people self-report their seizure cycles? 

We had previously demonstrated that seizure cycles can be measured from self-reported 

seizure times 15. The current study presents a retrospective validation that self-reported cycles 

correspond to true underlying epileptic rhythms, rather than just forecasting behavioural 

cycles governing when individuals are more or less likely to report their seizures. The 

Neurovista dataset was used to determine whether self-reported seizure cycles aligned with 

cycles derived from electrographic seizures.  
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Figure 2. Alignment of seizure cycles based on self-report and EEG for the Neurovista cohort. 

Each circular histogram shows the circadian distribution of seizure cycles based on self-reported 

events (light blue) and electrographic seizures confirmed by expert reviewers (black line). Total 

seizure numbers for each subject are given above each plot (with self-reported event counts in 

brackets). Subject 7, had significantly different cycle distributions using Kuiper’s test for circular 

distributions (* p < 0.05, ** p < 0.01). Subjects 2, 3 and 5 did not have enough self-reported events 

for a comparison to be made. 

 

Fig. 2 shows that 11 out of 15 Neurovista subjects (73%) had circadian cycles that were not 

significantly different using self-reported (diary) events compared to electrographic seizures 

(p > 0.05 using Kuiper’s test for circular distributions). Three subjects (S2, S3, and S5) did 

not have enough diary events to make a comparison. Nine subjects (60%) had multiday 

cycles that were not significantly different using diaries compared to electrographic seizures 

(see supplementary Fig. S1). This suggests that although participants vastly underreported the 

total number of seizures, the underlying circadian and multiday trends can still be 

determined. There was a preference for individuals to report less seizures at night 

(supplementary Fig. S2). In comparison, audio confirmations were higher at night and lower 
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during the day, perhaps reflecting less background noise during the night. In general audio 

confirmations improved the alignment of circadian rhythms (supplementary Fig. S3). Overall, 

these data suggest that self-reported seizures identified clinically relevant cycles for most 

people with epilepsy, albeit based on a relatively small validation cohort with refractory, 

focal epilepsy. 

 

 

Figure 3. Validation of forecasting performance based on self-reported seizure cycles. A 

comparison of forecasting accuracy using self-reported events (black) and electrographic seizures 

(white) from the Neurovista cohort. Note that only individuals with at least 30 seizures were included. 

Forecasting performance was evaluated for electrographic seizures. A. Percentage of time in high risk 

(x-axis) compared to accuracy, or proportion of seizures reported during high risk states (y-axis). A 

good forecast is near the top left corner (100% accuracy, with the minimum number of hours in high 

risk). B. Percentage of time in low risk (x-axis) compared to the proportion of seizures in low risk 

states (y-axis) reported. A good forecast is near the lower right corner, indicating maximal time in low 

risk without any seizures occurring. 

 

Fig. 3 shows a comparison of forecasting performance using either self-reported (diary) or 

electrographic seizures from the Neurovista cohort. Both forecast models were evaluated 

using electrographic seizures. This comparison provided a unique opportunity to benchmark 

the performance of forecasts based on self-reported seizures against confirmed electrographic 

seizures, ensuring that forecasts were not merely useful at predicting users’ reporting habits. 

This benchmarking is critical to provide confidence in the clinical utility of forecasts based 

on mobile diaries alone. 
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Forecasts were developed for subjects with at least 30 seizures (11 subjects had >30 

electrographic seizures, eight subjects had >30 self-reported seizures). Using electrographic 

seizures to develop forecasts resulted in a mean time in high risk of 20.5%, with 59.5% of 

seizures occurring in this state. The mean time in low risk was 55.6%, with 13.0% of 

seizures. However, when just self-reported seizures were used to develop forecasts, several 

individuals showed a marked decline in forecasting performance. Based on self-reported 

forecasts, four of the eight Neurovista subjects showed performance not significantly 

different from random performance (p > 0.05 using the sensitivity improvement over chance 

metric) for high risk warning states. The other half of the subjects fell solidly within the low 

or high risk clusters. This result shows that forecasts based on self-reported events may 

provide an accurate forecast of the likelihood of clinical electrographic seizures for 

approximately half of the cohort, while the other half of this group would produce inaccurate 

self-report forecasts. 

