Longitudinal characterization of *Plasmodium* inter-species interactions during a period of increasing prevalence of *Plasmodium ovale*

Hoseah M. Akala^{1*†}, Oliver Watson^{4†}, Kenneth K. Mitei^{1,3}, Dennis W. Juma^{1*}, Robert Verity⁴, Luiser A. Ingasia⁶,
Benjamin H. Opot¹, Raphael O. Okoth¹, Gladys C. Chemwor¹, Jackline A. Juma¹, Edwin W. Mwakio¹, Nicholas
Brazeau⁵, Agnes C. Cheruiyot¹, Redemptah A. Yeda¹, Maureen N. Maraka¹, Charles O. Okello¹, David P. Kateete³,
Jim Ray Managbanag¹, Ben Andagalu¹, Bernhards R. Ogutu¹, Edwin Kamau²

- ¹Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI) / Walter Reed Project, P. O. Box 54 40100,
 Kisumu, Kenya
- ²U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 6720A
 Rockledge Drive, Suite 400, Bethesda, MD 20817, United States of America.
- ³College of Health Sciences, Makerere University, Kampala, Uganda
- ⁴Medical Research Council, Centre for Global Infectious Disease Analysis, Department of Infectious Disease
 Epidemiology, Imperial College London
- ⁵Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill,
 NC
- ⁶Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand 7 York Road,
- 18 Parktown 2193 Johannesburg, South Africa
- 19
- 20 *Correspondence author
- 21 [†]Contributed equally
- ^{*}Correspondence to Dr. Hoseah m. Akala, Department of Emerging and Infectious Diseases (DEID), United States
- 23 Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI) / Walter
- 24 Reed Project, P. O. Box 54 40100, Kisumu, Kenya. Tel. +254722329845. E-mail: Hosea.akala@usamru-k.org
- 25 H M Akala PhD, D W Juma MSc, B H Opot BSc, R O Okoth BSc, G C Chemwor BSc, J A Juma BSc, E W
- 26 Mwakio BSc, A C Cheruiyot MSc, R A Yeda BSc, M N Maraka BSc, C O Okello BSc, B R Ogutu PhD, B
- Andagalu MSc, J R Managbanag PhD, ¹Department of Emerging and Infectious Diseases (DEID), United States
- Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI) / Walter
- 29 Reed Project, P. O. Box 54 40100, Kisumu, Kenya.
- O Watson PhD, R Verity PhD; ⁴Medical Research Council, Centre for Global Infectious Disease Analysis,
 Department of Infectious Disease Epidemiology, Imperial College London
- 32 K K Mitei MSc; ¹Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research
- 33 Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI) / Walter Reed Project, P. O. Box 54
- 34 40100, Kisumu, Kenya.³College of Health Sciences, Makerere University, Kampala, Uganda,
- 35 D P Kateete PhD; ³College of Health Sciences, Makerere University, Kampala, Uganda
- 36 L A Ingasia MSc; ⁶Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand 7
- 37 York Road, Parktown 2193 Johannesburg, South Africa
- 38 N Brazeau PhD; ⁵Department of Epidemiology, Gillings School of Global Public Health, University of North
- 39 Carolina, Chapel Hill, NC
- 40 E Kamau PhD; ²U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD,
- 41 6720A Rockledge Drive, Suite 400, Bethesda, MD 20817, United States of America.42

43 Abstract (296 Words)

44 Background The epidemiology and severity of non-falciparum malaria in endemic settings has garnered limited 45 attention. We aimed to characterize the prevalence, interaction, clinical risk factors and temporal trends of non-46 falciparum malaria in endemic settings of Kenya.

47 Methods We diagnosed and analyzed infecting malaria species via PCR in 2027 clinical samples collected between 48 2008 and 2016. Descriptive statistics were used to describe the prevalence and distribution of *Plasmodium* species. 49 A statistical model was designed and used for estimating the frequency of *Plasmodium* species and assessing inter-50 species interactions. Mixed effect linear regression models with random intercepts for each location was used to test 51 for abange in provalence over time.

51 for change in prevalence over time.

Findings 72•5% of the samples were *P. falciparum* single species infections, 25·8% were mixed infections and only 1•7% occurred as single non-falciparum species infections. 23•1% were mixed infections containing *P. ovale*. A likelihood-based model calculation of the population frequency of each species estimated a significant within-host interference between *P. falciparum* and *P. ovale curtisi*. Mixed-effect logistic regression models identified a significant increase of *P. ovale wallikeri* and *P. ovale curtisi* species over time with reciprocal decrease in *P. falciparum single species* and *P. malariae*. The risk of *P. falciparum* infections presenting with fever was 0•43 times less likely if co-infected with *P. malariae*.

59 Interpretation Findings show higher prevalence of non-falciparum malaria than expected. The proportion of

60 infections that were positive for infection by *P. ovale wallikeri* and *P. ovale curtisi* was observed to significantly

61 increase over the period of study which could be due to attenuated responsiveness to malaria drug treatment on these 62 species. The increase in frequency of *P. ovale spp* in Kenya could threaten malaria control effort in Kenya and pose

63 increased risk of malaria to travelers.

64 **Funding** AFHSB and its GEIS Section

66 Introduction

67 Malaria control programmes in sub-Saharan Africa (sSA) have mostly focused on *Plasmodium falciparum*, the 68 predominant cause of lethal malaria. Although widely distributed in malaria-endemic regions including sSA,¹⁻³ 69 information on the epidemiology of non-falciparum malaria caused by *P. ovale* spp. and *P. malariae* is scarce. 70 Further, the severity of the disease caused by these species, which is thought to be milder compared to *P. falciparum*, is not well studied in the endemic human populations.³ Most of the clinical data for non-falciparum 72 malaria has been obtained mostly from travelers returning from malaria endemic areas.^{3,4}

73 P. ovale spp. and P. malariae often occur in complex coinfections with P. falciparum which complicates the ability

74 to accurately detect these infections using light microscopy¹ or malaria rapid diagnostic tests (mRDT).⁵ This is

75 further exacerbated by the fact that these infections often occur at low parasitemia,⁶ which likely contributes to the

underestimation on the prevalence of non-falciparum in sSA. However, molecular and serological studies have been shown to be more sensitive, revealing that non-falciparum infections are more prevalent than previously estimated,⁷

- shown to be more sensitive, revealing that non-falciparum infections are more prevalent than previously estimated,⁷, ⁸ with one study measuring seroprevalence of *P. ovale* spp. and *P. malariae* at 57% and 45% respectively, in
- 79 asymptomatic populations in Benin.⁸

80 Artemisinin-combination therapies (ACTs) are the first-line treatment for uncomplicated P. falciparum malaria 81 infections in most malaria endemic countries. However, there is limited in vivo data available on the efficacy of 82 these drugs against non-falciparum malaria.⁷ Further, most therapeutic efficacy studies exclude mixed infections as 83 part of their enrolment criteria. These studies mostly use microscopy to assess drug efficacy, which is less sensitive 84 compared to PCR.9 Recent studies have detected persistent non-falciparum parasites after treatment with ACTs when assessed by PCR.^{7, 10, 11} There is thus a need to characterize species specific responses to ACTs, which can 85 86 help inform the efficacy of ACT regimens in treating non-falciparum infections in malaria endemic regions. This is 87 of importance both in efforts to control malaria in endemic regions and for imported malaria cases as it has been 88 shown non-falciparum contribute to a large proportion of imported uncomplicated and complicated malaria in nonendemic countries.^{4, 12, 13} 89

90 Molecular surveillance provides more accurate speciation data as recently demonstrated by a cross-sectional study in 91 western Kenva where the overall prevalence of *Plasmodium* spp. was estimated to be 37•1% (13•2% non-falciparum malaria) by PCR versus 19•9% (1•6% non-falciparum malaria) by microscopy.¹⁴ To further our understanding on 92 93 the spatial and temporal trends in non-falciparum malaria, we conducted a longitudinal study in four different 94 malaria endemicity zones in Kenya, and collected clinical and malaria speciation data from symptomatic individuals 95 seeking treatment in healthcare facilities. Comprehensive patient data was collected and blood samples were 96 analyzed using highly sensitive speciating real-time PCR (qPCR). We investigated the clinical risk factors 97 associated with non-falciparum infections in a malaria endemic population, and developed and applied a novel 98 statistical framework for exploring whether species occur independently of other species. Lastly, we explored the 99 temporal trends in both single and mixed species infection over the study period across the different endemicity 100 zones.

101 Ethics statement

102 This study was conducted under the approval of the Kenya Medical Research Institute (KEMRI), Scientific and

Ethics Review Unit (SERU) and Walter Reed Army Institute of Research (WRAIR) institutional review boards, protocol numbers: KEMRI #1330, WRAIR #1384 entitled "Epidemiology of malaria and drug sensitivity patterns in

105 Kenya."

106 Methods

107 Study sites and sampling collection

Samples were collected between 2008 and 2016 from hospitals located in 6 regions that span 4 distinct malaria transmission zones across Kenya (see Figure 1, Table 1)¹⁵. Consenting patients aged six months and above, presenting at outpatient departments with symptoms of malaria and/or testing positive for uncomplicated malaria by rapid diagnostic test (mRDT; Parascreen® (Pan/Pf), Zephyr Biomedicals, Verna Goa, India) were recruited into the study. Case Report Forms (CSF) were used to collect comprehensive patient information including age, sex,

113 occupation, home of origin, travel history in the last 2-4 weeks, history of malaria infection and treatment, chief 114 complaint, other complaints (such as headache, vomiting, coughing, diarrhea), body temperature and body weight. 115 2-3 ml of whole blood was collected for mRDT testing and smear preparation. About 100 µl of each sample was 116 spotted on FTA filter paper (Whatman Inc., Bound Brook, New Jersey, USA) for DNA extraction and nucleic acid 117 analysis. The clinician then performed diagnosis by assessing for symptoms such as conjunctival pallor, 118 lymphadenopathy and splenomegaly. Final diagnosis results were based on clinical evaluation confirmed by mRDT 119 and/or microscopy. All malaria positive cases were treated with Coartem® which contains artemether-lumefantrine 120 (AL) in accordance with the Kenya Ministry of Health recommended case management guidelines for 121 uncomplicated malaria.