 

Forecasting accuracy 

 

Figure 4. Output of a seizure forecast. Example data from an individual’s high and low risk 

forecasts over a 30-day period (y-axis). The panel shows the pseudoprospective forecast output each 
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day (x-axis). Red indicates times when the high risk warning would be activated, green indicates time 

when the low-risk warning would be activated and white shows times when the warning was 

moderate. Reported seizures are marked in black, and seizures that occurred during the low risk state 

marked as red asterisks (in this data three seizures occurred during low risk periods). Note that 

individuals were not shown the output of their forecasts, and these data represent an example of 

pseudoprospective results only. 

 

We tested whether a seizure forecasting model developed from self-reported seizures could 

be used to forecast future self-reported events using the mobile app diary data.  Fig. 4 shows 

an example of what forecasting seizure likelihood looked like using data recorded via the 

mobile app. The individual shown had an average of 2.8 seizures per week. Over the year of 

pseudo-prospective evaluation, their forecast showed 18.7% of the time in high risk, with 

most seizures (59.3%) reported in this state. The individual’s forecast showed 55.1% of the 

time in low risk and 10 of their seizures (8.9%) occurred during low-risk periods. The rest of 

the time (26.2%) was spent in the moderate risk state. Supplementary Fig. S4 shows two 

other examples of subjects with different forecasting outcomes. The supplementary examples 

show that diary forecasts can provide useful information for individuals with a range of 

seizure rates, including an individual with a lower reported rate of 1.4 seizures per week who 

had no seizures occurring during low risk periods, as well as a subject with a high rate of 24.2 

seizures per week. 

 

 

Figure 5. Forecasting performance using self-reported seizure cycles. Performance of high and 

low risk forecasts developed from mobile app data for 33 users. A. Percentage of time in high risk (x-

axis) compared to accuracy, or proportion of seizures reported during high risk states (y-axis). A good 

forecast is near the top left corner (100% accuracy, with the minimum number of hours in high risk). 
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B. Percentage of time in low risk (x-axis) compared to the proportion of seizures in low risk states (y-

axis) reported. A good forecast is near the lower right corner, indicating maximal time in low risk 

without any seizures occurring. 

 

Fig. 5 shows forecasting performance based on mobile app data. It can be seen that using 

mobile diaries, the mean high risk accuracy was 64.5% with users spending a mean of 16.6% 

of their time in high risk. The mean time in low risk was 62.8% with an average of 9.7% of 

seizures occurring during low risk states. Seven of the 33 app users (21%) had zero reported 

seizures during their low risk periods. All forecasts were significantly better than chance (p < 

0.05 using the sensitivity improvement over chance metric). It is important to note that these 

results were evaluated based on self-reported seizures and may not reflect the performance if 

all electrographic seizures were recorded. However, the results suggest that clinically useful 

forecasts can be developed from mobile data alone, although it is anticipated that, for 

approximately half of people, mobile forecasts will not be accurate for predicting 

electrographic seizures, as shown from the Neurovista validation cohort (Fig. 3). 

 

 

Figure 6. Receiver operating characteristic curves for seizure forecasts. The curves show the true 

positive rate (y-axis) compared to the false positive rate (x-axis) for each individual app user as the 

high risk threshold is varied. An ideal forecast has AUC = 1; chance level forecast has AUC = 0.5 (the 

diagonal line). The 95% confidence intervals of each curve were computed using a bootstrap analysis 
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of 1000 permutations. Note that, for clarity, the confidence intervals are not plotted although these 

were used to calculate the significance of AUC scores. 

 

Fig. 6 shows the rate of true positive compared to false positive predictions for different 

thresholds of high risk warnings using mobile app data. Area under the curve (AUC) provides 

a measure of forecasting performance without explicitly setting a warning threshold, where 

AUC greater than 0.5 indicates performance is better than chance level. Importantly, 95% 

confidence intervals can be computed for each AUC value, to show whether results were 

significantly better than a random forecast. Across the cohort, the mean AUC was 0.85 (range 

of 0.69 to 0.94). All individuals had AUCs that were significantly better than chance 

performance (95% confidence intervals were non overlapping and p < 0.05 using a two 

sample t-test). 

 

DISCUSSION 

 

It is well known that seizure diaries are inaccurate and not well correlated to true seizure rates 
11,36. The presented results showed that, although diaries are an unreliable estimate of true 

seizure counts, they can be used to measure underlying epileptic rhythms (Fig. 2). Because 

seizure cycles are repetitive, diary data can be treated as a noisy, undersampled representation 

of these underlying patterns. In this way, many people’s seizure rhythms were reliably 

measured from their diaries and could be used to forecast clinical electrographic seizures 

(Fig. 3). Underreporting and a slight bias towards daytime reporting did not abolish overall 

cyclic trends, and the use of audio confirmation increased the number of recorded seizures 

and improved the estimation of seizure cycles (supplementary Figs. S2 and S3). Some 

subjects reported almost no seizures, which could reflect many possible factors, including 

post-ictal memory impairment, the available social support, or the subject’s level of 

engagement and attention to detail during the study. On the whole, the retrospective 

validation of self-reported forecasting performance against electrographic seizures (Fig. 3) 

suggested that seizure forecasting apps will be accurate and may be a clinically useful 

method for some people. Future work will focus on incorporating objective biomarkers of 

seizures from wearable devices and validating the clinical utility of the proposed seizure 

forecasting app in a prospective clinical trial. 
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Overall the presented results showed that seizure diary apps have the potential to provide 

accurate, clinically useful, personalized forecasts of seizure likelihood. Forecasting results 

using seizure diaries showed state-of-the-art performance, with an average AUC of 0.85 (Fig. 

6). A recent Kaggle competition for seizure prediction using continuous intracranial EEG 

recorded from three subjects in the Neurovista cohort reported winning AUC results of 0.81 

for the competition and 0.75 on the held-out dataset 13. Of course, these scores are not 

directly comparable to app forecasts, as they were derived from continuous intracranial EEG 

data with highly accurate seizure labelling; however, the comparison serves to highlight what 

is considered top range performance in seizure prediction using advanced machine learning. 

The current study showed forecasting accuracy of 65%, with app users spending, on average, 

less than one fifth of their time with a high risk warning (16.6%). A study using deep learning 

with the Neurovista data reported an average sensitivity of 69% and time in warning of 27% 
37. Moreover, forecasts based on seizure cycles naturally provide insight into times of low 

seizure likelihood. In this study, users were able to spend, on average, over half their time in 

a low risk state. Less than 10% of reported seizures occurred during the low risk state and 

20% of users had no seizures in this state. Of course, it should be reiterated that this study 

only evaluated performance from users’ self-reported events. It is anticipated that around half 

of the cohort would only show chance level performance for their electrographic seizures 

(Fig. 3). However, the same forecasting strategy showed similar forecasting performance for 

both diary data and electrographic seizures (Figs. 3 and 5). Therefore, performance is 

expected to improve as more accurate records of individuals’ seizures becomes available, for 

instance through new wearable or implantable technologies. Furthermore, there are 

applications for forecasts of self-reported events, such as scheduling EEG monitoring, or 

improving analysis of clinical trial diaries 38. 

 

Delivering seizure forecasts in a prospective trial is itself non-interventional in the sense that 

no direct therapy is given. Instead, users are only given information about their personalized 

seizure likelihood. However, reliable information may be a powerful antidote to the 

uncertainty of living with uncontrolled seizures. Furthermore, information about seizure 

likelihood can be used in conjunction with behavioural strategies to reduce seizure rates. For 

instance, it has recently been shown that stress management techniques could be targeted to 

days of heightened seizure risk to reduce seizure rates 39. Forecasts may also be used to 

modulate medication or stimulation levels based on seizure likelihood. Such modulating 

chronotherapy has been used to time dosage of anti-seizure medication, successfully reducing 
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seizure rates 40. However, modulation of drug levels has not been investigated for 

individually tailored cycles or over longer timescales to account for multiday cycles of 

seizure likelihood. Seizure forecasting systems may also improve seizure detection and 

prediction accuracy by incorporating data from wearable or implantable monitoring devices. 

 

Wearable devices have long been heralded as the next frontier in epilepsy management, both 

for their potential as automated seizure detectors and to provide advance warning of seizure 

onset 24. However, wearable seizure monitors have faced several challenges, including their 

relevance for more subtle seizure types, high false alarm rates and poor user experience 22,41. 

A forecasting app could potentially improve the detection performance of wearable devices 

by providing a prior probability of seizure likelihood. Similarly, physiological signals 

recorded from wearable devices could improve forecasts of seizure cycles by providing a 

continuous measure of underlying rhythms, rather than discrete samples (seizure times). We 

have shown that fast and slow cycles of brain activity can be measured from continuous EEG 

across diverse frequencies and regions of cortex 18. These continuous cycles provided the 

most accurate estimate of seizure likelihood to date. More recently, cycles of interictal 

epileptiform were also used to provide a forecast of seizure risk over days 19. It is possible 

that cycles of epileptic brain activity can also be derived from auxiliary systems modulated 

by the brain, such as cardiac and pulmonary output or even mood and sleep. It is well known 

that both circadian and multiday cycles modulate many aspects of human health and disease 
42–44, including heart disease 45,46, immune response 47 and neurological and psychiatric 

disorders 48,49. However, a long-term study to identify cyclic rhythms of physiological signals 

in conjunction with cycles of seizure risk has not yet been undertaken. Ultimately, the ability 

to measure cycles from almost every biological process underscores the power of a simple, 

cyclic seizure forecast. 