122 Genotypic analysis

Genomic DNA was extracted using the QIAamp DNA mini kit (Qiagen, Valencia, CA, USA) as recommended by the manufacturer. The DNA was used for malaria diagnosis using Genus-specific qPCR assay prior to speciesspecific analyses as previously described for the detection of *Plasmodium* genus and *P. falciparum*.⁹ For each assay, a negative template control (distilled water) and *P. falciparum* DNA Nucleic Acid Tests (NAT)/NIBSC genusspecific positive controls were included to ensure no contamination of the PCR and to validate results. The human housekeeping gene Ribonuclease P (RN*ase*P) was used as an extraction and qPCR assay control.

129 All samples that were diagnosed as positive for malaria were further characterized for species composition using a

separate set of species-specific primers indicated in supplementary Table 1. The assays for characterization of *P. falciparum* and *P. malariae* had identical PCR reaction components and conditions as the Genus-specific qPCR assay except for the primers used. Specifically, FAL R, FAL F, and FAL were used for *P. falciparum* diagnosis while MAL F, MAL R, and MAL PP were used for *P. malariae* diagnosis. Detection of the two *P. ovale* species was conducted using a previously described method.^{16, 17} Reaction components and amplification conditions were identical to the Genus-specific qPCR assay. Each experiment included at least one reaction mixture without DNA as a negative control.

137 Statistical analysis

138 Estimating the frequency of *Plasmodium* species and assessing inter-species interaction

139 A statistical model was designed to assess whether there was a significant difference between the observed

140 frequencies of each infection type and the expected frequencies when assuming independent acquisition of different

141 *Plasmodium* species. The approach jointly estimates the population frequency of each *Plasmodium* species and the 142 population mean number of extant infections per individual, and uses these estimates to generate null distributions

142 population mean number of extant infections per individual, and uses these estimates to generate null distributions 143 for the number of single and multi-species infections. The model was extended to statistically assess for the presence

- 144 of between-species interactions and the best fitting models were identified through comparisons of sample-size
- 145 corrected Akaike information criterion (AICc).¹⁸ Full methodology is described in the Supplementary Information.

146 Linear modelling of species prevalence and risk factors associated with fever

147 Summary descriptive statistics were used to describe the prevalence and distribution of *Plasmodium* species and the 148 occurrence of mixed species infections across Kenya between 2008 and 2016. To test for a change in the prevalence 149 of *Plasmodium* species over time, we used a mixed effect linear regression model with random intercepts for each location¹⁹ using the lme4 R software package.²⁰ Due to low numbers of samples collected prior to 2011 in 150 151 Kombewa, Marigat, and Malindi, samples were grouped according to the 4 endemic zones: highland epidemic 152 (Kericho and Kisii), coastal endemic (Malindi), semi-arid (Marigat), and lake endemic (Kisumu and Kombewa). 153 The samples were also grouped according to the year and month they were collected in, and the regression was 154 weighted according to the number of samples collected in each year and month. This framework was used to assess 155 for changes in the prevalence of infections caused by P. malariae, P. ovale curtisi, P. ovale wallikeri as well as the 156 prevalence of infections positive for only P. falciparum.

157 Patient metadata was available for a subset of individuals reporting at clinic, which included the chief symptomatic 158 complaint reported by the patient as well as whether the individual was currently presenting with fever based on 159 temperature measurements on arrival at the hospital. We explored the patterns in the chief complaint with respect to

- 160 the infecting species composition to assess whether the distribution of infecting species by complaint was predicted
- by the earlier estimated frequency of *Plasmodium* species. Lastly, we used a mixed effect logistic regression model
- 162 to assess the risk factors associated with fever presentation at clinic among individuals infected with *P. falciparum*. 163 The included covariates were patient age, sex, time of sample collection, number of malaria attacks in the last year
- and whether the individual was co-infected with *P. malariae*, *P. ovale curtisi* or *P. ovale wallikeri*.
- and whether the individual was co-infected with *P. malariae*, *P. ovale curtisi* of *P. ovale walliker*

165 Role of the funding source

- 166 The study sponsor had no role in study design; in the collection, analysis, and interpretation of data; in the writing of
- 167 the report; and in the decision to submit the paper for publication.

168 **Results**

169 Sample Collection

170 During the study period, 3120 study participants from six field sites (sub-county hospitals) were screened, 3058 met 171 inclusion criteria and were enrolled in the study. Of this, patient metadata such as age, sex, chief complaint, body 172 temperature, travel, and malaria infection history, clinical diagnosis, mRDT, and/or microscopy results was 173 collected from 2719 study participants, with 2027 samples successfully analyzed for all *Plasmodium* spp. by 174 speciating qPCR. Table 1 shows number of samples collected from each field site that were qPCR analyzed, 175 grouped per the malaria epidemiological zones, with lake and coastal endemic zones grouped separately. The lake 176 endemic zone accounted for the majority $(65 \cdot 0\%)$ of the samples analyzed whereas the coastal endemic had the least 177 (1•2%).

Region	Hospital	Samples
Lake endemic zone	Kisumu east sub-county hospital	887
	Kombewa sub-county hospital	437
Coastal endemic zone	Malindi sub-county hospital	24
Highland epidemic zone	Kericho sub-county hospital	170
	Kisii sub-county hospital	432
Semi-Arid Zone	Marigat sub-county hospital	77

Table 1: Distribution of samples collected across transmission regions

178 *Plasmodium* species composition

179 P. falciparum was the most prevalent species and was present in 98.0% (n = 1986) of the 2027 infections, P. ovale 180 *wallikeri* at 20•1% (n = 405), *P. malariae* at 5•0% (n = 102), and *P. ovale curtisi* at 5•0% (n = 101). 74•2% (n = $\frac{100}{100}$ 181 1504) of samples carried single parasite species infections while $25 \cdot 8\%$ (n = 523) had multiple species infections. 182 0•15% (n = 3) of samples had a mixture of all the four species: P. falciparum, P. ovale wallikeri, P. ovale curtisi, 183 and *P. malariae*. The rest of the samples had either two 23•8% (n = 482) or three 1•9% (n = 38) species infections. 184 The most prevalent mixed infections contained P. falciparum and P. ovale wallikeri. The full composition of the 185 infections observed is shown in Figure 2. When analyzed per study site, Kisumu (urban, lake endemic), and Marigat 186 (semi-arid) had the highest prevalence of P. falciparum single infections at 79.4% (95% CI: 76.6% - 81.9%) and 187 79•2% (95% CI: 68•9% - 86•8%), respectively (Supplementary Figure 1). On the other hand, Kombewa (rural, lake 188 endemic) had the lowest P. falciparum single infections at 61•3% (95% CI: 56•7% - 65•8%), which is significantly 189 lower than Kisumu and Marigat (p < 0.01).

190 Plasmodium species frequencies and inter-species interactions

191 Using the statistical model developed to estimate the population frequency of each *Plasmodium* species under the 192 assumption of independent strain acquisition, i.e. no inter-species interactions, a population frequency of 89.6%, 193 7•1%, 1•7%, and 1•6% for P. falciparum, P. ovale wallikeri, P. malariae and P. ovale curtisi, respectively was 194 predicted, with a mean number of extant infections equal to 2.94 (Table 2). These estimates accurately captured the 195 observed frequency distribution of the composition of infecting species, with the 95% bootstrapped quantiles 196 generated from these estimates containing the observed data for each infection type (Figure 3). The accuracy of the 197 model predictions varied between infection type, with occurrence of P. ovale wallikeri single species infections, and 198 P. falciparum/P. ovale curtisi infections being over estimated. Conversely, the model under-predicted the 199 occurrence of P. ovale curtisi single species infections and P falciparum/P. ovale wallikeri infections. The variation 200 in the observed distribution of infection types was better explained using a model that included interactions between 201 *Plasmodium* species (Table 2, Figure 4), with the best fitting interaction model including one interaction term (χ_1^2 = 202 9•24, p = 0•002), which predicted a significant interference between P. falciparum and P. ovale curtisi ($k_{1,3}$ = 203 0•405). In all equivalent models, the use of a Poisson distribution to describe the number of infections yielded more

204 parsimonious models (Supplementary Table 2), with the gradient in the model likelihood being largely flat with

205 respect to the dispersion parameter r (Supplementary Figure 2). The model parameters and likelihoods of the best

fitting models are shown in Supplementary Table 2.

Model Description		Mod	Shared Parameters					Additional Parameters								
Name	$Pr(\mu \theta)$	AICc	ΔΑΙΟ	LogLik	pf	pm	poc	pow	μ	r	<i>k</i> ₁₂	<i>k</i> ₁₃	<i>k</i> ₁₄	<i>k</i> ₂₃	<i>k</i> ₂₄	<i>k</i> ₃₄
k ₁₃ Interference	Poisson	74•113	0	-31•036	0•892	0•016	0•025	0•067	3•062			0•405				
k ₁₃ Interference	Negative Binomial	76•190	2•064	-31•067	0•893	0•016	0•025	0•067	3•074	100•001		0•405				
Independent	Poisson	81•346	7•245	-35•658	0•895	0•017	0•017	0•072	2•927							
Complete Interference	Poisson	82•067	7•865	-29•968	0•896	0•017	0•016	0•071	2•938		0•901	0•482	1•982	1•189	1•965	1•736
Independent	Negative Binomial	83•293	9•180	-35•626	0•909	0•019	0•026	0•047	2•759	99•996						
Complete Interference	Negative Binomial	84•008	9•782	-29•927	0•909	0•019	0•025	0•047	2•775	99•997	0•833	0•487	1•949	1•27	1•951	1•71

Table 2: Description of each best fitting model and parameter estimates.

Each model shares parameters for the frequency of *P. falciparum* (pf), *P. malariae* (pm), *P. ovale curtisi* (poc), *P. ovale wallikeri* (pow), and the mean number of extant infections (μ).

207

208 Species frequency over time

Analyses of the longitudinal trends of the infecting species composition showed significant changes occurred over the study period (Table 3). The mixed-effect linear modelling identified a significant increase in *P. ovale* spp.

infections over time (p < 0.001), with *P. ovale wallikeri* having the largest increase (Figure 4). Conversely, there was a decrease in the frequency of infections containing *P. malariae* (p = 0.079) and single species infections

213 caused by *P. falciparum* (p < 0.001). These findings are summarized in Table 3 and Figure 4.

Table 3: Parameters for the mixed effect analysis of *Plasmodium spp*. frequency changes over time

	P. ovale curtisi	P. ovale wallikeri	P. malariae	P. falciparum (single infections)
Time (years)	0•007	0•021	-0•004	-0•023
	$p = 1 \cdot 6 \ge 10^{-4}$	$p = 8 \cdot 10 \ge 10^{-6}$	p = 0.079	$p = 9 \bullet 71 \ge 10^{-06}$
Observations	224	224	224	224
Log Likelihood	214•866	25•070	197•864	-0•589

214 Travel and infection history

215 Travel history indicated that Kericho (highland epidemic) had the highest number of malaria cases acquired outside 216 the region, with 84•0% of study participants admitting that they had travelled in the last 2-4 weeks prior to becoming 217 ill, and 93•2% of those who traveled having visited western Kenya. In contrast, only 16•3% of participants from 218 Kisii (which is also in highland epidemic) reported having traveled, with 94•7% of those who traveled having visited 219 western Kenya. Only a small percentage of participants in Malindi (coastal endemic) and Marigat (semi-arid) 220 reported having traveled to western Kenya in the last 2-4 weeks prior to becoming ill. The majority of the 221 participants in Kombewa, Kisii, and Kisumu (95•6%, 89•5%, and 86•7%, respectively) reported that they had 222 previously contracted malaria compared to less than 60.0% of participants in Malindi, Marigat, and Kericho. This 223 data suggests that clinical malaria burden in Kericho is majorly not due to local malaria transmission. Indeed, 72•0% 224 (n=215) of the study participants in Kericho indicated their home of origin is western Kenya, indicating they 225 immigrated to Kericho due to work or business, and they frequently visit their home of origin as indicated by their 226 travel history. Further, of these, 64•7%, (n=139) reported having lived in Kericho for less than 5 years. The 227 clinicians in Kericho noted most of the locals report to the hospital with severe malaria and thus do not qualify to be 228 enrolled in our study. Travel and infection history data is summarized in Table 4.

Site	Age	Sex (% female)	Fever	Malaria episodes in last 12 months	Previous Malaria Infection	Travel in last 2-4 weeks	Ν
Kericho	12.25 [10.33-14.56]	46.40% [37.60-55.20]	73.55% [64.46-80.17]	0.73 [0.56- 0.92]	53.60% [44.00-61.60]	84.00% [76.00-88.80]	170
Kisii	8.49 [6.96-10.47]	52.29% [44.44-59.48]	88.89% [82.35-92.81]	0.50 [0.42- 0.59]	89.54% [83.01-92.81]	16.34% [10.46-22.22]	432
Kisumu	8.85 [7.99- 9.70]	50.37% [45.76-54.58]	62.31% [57.84-65.67]	0.95 [0.85- 1.05]	86.72% [83.21-89.30]	45.20% [40.95-49.45]	887
Kombewa	8.16 [7.12- 9.50]	52.19% [46.03-56.90]	66.44% [60.27-71.23]	1.98 [1.78- 2.15]	95.62% [92.26-97.31]	11.45% [8.08-15.15]	437
Malindi	14.36 [9.18-22.55]	50.00% [22.73-68.18]	50.00% [27.27-68.18]	0.08 [0.00- 0.21]	9.09% [0.00-18.18]	50.00% [27.27-63.64]	24
Marigat	17.71 [13.30-23.81]	57.14% [28.57-71.43]	71.43% [47.62-85.71]	0.10 [0.04- 0.19]	57.14% [28.57-71.43]	33.33% [14.29-52.38]	77
All	9.27 [8.75- 9.76]	50.78% [48.28-53.10]	68.03% [65.68-70.22]	1.02 [0.96- 1.08]	83.79% [81.98-85.69]	36.81% [34.66-39.05]	2027

Table 4: St	tudy site	demographic a	and clinical	summary
-------------	-----------	---------------	--------------	---------

* Mean [95% Bootstrapped Confidence Interval]

229 Fever presentation and symptomatic complaints

230 Overall, $68 \cdot 0\%$ of infections presented with fever (recorded with a temperature above $37 \cdot 5^{\circ}$ C) (Table 4). The 231 proportion of cases presenting with fever at clinics was highest in younger individuals and decreased with increasing 232 age (Figure 5). Kisii had the highest number of participants presenting with fever (88.9%) and Malindi had the 233 lowest proportion of fevers (50•0%). Analysis of the risk factors associated with fever presentation in individuals 234 positive for P. falciparum revealed that the infection composition was associated with fever. The odds of presenting 235 with fever at the clinic (adjusted for age, sex, year, and previous malaria attacks) was estimated to be 0.43 times less 236 likely if the individual was co-infected with P. malariae (adjusted OR: 0.43, 95% CI: 0.25 -0.74, p = 0.0023) 237 (Figure 6). Additionally, fever increased over time (adjusted OR for an increase of 1 year: 1.08, 95% CI: 1.02 -238 1.15), and was less prevalent in older individuals (adjusted OR for an increase of 1 year in age: 0.95, 95% CI 0.94 -239 0•96).

240 We investigated the relationship between the reported chief complaint symptoms and the malaria species infection 241 composition of infected individuals upon arrival at clinics. Infections induced by single or mixed non-falciparum 242 parasites induced similar symptoms as those seen with P. falciparum as single or mixed infections. There was one 243 case where a P. ovale wallikeri single infection induced seizure in a 6-year old boy, which was also associated with 244 severe malaria. Figure 7 shows the details on the infecting species composition and the symptoms manifested in the 245 study participants. Lastly, we assessed whether the observed infecting species composition for each symptomatic 246 complaint was predicted by the frequency of each malaria species estimated earlier in Table 2. Overall, the observed 247 infection compositions occurred as expected for each symptom except for fever, for which P. falciparum single

infections and *P. falciparum/P. ovale wallikeri* double infections did not occur within the 95% prediction quantile
 (see Supplementary Figure 3).

250 Discussion

251 Numerous studies have explored how P. falciparum populations are being disrupted by improved malaria control 252 and elimination efforts. However, there are a limited number of studies that have investigated the burden, 253 epidemiology and clinical implication of *P. ovale* spp. and *P. malariae* in malaria endemic settings. In this study we 254 conducted a longitudinal field study in six sites in Kenya, recording the clinical presentation and infection 255 composition of clinical malaria episodes, which allowed the prevalence of non-falciparum malaria to be estimated. 256 This study was conducted over a period of eight years, which spans the introduction of ACT in Kenya as the first-257 line treatment for uncomplicated malaria. Using novel statistical models to estimate the frequency of each malaria 258 species, we estimate a higher frequency of non-falciparum species than previously shown. Over the study period, 259 there was a significant increase in infections containing non-falciparum malaria, and a significant decrease in 260 infections containing P. falciparum single infections. These observations suggest that the decrease in malaria 261 prevalence exhibited over the study period has changed the composition of *Plasmodium* spp. circulating in these 262 settings. The implications of this disruption in the context of treatment, control and elimination effort must be 263 addressed.