 

There is still no consensus on how accurate a seizure forecast must be in order to be clinically 

useful, nor for which epilepsy characteristics and patterns forecasting methods may prove 

most useful. Several studies have surveyed the views of people with epilepsy and caregivers 

on the subject of seizure forecasting. In one survey, participants reported that missed seizures 

were considered worse than false alarms, and that perfect accuracy was not considered a 

requirement for a forecasting device 21. Recently, Janse et al. (2019) showed that seizure 

forecasting devices were acceptable despite the potential for inaccuracy (up to “inaccurate 

30% of the time”). Ultimately, post-hoc studies and surveys can only provide an indicative 
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measure of the utility and benefits of a seizure forecasting device. In a prospective setting, 

some people may find knowing times of safety to be more important than high risk warnings. 

Some people are likely to tolerate false alarms poorly, whereas others would find a 

forecasting device very helpful. As with many aspects of epilepsy treatment, the usefulness of 

seizure forecasting is likely to be patient specific.  

 

This study provided a proof-of-concept that seizure diary apps can provide a personalized 

forecasts of seizure likelihood. We hypothesise that mobile apps to forecast cycles of seizure 

likelihood have the power to improve quality of life for people with epilepsy, even without 

delivering direct intervention. In support of this hypothesis, we note that unpredictability is 

the primary disability of epilepsy 1 and, for people with refractory seizures, quality of life is 

far more strongly determined by the degree of drug-related side effects or depressive 

symptoms than by seizure frequency 50. Reliable seizure forecasting has the potential to 

improve quality of life by reducing uncertainty and improving mood. There is also scope for 

forecasting to reduce drug related side effects through intelligent titration of medication. 

Ultimately, it is our hope that seizure forecasting apps provide another clinical tool to manage 

epilepsy. 
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SUPPLEMENTARY MATERIAL 
 

 
 
Figure S1. Alignment of seizure cycles based on self-report and EEG. Each circular 
histogram shows the multiday distribution of seizure cycles based on self-reported events 
(light blue) and electrographic seizures confirmed by expert reviewers (black line). The 
period of the multiday cycle for each subject is given above the circular histogram subplots. 
Subjects 7, 11 and 15 had significantly different cycle distributions using Kuiper’s test for 
circular distributions (* p < 0.05, ** p < 0.01). Subjects 2, 3 and 5 did not have enough self-
reported events for a comparison to be made. 
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Figure S2. Total seizure rates with respect to time of day. Comparison of total seizure 
rates and circadian trends across all 15 subjects in the Neurovista cohort. Electrographic 
seizure rates (“EEG”) are compared to self-reported seizures (“Diary”) and seizures that were 
confirmed by audio recordings (“Audio”). A. Total count of seizures (y-axis) at different 
hours of day (x-axis). B. Circadian trends showing seizure likelihood (y-axis) with respect to 
time of day (x-axis). 
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Figure S3. Alignment of seizure cycles based on self-reported + audio detections and 
EEG. Each circular histogram shows the circadian distribution of seizure cycles based on 
self-reported events combined with audio confirmed events (pink) and electrographic 
seizures confirmed by expert reviewers (black line). Total seizure numbers for each subject 
are given above each plot (with self-reported + audio events in brackets). Subject 7 had 
significantly different cycle distributions using Kuiper’s test for circular distributions (** p < 
0.01). 
 
 

 
Figure S4. Examples of seizure forecast output. Example output of pseudoprospective 
seizure forecasts for two different individuals. High risk periods are shown in red, low risk 
periods are shown in green and moderate risk periods are shown in white. Black triangles 
represent reported lead seizures (first seizure in a given hour). Red asterisks represent 
reported seizures that occurred during low risk periods.  A. A person with a lower reported 
rate of 1.4 seizures per week; they had no seizures occur during low risk times (53.5% of the 
time spent in low risk) and 84.6% of seizures during high risk times (23% of the time). B. A 
person with a higher reported rate of 24.2 seizures per week; they had 33 seizures (16.8%) 
during low risk times (51.7% of the time spent in low risk) and 47.5% of seizures during high 
risk times (21.9% of the time). 
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