264 There was a wide array of malaria symptoms recorded as the chief complaints when the study participants were 265 interviewed at the clinics. Majorly, fever and headache were the chief complaints followed by vomiting, and 266 coughing. Joint pains and backaches were also reported but mostly in older study participants. Clinical episodes due 267 to non-falciparum malaria infections caused similar symptoms as those caused by P. falciparum malaria, with 268 seizure reported by some, including those infected only with non-falciparum malaria. Overall, the proportion of 269 patients with fever decreased with age. A larger proportion of patients from the highland epidemic zone had fever at 270 the time of enrollment compared to those from the endemic zones, especially children <5 years old which may 271 indicate lower population immune status. Additionally, P. falciparum coinfection with P. malariae was significantly 272 associated with a decreased risk of presenting with fever at clinic. This is in agreement with previous studies in 273 Nigeria and Ghana that have also shown decreased overt malaria clinical presentation in coinfections of P. falciparum and P. malariae.^{18, 21} 274

275 Our findings showed that during the study period, there was a significant increase in the proportion of infections 276 carrying P. ovale wallikeri and P. ovale curtisi, but a decrease in infections carrying P. malariae and P. falciparum 277 as single species. P. ovale wallikeri was the most prevalent non-falciparum species across all regions and showed 278 the largest proportional increase over the study period. The statistical modelling developed confirmed this, 279 estimating the population frequency of P. ovale wallikeri to be 6•7% compared to 2•5% for P. ovale curtisi. These 280 estimates were produced using the overall best fitting model, which also suggested a significant interference 281 between P. falciparum and P. ovale curtisi, which approximately halves the probability of a successful subsequent 282 infection by P. ovale curtisi after an initial infection by P. falciparum and vice versa. This interaction could also 283 explain the greater increase in P. ovale wallikeri over time compared to P. ovale curtisi and lends support to 284 hypotheses that P. ovale wallikeri and P. ovale curtisi have different within-host adaptations.²

285 An alternative explanation for the increase in *P. ovale* spp. could be due to the differential impact of AL on *P. ovale* spp. This may lead to unresolved infections following AL treatment, which have been previously reported.^{7, 10, 11} In a 286 287 longitudinal study conducted in Tanzania, P. falciparum declined over the study period but the prevalence of P. *ovale* spp. and *P. malariae* increased 6- and 2-fold, respectively.²² This study also coincided with the introduction of 288 289 AL in Tanzania. In our study, we observed an increase in the frequency of P. ovale spp. (but not P. malariae), coinciding with the introduction of AL in Kenya. This might be due to several factors including unresolved infections following AL treatment^{10, 11, 23} and/or relapsing malaria.²³⁻²⁵ It is also possible that *P. ovale* spp. response 290 291 292 to AL is becoming attenuated over time. Additional studies are required to further investigate how the use of AL and 293 other ACTs might be playing a role in the shift of *Plasmodium* spp. composition in Kenya and elsewhere in sSA.

294 There are a number of limitations in our study. Firstly, the samples analyzed by this study were obtained from 295 symptomatic individuals which may not be representative of the malaria prevalence in the population as a whole. In 296 addition, in the statistical modelling for estimating the frequencies of *Plasmodium* species, we assumed that each 297 acquired strain was sequentially acquired due to successive bites. However, it is possible that multiple species could 298 be passed on within one infectious bite. This could be an alternative explanation for the differences seen between the 299 observed and predicted infection types using the independent model (Figure 3). For example, this could not be due 300 to between species interactions within the host, but due to an increased affinity or differing adaptation to the vector, 301 with P. falciparum, and P. ovale wallikeri able to be passed on within the same infectious bite. Despite this,

predictions from the best fitting model were highly accurate and the developed methodology is flexible enough to enable alternative models for the likelihood of any given infection type. Lastly, although samples were collected from six sites spanning four transmission zones, the longitudinal coverage of samples from the coastal endemic and semi-arid zone was substantially less than the other regions. Conclusions drawn relating to the rate of change of *Plasmodium* species over time are thus largely informed by the highland epidemic and lake epidemic zones. The altered endemicity of these zones could subsequently be driving the patterns seen, with the increased seasonality in these epidemic regions altering the presentation of mixed-species infections.

309 In conclusion, the frequency of non-falciparum species collected between 2008 and 2016 was comparable across all 310 the four transmission zones in Kenya. Our developed statistical model for estimating the frequency of *Plasmodium* 311 species and between species interactions predicted a significant interference between P. falciparum and P. ovale 312 *curtisi*, which would be, to our knowledge, one of the first efforts to statistically show between species interactions. 313 Additionally, the risk of P. falciparum infections presenting with fever was 0.43 time less likely if co-infected with 314 P. malariae. Lastly, the proportion of infections that were positive for infection by P. ovale wallikeri and P. ovale 315 curtisi was observed to significantly increase over the period of study and could be as a result of the increased 316 effective drug pressure exerted on *Plasmodium* species that do not possess a dormant hypnozoite stage. The 317 observed increase in dormant *Plasmodium* infections could thus explain the increased observation of traveler 318 malaria originating from Kenya and other malaria endemic areas that use ACTs. Increased surveillance for non-319 falciparum species infections is recommended within both symptomatic and asymptomatic individuals to monitor

320 the changing risk of malaria infection from non-falciparum species.

321 Acknowledgments

We thank Dr Veronica Manduku, KEMRI Center for Clinical Research; LTC Claire A Cornelius, Dr Douglas Shaffer, Directors, USAMRD-A/K, and Dr. Steve Munga, KEMRI Center for Global Health Research, for supporting this study and giving their permission to publish these data. We also thank all clinical staff at Kisumu East District Hospitals for their assistance.

326 Disclaimer

Material has been reviewed by the Walter Reed Army Institute of Research. There is no objection to its presentation and/or publication. The opinions or assertions contained herein are the private views of the author, and are not to be construed as official, or as reflecting true views of the Department of the Army or the Department of Defense. The investigators have adhered to the policies for protection of human subjects as prescribed in AR 70–25.

Financial support: Funding for this study was provided by the Armed Forces Health Surveillance Branch (AFHSB) and its Global Emerging Infections Surveillance (GEIS) Section, Grant P0209_15_KY. The study sponsor had no role in study design; in the collection, analysis, and interpretation of data; in the writing of the report; and in the decision to submit the paper for publication. The corresponding author should confirm that he or she had full access to all the data in the study and had final responsibility for the decision to submit for publication.

337 Figure Legends

Figure 1: Study sites. Map of Kenya malaria endemicity zones and the six chosen study sites ²⁶.

Figure 2: Observed Plasmodium species composition. Infections caused by only one species accounted for 74•20% of infections i.e. *P. falciparum, P. ovale wallikeri, P. ovale curtisi,* and *P. malariae.* The most prevalent multiple species infections were caused by *P. falciparum* and *P. ovale wallikeri.*

Figure 3: Predicted infection species composition. Plots show the estimated distribution for each infection composition, consisting of *P. falciparum* (pf), *P. malariae* (pm), *P. ovale curtisi* (poc), and *P. ovale wallikeri* (pow). Distributions were estimated using 50,000 sampling repetitions drawn from the best fitting **a**) independent and **b**) interference model. Blue regions show the 95% quantile interval, with the median shown in white line. The observed infection composition from the data is shown with the red dashed line. The interference model shown in **b**) included one additional parameter, which was an interference between *P. falciparum* and *P. ovale curtisi*.

Figure 4: Frequency of infections containing *P. ovale curtisi*, *P. ovale wallikeri*, *P. malariae*, and only *P. falciparum*. Each plot shows the percentage of infections that were positive for each *Plasmodium spp*. over time for the four transmission zones sampled. A mixed-effects linear regression model with a random intercept for each transmission region was fitted to the data and is plotted in red in each plot.

Figure 5: Relationship between fever presentation and age. The proportion of cases presenting with fever at clinic decreases with age. Each point represents the mean age and proportion binned within age groups and the size of point shows the number of individuals in the age binned class. The vertical and horizontal whiskers show the 95% confidence interval and a smoothed locally weighted regression with confidence intervals is shown in blue and grey.

Figure 6: Risk factors associated with clinical presentation of fever. The odds ratio for each predictor assessed is shown with their 95% confidence intervals as whiskers surrounding each point. Odds ratios significantly not equal to 1 are shown in red and were observed for the age, year of sample collection and coinfection with *P. malariae*.

Figure 7: Chief complaint on arrival at clinic. The chief complaint of infected individuals upon arrival at clinic is shown with respect to the infecting species composition, consisting of *P. falciparum* (pf), *P. malariae* (pm), *P. ovale curtisi* (poc), and *P. ovale wallikeri* (pow), for all complaints reported in more than five individuals. One individual (pf) reported jaundice, one (pf) reported nausea, and five (3 pf and 2 pf/pow) reported backache.

363 Supplementary Material

364 Supplementary Methods

365 Estimating the frequency of *Plasmodium* species and assessing inter-species interaction

Let $S = \{s_1, s_2, s_3, s_4\}f$ be the set of all species of interest, where s_1 corresponds to *P. falciparum*, s_2 to *P. malariae*, s_3 to *P. ovale curtisi*, and s_4 to *P. ovale wallikeri*. We assume that each successful infectious bite from a mosquito passes on one of these parasite species to a human host, which is draw.00.....n at random from *S* with probabilities $P = \{p_1, p_2, p_3, p_4\}$ respectively, where $\sum_{i=1}^4 p_i = 1$. The unobserved sequence of species passed to a host can be written $Y = \{y_1, y_2, ..., y_k\} \in S$, where μ is the total number of infections this host receives. We can also write this in frequency form as $N_Y = \{n_1, n_2, n_3, n_4\}$, where $n_i = \sum_{j=1}^{\mu} [y_j = s_i]$. The probability of the unobserved data is therefore multinomial, and can be written:

373
$$Pr(N_Y|P,\mu) = \frac{\mu!}{n_1!n_2!n_3!n_4!} p_1^{n_1} p_2^{n_2} p_3^{n_3} p_4^{n_4}$$
(1)

We assume that multiple inoculations of the same species are indistinguishable in the observed data – in other words the observed data consists of the set of unique species in *Y*. If *X* denotes the observed data then we can define $X = \{s_i: s_i \in Y\}, |X| \le \mu$. The probability of the observed data can be obtained by summing over the individual probabilities of all unobserved sequences that are consistent with *X*, that is, they consist of μ infections and contain *X* as a subset. We can write:

$$Pr(X|P,\mu) = \sum_{Y:|Y|=\mu,X\subseteq Y} Pr(N_Y|P,\mu)$$
(2)

380 We can remove the dependency on μ by assuming a particular distribution for the number of infections per host. We 381 will explore several models for this distribution below, but in each case, we can marginalise over μ as follows:

382
$$Pr(X|P,\mu) = \sum_{\mu=1}^{\infty} Pr(X|P,\mu)Pr(\mu|\theta)$$
(3)

Where θ is a vector of parameters governing the shape of the distribution over μ . Finally, we note that the total number of possible values of *X*, is equal to $2^{|S|} - 1$, which represents the sum of all non-empty subsets of *S*. This is equivalent to the power set of *S*, *P*(*S*), without the empty set, which leads to just 15 possible values for the fourspecies case here. Hence, the observed data can be written efficiently in the form of a table of the number of times each combination of infections was observed (see Table 3 for the equivalent table). If the values in this table are denoted $T = \{t_{X_1}, t_{X_2}, ..., t_{X_{15}}\}$ for each of the possible sets X_1 to X_{15} , then the overall probability of the data (the likelihood) is multinomial with probabilities taken from (3), and can be written as follows:

390
$$L(P,\theta|T) = \frac{\left(\sum_{i=1}^{15} t_{X_i}\right)!}{t_{X_1}!\cdots t_{X_{15}}!} Pr(X_1|P,\theta)^{t_{X_1}} \cdots Pr(X_{15}|P,\theta)^{t_{X_{15}}}$$
(4)

We used the likelihood in (4) to generate maximum likelihood parameter estimates for \hat{P} and $\hat{\theta}$. The likelihood was maximized using box-constrained optimisation ²⁷ in R ²⁸. The parameters \hat{P} and $\hat{\theta}$ were used to simulate the modelpredicted distribution for the frequency of each possible observed infection type. The estimated distribution was used to test for a difference between the expected frequencies and the observed frequencies of each infection composition using a non-parametric bootstrapping method. 50,000 bootstrap repetitions were drawn from the null distribution and used to estimate the median and 95% confidence interval for each infection composition, which were compared to the observed infection compositions.

We continued by extending the statistical model to test for the presence of within-host interactions between infecting *Plasmodium* species. To do this we altered our assumption that each infection is independent of previous infections and instead assume that the probability of each additional infection is dependent on the first infecting species. Let $K = \{k_{12}, k_{13}, k_{14}, k_{23}, k_{24}, k_{34}\}$ be the set of between-species interactions, such that k_{12} is the interaction between species s_1 and s_2 , which in our case is the interaction between *P. falciparum* and *P. malariae*. As before, we assume that the first infectious bite from a mosquito passes on one species to a human host, which is drawn at random from

404 *S* with probabilities $P = \{p_1, p_2, p_3, p_4\}$ respectively, where $\sum_{i=1}^4 p_i = 1$. Each additional infectious bite from a mosquito passes on one species, which is now drawn at random with probabilities $Q = \{q_1, q_2, q_3, q_4\}$, given by:

$$\begin{aligned} q_1 &= p_1 \delta_{y_1,s_1} + p_1 \delta_{y_1,s_2} k_{12} + p_1 \delta_{y_1,s_3} k_{13} + p_1 \delta_{y_1,s_4} k_{14} \\ q_2 &= p_2 \delta_{y_1,s_2} + p_2 \delta_{y_1,s_1} k_{12} + p_2 \delta_{y_1,s_3} k_{23} + p_2 \delta_{y_1,s_4} k_{24} \\ q_3 &= p_3 \delta_{y_1,s_3} + p_3 \delta_{y_1,s_1} k_{13} + p_3 \delta_{y_1,s_2} k_{23} + p_3 \delta_{y_1,s_3} k_{34} \\ q_4 &= p_4 \delta_{y_1,s_4} + p_4 \delta_{y_1,s_1} k_{14} + p_2 \delta_{y_1,s_2} k_{24} + p_2 \delta_{y_1,s_3} k_{34} \end{aligned}$$

Where y_1 is the first species that infected the host and δ_{y_1,s_x} denotes the Kronecker delta ($\delta_{y_1,s_x} = 1$ if $s_x = y_1$ and 0 otherwise). For example, if the first species was *P. falciparum* then $\delta_{y_1,s_1} = 1$ and $\delta_{y_1,s_2} = 0$. If $k_{x,y} < 1$, the interaction between species *x* and *y* represents a between-species interference, i.e. the presence of one species reduces the probability of the other species being acquired, which could represent inter-species competition. Conversely, If $k_{x,y} > 1$, the interaction term between species *x* and *y* represents between-species synergy, i.e. the presence of one species increases the probability of the other species being acquired. Lastly if $K = \{1,1,1,1,1,1\}$, the interference model is identical to the model of independent acquisition of strains model.

413 If we define
$$m_x = n_x - \delta_{i,x}$$
, the probability of the unobserved species data is given by:

414
$$Pr(N_Y|P,\mu,K) = \sum_{i=1}^4 p_i \left(\frac{\mu - 1!}{m_1!m_2!m_3!m_4!} q_1^{m_1} q_2^{m_2} q_3^{m_3} q_4^{m_4}\right)$$
(5)

415 As before, we use this probability to define the probability of the observed data (equation 6) and the overall 416 likelihood under our modelled assumption of between species interactions (equation 7) as follows:

417
$$Pr(X|P,\theta,K) = \sum_{\mu=1}^{\infty} Pr(X|P,\mu Pr(\mu|\theta,K))$$
(6)

418
$$L(P,\theta,K|T) = \frac{\left(\sum_{i=1}^{15} t_{X_i}\right)!}{t_{X_1}!\cdots t_{X_{15}}!} Pr(X_1|P,\theta,K)^{t_{X_1}} \cdots Pr(X_{15}|P,\theta,K)^{t_{X_{15}}}$$
(7)

419 Again we maximized this likelihood and compared the predictions between the different models generated. For the 420 model assuming species interaction, we fit one model for each of the 63 non-empty subsets of K, setting members of 421 K not in a given subset set equal to 1, i.e. independent strain acquisition. For both the independent and interference 422 model we explored both a Poisson and negative binomial distribution to describe the number of infections. The best 423 fitting interference model was identified through comparisons of sample-size corrected Aikaike information 424 criterion (AICc) ¹⁸. Finally, the best fitting interaction models were compared to the independent model using log-425 likelihood ratio tests to statistically test for the presence of between species interactions.

428

435 436

434

Supplementary Figure 2: Impact of the negative binomial shape parameter on model likelihood of the 437 **interference model**. The heatmap shows the relationship between the dispersion parameter, r, and the mean, μ , for 438 the independent model with an assumed negative binomial distribution describing the number of infections. The 439 likelihood is largely unchanged above 1 for well-chosen values of μ , which confirms that the distribution in the 440 number of infections is not over-dispersed and is well explained by the Poisson distribution.

442 443

Supplementary Figure 3: Predicted infection species composition. Plots show the estimated distribution for each infection composition, consisting of *P. falciparum* (pf), *P. malariae* (pm), *P. ovale curtisi* (poc), and *P. ovale vallikeri* (pow), for individuals whose chief complaint was reported as fever. Distributions were estimated using 50,000 sampling repetitions drawn from the best fitting model of inter-species interactions. Blue regions show the 95% quantile interval, with the median shown in white line. The observed infection composition from the data is shown with the red dashed line.

Primers Probes	Sequence 5'-3'	Target genus/spp
PLU F	GCTCTTTCTTGATTTCTTGGATG	Plasmodium spp
PLU R	AGCAGGTTAAGATCTCGTTCG	Plasmodium spp
PLU P	ATGGCCGTTTTTAGTTCGTG	Plasmodium spp
RNaSP F	TGTTTGCAGATTTGGACCTGC	Human RNase p
RNaSeP R	AATAGCCAAGGTGGAGCGGCT	Human RNase p
RNaseP P	TGCGCGGACTTGTGGA	Human RNase p
FAL F	ATTGCTTTTGAGAGGTTTTGTTACTT	P. falciparum
FAL R	GCTGAGTATTCAAACACAATGAACTCAA	P. falciparum
FAL P	CATAACAGACGGGTAGTCAT	P. falciparum
MAL F	GCATGGAATTTTGTTACTTTGA	P. malariae
MAL R	ATGCCTGTAGTATTCAACACAGAAAC	P. malariae
MAL P	TGTTCAAAGCAAACAGTTAAAACA	P. malariae
OVA F	TTTTGAAGAATACATTAGGATACAATTAATG	P. ovale curtisi
OVA R	CATGCTTCCTCTAAGAAGCTTTACAAT	P. ovale
OVA-V F	TTTTGAAGAATATATTAGGATACATTATAG	P. ovale wallikeri
OVA-V R	CATCGTTCCTCTAAGAAGCTTTACAAT	P. ovale wallikeri
OVA P	CCTTTTCCCTATTCTACTTAATTCGCAATTCATG	P. ovale curtisi
OVA-V P	CCTTTTCCCTACTTAATTCGCTATTCATTG	P. ovale wallikeri

Supplementary Table 1: Primers and probes used for screening and identification of *Plasmodium* species ⁹.

450

Sı	ipp	lemen	tary	Ta	ble	2:	Μ	odel	Perf	ormance	e of	'all	fitted	mod	els
			/												

Model	$Pr(\mu \theta)$	AICc	AIC	ΔΑΙΟ	N. Params	LogLik
k_13 Interference	Poisson	74•11267	74•07108	0	6	-31•0355
k_12/k_13 Interference	Poisson	74•76688	74•71141	0•640322	7	-30•3557
k_13/k_34 Interference	Poisson	74•94812	74•89265	0•821568	7	-30•4463
k_13/k_14 Interference	Poisson	74•99234	74•93686	0•865781	7	-30•4684
k_12/k_13/k_14 Interference	Poisson	75•53879	75•46743	1•396346	8	-29•7337
k_13/k_23 Interference	Poisson	75•66464	75•60917	1•538085	7	-30•8046
k_13/k_24 Interference	Poisson	76•00172	75•94624	1•87516	7	-30•9731
k_13 Interference	Negative Binomial	76•19009	76•13462	2•063532	7	-31•06/3
$k_12/k_13/k_34$ Interference	Poisson	76•19426	76•1229	2•051818	8	-30•0615
$k_13/k_14/k_24$ Interference	Poisson	76•29582	76•22446	2•153377	8	-30•1122
$k_12/k_13/k_24$ Interference	Poisson	76•43539	76•36404	2•292954	8	-30•182
k_12/k_13 Interference	Negative Binomial	76•86642	76•79506	2•123911	8	-30•3975
k_13/k_34 Interference	Negative Binomial	77-04102	76•94740	2•8/03/0	8	-30•4/3/
k_13/k_14 Interference	Regative Binomial	77•04103	77•25420	2•898393	8	-30•4848
$k_13/k_23/k_24$ Interference	Poisson	77•46203	77•23429	3•183200	8	-30•6271
$k_13/k_23/k_34$ interference	Poisson	77•54102	77-45268	2•291506	0	-30-0955
$k_12/k_13/k_14/k_23$ Interference	Poisson	77•55052	77•43208	2•409096	9	20•7205
$k_12/k_13/k_23$ Interference	Negative Binomial	77•69272	77•60348	3•532305	0	20•8017
$k_12/k_13/k_14$ Interference	Negative Binomial	77•74723	77.67587	3•532393	9	30.8370
k_13/k_23 Interference	Poisson	78•10572	78•01648	3•004791	0	30•0082
$\frac{K_12/K_13/K_14/K_24}{k_13/k_14/k_23/k_24}$ Interference	Poisson	78•13243	78•0/310	3•945598	9	30•0216
$\frac{K_13/K_14/K_23/K_24}{k_12/k_13/k_14/k_34}$ Interference	Poisson	78•13245	78•04745	3•976366	9	-30•0210
$\frac{k_12/k_13/k_14/k_54}{k_12/k_13/k_34}$ Interference	Negative Binomial	78•27895	78•18971	4•118627	9	-30+0237
$k_13/k_14/k_24$ Interference	Negative Binomial	78•36309	78•27385	4•202766	9	-30•1369
$k \frac{14}{k} \frac{24}{k} \frac{14}{k} \frac{24}{k} \frac{14}{k} \frac{24}{k} \frac{14}{k} \frac{24}{k} \frac{14}{k} \frac{24}{k} \frac{14}{k} \frac{14}{k}$	Poisson	78•48195	78•39271	4•321625	9	-30•1964
$k_12/k_23/k_24/k_34$ Interference	Poisson	78•57705	78•48781	4•416723	9	-30•2439
$k_13/k_14/k_24/k_34$ Interference	Poisson	78•76873	78•67949	4•608405	9	-30•3397
$k_12/k_13/k_23/k_34$ Interference	Poisson	78•81423	78•72498	4•6539	9	-30•3625
k 13/k 14/k 23 Interference	Negative Binomial	78•87504	78•7858	4•714718	9	-30•3929
k 13/k 24/k 34 Interference	Negative Binomial	78•92236	78•83312	4•76204	9	-30•4166
k 13/k 14/k 34 Interference	Poisson	78•94966	78•8783	4•807219	8	-31•4392
k 14/k 23/k 34 Interference	Poisson	79•32514	79•25378	5•182697	8	-31•6269
k 12/k 13/k 23 Interference	Negative Binomial	79•34714	79•25789	5•18681	9	-30•6289
$k_{13/k_{23/k_{24/k_{34}}}$ Interference	Poisson	79•3874	79•29816	5•227078	9	-30•6491
k_13/k_23/k_24 Interference	Negative Binomial	79•42411	79•33487	5•263788	9	-30•6674
k_12/k_13/k_14/k_23 Interference	Negative Binomial	79•61014	79•50102	5•429932	10	-29•7505
k_13/k_24 Interference	Negative Binomial	79•67027	79•59891	5•527829	8	-31•7995
k_13/k_14/k_23 Interference	Poisson	79•67639	79•60503	5•533948	8	-31•8025
k_14/k_24/k_34 Interference	Poisson	80•00145	79•93009	5•859004	8	-31•965
k_12/k_13/k_14/k_34 Interference	Negative Binomial	80•01937	79•91024	5•839161	10	-29•9551
k_12/k_13/k_14/k_23/k_34 Interference	Poisson	80•03396	79•92484	5•853752	10	-29•9624
k_12/k_13/k_24/k_34 Interference	Negative Binomial	80•20901	80•09988	6•028795	10	-30•0499
k_13/k_14/k_23/k_24 Interference	Negative Binomial	80•22392	80•11479	6•04371	10	-30•0574
k_12/k_13/k_14/k_23/k_24 Interference	Poisson	80•25194	80•14281	6•071731	10	-30•0714
k_12/k_13/k_14/k_24/k_34 Interference	Poisson	80•39552	80•28639	6•215308	10	-30•1432
k_13/k_14/k_23/k_24/k_34 Interference	Poisson	80•3974	80•28827	6•217186	10	-30•1441
k_13/k_14/k_23/k_34 Interference	Poisson	80•45992	80•37068	6•299592	9	-31•1853
k_23 Interference	Poisson	80•56241	80•52083	6•449746	6	-34•2604
k_23/k_34 Interference	Poisson	80•57998	80•52451	6•453425	7	-33•2623
k_12/k_14/k_34 Interference	Poisson	80•88739	80•81603	6•744948	8	-32•408
k_13/k_14/k_24/k_34 Interference	Negative Binomial	80•94324	80•83411	6•763031	10	-30•4171
k_13/k_14/k_34 Interference	Negative Binomial	80•94911	80•85987	6•788784	9	-31•4299
k_12/k_13/k_23/k_24 Interference	Poisson	80•98562	80•89638	6•825294	9	-31•4482
k_12/k_13/k_23/k_34 Interference	Negative Binomial	81•00482	80•8957	6•824613	10	-30•4478
k_34 Interference	Poisson	81•19591	81•15432	7•083238	6	-34•5772
k_13/k_14/k_23/k_34 Interference	Negative Binomial	81•27301	81•16388	7•092799	10	-30•5819
k_13/k_23/k_24/k_34 Interference	Negative Binomial	81•33726	81•22813	7•157046	10	-30•6141
Independent	Poisson	81•34561	81•31592	7•244836	5	-35•658
$k_{12/k_{14/k_{23/k_{24/k_{34}}}}$ Interference	Poisson	81•43387	81•32474	7•253661	10	-30•6624
k_23/k_34 Interference	Negative Binomial	81•49641	81•42505	7•35397	8	-32•7125
k_12/k_13/k_23/k_24/k_34 Interference	Poisson	81•49798	81•38885	7•317765	10	-30•6944

k_14/k_23/k_24/k_34 Interference	Negative Binomial	81•50433	81•3952	7•324116	10	-30•6976
k_12/k_13/k_14/k_24 Interference	Negative Binomial	81•62264	81•51351	7•442426	10	-30•7568
k_14/k_23 Interference	Poisson	81•65501	81•59954	7•528454	7	-33•7998
k_12/k_13/k_24 Interference	Negative Binomial	81•66243	81•57319	7•502106	9	-31•7866
k_12/k_14/k_34 Interference	Negative Binomial	81•73941	81•65017	7•579084	9	-31•8251
k_12 Interference	Poisson	81•79849	81•7569	7•68582	6	-34•8785
k_13/k_14/k_23/k_24/k_34 Interference	Negative Binomial	81•83156	81•70055	7•629462	11	-29•8503
k_12/k_14/k_23/k_34 Interference	Poisson	81•95657	81•86733	7•796249	9	-31•9337
k_12/k_24/k_34 Interference	Poisson	82•00625	81•93489	7•863811	8	-32•9674
k_12/k_23/k_34 Interference	Poisson	82•02646	81•9551	7•884021	8	-32•9776
$k_{12/k_{13/k_{14/k_{23/k_{34}}}$ Interference	Negative Binomial	82•03961	81•9086	7•837514	11	-29•9543
k 14/k 34 Interference	Poisson	82•0537	81•99823	7•927147	7	-33•9991
Complete Interference	Poisson	82•06698	81•93596	7•864876	11	-29•968
k 14/k 24/k 34 Interference	Negative Binomial	82•44348	82•35424	8•283157	9	-32•1771
k 12/k 14 Interference	Poisson	82•44702	82•39155	8•320466	7	-34•1958
k $12/k$ $13/k$ $14/k$ $24/k$ 34 Interference	Negative Binomial	82•51493	82•38392	8•312832	11	-30•192
k 14 Interference	Poisson	82•55851	82•51692	8•44584	6	-35•2585
k $\frac{12}{k}$ $\frac{23}{k}$ $\frac{24}{k}$ $\frac{34}{34}$ Interference	Poisson	82•97089	82•88165	8•810566	9	-32•4408
$k_{12/k_{23/k_{24/k_{34}}}$ Interference	Negative Binomial	82•99501	82.00103	8•83/683	9	-32•4529
$k_{13}/k_{24}/k_{34}$ Interference	Poisson	83:06446	82•00311	8-022024	9	33•4966
$K_13/K_24/K_34$ Interference	Nagativa Pinomial	82•10011	82•99311	8.028807	10	21.5
k_12/K_15/K_25/K_24 Interference	Negative Binomial	82.2221	82•16662	0.005547	10	24.5922
K_34 Interference	Negative Binomial	82-20200	82-25151	9-093347		-34-3633
Independent	Negative Binomial	83•29309	83•25151	9•180423	11	-35*6258
$K_{12/K_{13/K_{23/K_{24/K_{34}}}}$ Interference	Negative Binomial	83•42906	83•29804	9•226957	11	-30•649
K_12/K_34 Interference	Negative Binomial	83•62575	83•55439	9•483307	8	-33•7772
$k_12/k_13/k_14/k_23/k_24$ Interference	Negative Binomial	83•65427	83•52325	9•452165	11	-30•/616
k_12 Interference	Negative Binomial	83•79043	83•/3495	9•663871	1	-34•8675
k_12/k_14/k_24/k_34 Interference	Poisson	83•79888	83•/0963	9•638551	9	-32•8548
k_14/k_34 Interference	Negative Binomial	83•93824	83•86688	9•795795	8	-33•9334
k_14/k_23 Interference	Negative Binomial	83•93944	83•86808	9•797	8	-33•934
k_23 Interference	Negative Binomial	83•94815	83•89268	9•821597	7	-34•9463
Complete Interference	Negative Binomial	84•00843	83•85352	9•782433	12	-29•9268
k_12/k_23 Interference	Negative Binomial	84•12068	84•04932	9•978237	8	-34•0247
k_12/k_14 Interference	Negative Binomial	84•35198	84•28062	10•20954	8	-34•1403
k_14/k_24 Interference	Poisson	84•50737	84•4519	10•38081	7	-35•2259
k_14/k_23/k_34 Interference	Negative Binomial	85•07472	84•98548	10•91439	9	-33•4927
k_14/k_23/k_24 Interference	Poisson	85•75936	85•688	11•61692	8	-34•844
k_12/k_14/k_24/k_34 Interference	Negative Binomial	85•7671	85•65797	11•58689	10	-32•829
k_12/k_14/k_24 Interference	Poisson	85•9602	85•88884	11•81775	8	-34•9444
k_12/k_23 Interference	Poisson	86•12684	86•07137	12•00029	7	-36•0357
k_14/k_24 Interference	Negative Binomial	86•37207	86•30071	12•22962	8	-35•1504
k_12/k_34 Interference	Poisson	86•52753	86•47205	12•40097	7	-36•236
k_14 Interference	Negative Binomial	86•59552	86•54005	12•46897	7	-36•27
k_12/k_14/k_23 Interference	Negative Binomial	86•64693	86•55769	12•48661	9	-34•2788
k_12/k_14/k_23/k_24/k_34 Interference	Negative Binomial	87•03761	86•90659	12•8355	11	-32•4533
k_12/k_14/k_23/k_24 Interference	Poisson	87•37491	87•28567	13•21459	9	-34•6428
k_14/k_23/k_24 Interference	Negative Binomial	87•61352	87•52428	13•4532	9	-34•7621
k 12/k 14/k 23/k 34 Interference	Negative Binomial	87•6937	87•58457	13•51349	10	-33•7923
k 12/k 14/k 24 Interference	Negative Binomial	87•84414	87•7549	13•68381	9	-34•8774
k 12/k 23/k 24 Interference	Poisson	87•86622	87•79486	13•72378	8	-35•8974
k 12/k 14/k 23 Interference	Poisson	88•30729	88•23593	14•16485	8	-36•118
k 12/k 14/k 23/k 24 Interference	Negative Binomial	88•99551	88•88638	14•8153	10	-34•4432
k 12/k 23/k 34 Interference	Negative Binomial	89•43365	89•34441	15•27333	9	-35•6722
k 24/k 34 Interference	Poisson	89•95594	89•90047	15•82938	7	-37•9502
k 12/k 24 Interference	Poisson	90•15407	90•0986	16•02751	7	-38•0493
k 24 Interference	Poisson	90•24374	90•20215	16•13107	6	-39•1011
k 23/k 24 Interference	Poisson	90•29/91	90•239/3	16•16835	7	-38•1197
$k_23/k_24/k_34$ Interference	Poisson	91•//36/15	91•36509	17•29/01	8	-37•6825
k 24/k 34 Interference	Negative Rinomial	92•11024	92.03880	17.0678	0 Q	_38•0104
$k_2 = \frac{12}{k_2} = 12/k_2 = 11$	Negative Binomicl	92•16259	92-03007	18.02014	0	-38-0154
k_12/k_24 Interference	Negative Dinomial	92-10238	92-09122	10-02014	ð 0	-30-0430
K_12/K_24/K_34 Interference	Negative Binomial	92-22393	92-13409	10-0030	9 7	-3/-00/3
K_24 Interference	Negative Binomial	92-22412	92-23638	10-17291	/	-37-6224
K_12/K_25/K_24 Interference	Negative Binomial	93•33413	93•24489	19-1/381	9	-3/-0224
K_25/K_24 Interference	Negative Binomial	93•41608	93•34472	19•2/364	8	-58•6/24
$\frac{K_23/K_24/K_34}{1200}$ Interference	Negative Binomial	93•56769	93•47845	19•40/36	9	-3/•/392
k_12/k_23/k_24/k_34 Interference	Negative Binomial	93•68065	93•57152	19•50044	10	-36•7858

452 References

453 1. Mueller I, Zimmerman PA, Reeder JC. Plasmodium malariae and Plasmodium ovale--the 454 "bashful" malaria parasites. *Trends Parasitol* 2007; **23**(6): 278-83.

455 2. Oguike MC, Betson M, Burke M, et al. Plasmodium ovale curtisi and Plasmodium ovale wallikeri
 456 circulate simultaneously in African communities. *Int J Parasitol* 2011; **41**(6): 677-83.

A Roucher C, Rogier C, Sokhna C, Tall A, Trape JF. A 20-year longitudinal study of Plasmodium
ovale and Plasmodium malariae prevalence and morbidity in a West African population. *PloS one* 2014;
9(2): e87169.

460 4. Wangdahl A, Wyss K, Saduddin D, et al. Severity of Plasmodium falciparum and non-falciparum 461 malaria in travelers and migrants: a nationwide observational study over two decades in Sweden. *J* 462 *Infect Dis* 2019.

463 5. Murray CK, Gasser RA, Jr., Magill AJ, Miller RS. Update on rapid diagnostic testing for malaria.
464 *Clin Microbiol Rev* 2008; **21**(1): 97-110.

465 6. Wongsrichanalai C, Barcus MJ, Muth S, Sutamihardja A, Wernsdorfer WH. A review of malaria
466 diagnostic tools: microscopy and rapid diagnostic test (RDT). *Am J Trop Med Hyg* 2007; **77**(6 Suppl): 119467 27.

Dinko B, Oguike MC, Larbi JA, Bousema T, Sutherland CJ. Persistent detection of Plasmodium
falciparum, P. malariae, P. ovale curtisi and P. ovale wallikeri after ACT treatment of asymptomatic
Ghanaian school-children. *Int J Parasitol Drugs Drug Resist* 2013; **3**: 45-50.

8. Doderer-Lang C, Atchade PS, Meckert L, et al. The ears of the African elephant: unexpected high
seroprevalence of Plasmodium ovale and Plasmodium malariae in healthy populations in Western
Africa. *Malaria journal* 2014; **13**: 240.

474 9. Kamau E, Tolbert LS, Kortepeter L, et al. Development of a highly sensitive genus-specific
475 quantitative reverse transcriptase real-time PCR assay for detection and quantitation of plasmodium by
476 amplifying RNA and DNA of the 18S rRNA genes. *J Clin Microbiol* 2011; **49**(8): 2946-53.

477 10. Betson M, Clifford S, Stanton M, Kabatereine NB, Stothard JR. Emergence of Nonfalciparum
478 Plasmodium Infection Despite Regular Artemisinin Combination Therapy in an 18-Month Longitudinal
479 Study of Ugandan Children and Their Mothers. *J Infect Dis* 2018; **217**(7): 1099-109.

480 11. Betson M, Sousa-Figueiredo JC, Atuhaire A, et al. Detection of persistent Plasmodium spp.
481 infections in Ugandan children after artemether-lumefantrine treatment. *Parasitology* 2014; **141**(14):
482 1880-90.

12. Nabarro LEB, Nolder D, Broderick C, et al. Geographical and temporal trends and seasonal
relapse in Plasmodium ovale spp. and Plasmodium malariae infections imported to the UK between
1987 and 2015. *BMC Med* 2018; **16**(1): 218.

486 13. Zhou R, Li S, Zhao Y, et al. Characterization of Plasmodium ovale spp. imported from Africa to
487 Henan Province, China. *Sci Rep* 2019; **9**(1): 2191.

48814.Idris ZM, Chan CW, Kongere J, et al. High and Heterogeneous Prevalence of Asymptomatic and489Sub-microscopic Malaria Infections on Islands in Lake Victoria, Kenya. *Sci Rep* 2016; **6**: 36958.

49015.Pfeffer DA, Lucas TCD, May D, et al. malariaAtlas: an R interface to global malariometric data491hosted by the Malaria Atlas Project. *Malaria journal* 2018; **17**(1): 352.

492 16. Calderaro A, Piccolo G, Gorrini C, et al. A new real-time PCR for the detection of Plasmodium
493 ovale wallikeri. *PloS one* 2012; **7**(10): e48033.

494 17. Perandin F, Manca N, Piccolo G, et al. Identification of Plasmodium falciparum, P. vivax, P. ovale
495 and P. malariae and detection of mixed infection in patients with imported malaria in Italy. *New*496 *Microbiol* 2003; **26**(1): 91-100.

49718.Black J, Hommel M, Snounou G, Pinder M. Mixed infections with Plasmodium falciparum and P498malariae and fever in malaria. *Lancet* 1994; **343**(8905): 1095.

Heisig J, Schaeffer M. Why You Should Always Include a Random Slope for the Lower-Level
 Variable Involved in a Cross-Level Interaction *SocArXiv* 2018.

501 20. Bates D, Maechler M, Bolker B, Walker S. Fitting Linear Mixed-Effects Models Using Ime4. . 502 *Journal of Statistical Software*, 2015; **67**(1): 1-48.

503 21. Mockenhaupt FP, Rong B, Till H, Thompson WN, Bienzle U. Short report: increased susceptibility 504 to Plasmodium malariae in pregnant alpha(+)-thalassemic women. *The American journal of tropical* 505 *medicine and hygiene* 2001; **64**(1-2): 6-8.

506 22. Yman V, Wandell G, Mutemi DD, et al. Persistent transmission of Plasmodium malariae and 507 Plasmodium ovale species in an area of declining Plasmodium falciparum transmission in eastern 508 Tanzania. *PLoS Negl Trop Dis* 2019; **13**(5): e0007414.

509 23. Bichara C, Flahaut P, Costa D, Bienvenu AL, Picot S, Gargala G. Cryptic Plasmodium ovale 510 concurrent with mixed Plasmodium falciparum and Plasmodium malariae infection in two children from 511 Central African Republic. *Malaria journal* 2017; **16**(1): 339.

512 24. Richter J, Franken G, Holtfreter MC, Walter S, Labisch A, Mehlhorn H. Clinical implications of a gradual dormancy concept in malaria. *Parasitol Res* 2016; **115**(6): 2139-48.

514 25. McKenzie FE, Bossert WH. Multispecies Plasmodium infections of humans. *The Journal of* 515 *parasitology* 1999; **85**(1): 12-8.

516 26. National Malaria Control Programme (NMCP) KNBoSK, and ICF, International. Kenya Malaria 517 Indicator Survey 2015. 2015 2016. https://dhsprogram.com/pubs/pdf/MIS22/MIS22.pdf (accessed 518 17/August /2017 2017).

519 27. Byrd RH, Lu, P., Nocedal, J. and Zhu, C. A limited memory algorithm for bound constrained 520 optimization. *SIAM Journal on Scientific Computing* 1995; **16**: 1190-208.

521 28. Team RC. R: A language and environment for statistical computing. . R Foundation for Statistical 522 Computing, Vienna, Austria.; 2019.

523

Evidence before this study

We searched PubMed for the publications until November 07, 2019 using search terms: ("Plasmodium" AND "falciparum" OR "ovale" OR "malariae" AND "interactions" AND "prevalence"). We retrieved 121 studies that reported species interaction and prevalence. There were two studies published that investigated longitudinal prevalence of *P. ovale* spp. and *P. malariae* (non-falciparum) malaria in Africa. The study by Roucher et al., was a longitudinal study which investigated non-falciparum malaria in a single village in Senegal from 1990 to 2010. Diagnosis was done using microscopy rather than more sensitive PCR. In this study, the prevalence and burden of non-falciparum decreased dramatically with the introduction of ACTs. Similarly, the study by Yman et al., which also investigated prevalence of non-falciparum malaria, took place in a single village in Tanzania over a 22-year period starting in 1994. This study used PCR for speciation, although they did not distinguish the two *P. ovale* species. This study showed persistent transmission of *P. ovale* and *P. malariae* despite declining *P. falciparum*. Neither study, however, has explored whether between species interactions occur or incorporated statistical modelling to assess for interactions.

Added value of this study

Our study describes the prevalence of non-falciparum malaria longitudinally in different malaria endemic zones of Kenya, while comprehensively evaluating symptoms and clinical data associated with these infections. This is the first study to investigate longitudinal prevalence of non-falciparum across a range of malaria endemicities, while also speciation between *P. ovale curtisi* and *P. ovale wallikeri*. The addition of *P. ovale* spp. speciation enabled the development of novel statistical models to test for between species interactions, revealing a significant interference between *P. falciparum* and *P. ovale curtisi*. This finding, in combination with the different rates of increase in *P. ovale wallikeri* and *P. ovale curtisi* add to the growing evidence that these two species have different within-host adaptations. In addition, the symptomatic presentation of infection at clinic increases our understanding of the range of symptoms associated with non-falciparum malaria.

Implications of all the available evidence

Our findings show that about 27.5% of the naturally occurring infections in Kenya contain non-falciparum species. This is significantly higher than previous data based on microscopy based diagnosis of non-falciparum malaria. Further, we have shown that non-falciparum malaria infections have been increasing since the introduction of ACT as first-line treatment in Kenya. This could also explain the recent upsurge documented in travelers' malaria caused by non-falciparum. We also provide evidence that malaria symptoms such as fever, headache, joint pains and seizure can be caused by non-falciparum infections as single or double infections in the absence of *P. falciparum*. This study demonstrated a shift in the prevalence of non-falciparum malaria, with *P. ovale* spp. infections increasing over time. Viewed together, our findings suggest that non-falciparum infections must be increasingly considered in malaria control efforts if continued reductions in malaria prevalence are to occur.

Akala et al., Characterising *Plasmodium* inter-species interactions during a period of increasing prevalence of *Plasmodium* ovale

Author Name	Contribution	Remarks	Signature
1. Hoseah M. Akala	Design of the study protocol, study implementation, manuscript write up, final manuscript review and submission		
2. Oliver Watson	Data analysis, Draft manuscript write up, final manuscript review		
3. Kenneth K. Mitei	Sample collection, PCR, data analysis and initial draft development		
4. Dennis W. Juma	Study implementation, PCR, data analysis, draft manuscript write up, final manuscript review		
5. Robert Verity	Draft manuscript and final manuscript review		
6. Luiser A. Ingasia	PCR, data analysis and draft manuscript write up		
7. Benjamin O. Opot	Study implementation, PCR, data analysis and draft manuscript write up		
8. Raphael O. Okoth	PCR and draft manuscript review		
9. Gladys C. Chemwor	Study implementation, PCR and data analysis		
10. Jackline Juma	PCR and data analysis		
11. Edwin W. Mwakio	PCR and draft manuscript review		
12. Nicholas Brazeau	Draft manuscript and final manuscript review		
13. Agnes Cheruiyot	Study implementation, PCR and data analysis		
14. Redemptah Yeda	PCR and draft manuscript review		
15. Maureen N. Maraka	PCR and draft manuscript review		
16. Charles Okello	Sample collection, PCR and draft manuscript review		
17. David P. Kateete	Draft manuscript and final manuscript review		
18. Bernhards R. Ogutu	Design of the study protocol, manuscript write up, final manuscript review and submission		
19. Ben Andagalu	Design of the study protocol, manuscript write up, final manuscript review and submission		
20. Matthew L. Brown	Draft manuscript and final manuscript review		
21. Jim Ray Managbanag	Draft manuscript and final manuscript review		
22. Edwin Kamau	Design of the study protocol, manuscript write up, final manuscript review, approved the final manuscript		

Author Name	Remarks	Signature
1. Hoseah M. Akala Ph.D. (Zoology)		
2. Oliver Watson (Ph.D.)		
3. Kenneth K. Mitei (Msc. Parasitology)		
4. Dennis W. Juma (Msc. Molecular Medicine)		
5. Robert Verity (Ph.D.)		
6. Luiser A. Ingasia (Msc. Molecular Medicine)		
7. Benjamin O. Opot (BSc)		
8. Raphael O. Okoth (BSc)		
9. Gladys C. Chemwor (BSc)		
10. Jackline Juma (BSc)		
11. Edwin W. Mwakio (BSc)		
12. Nicholas Brazeau (Ph.D.)		
13. Agnes Cheruiyot (MSc. (Medical Biotechnology)		
14. Redemptah Yeda (BSc)		
15. Maureen N. Maraka (BSc)		
16. Charles Okello (BSc)		
17. David P. Kateete (Ph.D.)		
18. Ben Andagalu (MD, MSc. Clinical trials)		
19. Matthew L. Brown (Ph.D.)		
20. Jim Ray Managbanag (Ph.D.)		
21. Edwin Kamau (Ph.D.)		

H M Akala PhD, D W Juma MSc, B O Opot BSc, R O Okoth BSc, G C Chemwor BSc, J A Juma BSc, E W Mwakio BSc, A C Cheruiyot MSc, R A Yeda1 BSc, M N Maraka BSc, C O Okello BSc, B Andagalu MSc, J R Managbanag Ph.D.; - Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI) / Walter Reed Project, P. O. Box 54 – 40100, Kisumu, Kenya.

Luiser A. Ingasia Msc; - University of Witwatersrand

O Watson Ph.D., R Verity Ph.D.; - Medical Research Council, Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London

K K Mitei MSc; - Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Africa (USAMRD-A), Kenya Medical Research Institute (KEMRI) / Walter Reed Project, P. O. Box 54 – 40100, Kisumu, Kenya.³College of Health Sciences, Makerere University, Kampala, Uganda,

D P Kateete Ph.D.; - College of Health Sciences, Makerere University, Kampala, Uganda L A Ingasia MSc;

N Brazeau Ph.D.; - Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC

M L Brown Ph.D.; - Walter Reed Army Institute of Research 503 Robert Grant Ave, Silver Spring, MD 20910, United States

E Kamau Ph.D.; - U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, 6720A Rockledge Drive, Suite 400, Bethesda, MD 20817, United States of America.

Infection Composition

10

ò

0.0

ò

5

а

10

5

15

0.00

Infection Composition

Percentage Infections

