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Abstract 
Myocardial infarction (MI) is one of the most severe manifestations of coronary artery 

disease (CAD) and the leading cause of death from non-infectious diseases worldwide. It is 
known that the central component of CAD pathogenesis is a chronic vascular inflammation. 
However, the mechanisms underlying the changes that occur in T, B and NK lymphocytes, 
monocytes and other immune cells during CAD and MI are still poorly understood. One of those 
pathogenic mechanisms might be the dysregulation of intracellular signaling pathways in the 
immune cells.  

In the present study we performed a transcriptome profiling in peripheral blood 
mononuclear cells of MI patients and controls. The machine learning algorithm was then used to 
search for  MI-associated signatures, that could reflect the dysregulation of intracellular signaling 
pathways.  

The genes ADAP2, KLRC1, MIR21, PDGFD and CD14 were identified as the most 
important signatures for the classification model with L1-norm penalty function. The classifier 
output quality was equal to 0.911 by Receiver Operating Characteristic metric on test data. These 
results were validated on two independent open GEO datasets. Identified MI-associated 
signatures can be further assisted in MI diagnosis and/or prognosis. 

Thus, our study presents a pipeline for collapsing the list of differential expressed genes, 
identified by high-throughput techniques, in order to define disease-associated diagnostic 
signatures.  
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Introduction 
Myocardial infarction (MI) is one of the most severe manifestations of coronary artery 

disease (CAD) and the leading cause of death from non-infectious diseases worldwide [1]. In 
most cases, MI occurs as a serious complication of atherosclerosis – a complex disease, the 
etiology of which is still not fully elucidated [2]. Recent studies have shown that the central 
component of atherosclerosis pathogenesis is a chronic vascular inflammation, resulting in 
endothelial dysfunction and, consequently, in an increased probability of hemodynamic 
abnormalities, including through the thrombosis [3]. Such a vascular lesion is emerged with the 
leading involvement of intimal cells (fibroblasts, endothelial and smooth muscle cells) and 
peripheral blood mononuclear cells (PBMC) [4]. However, the pathogenic mechanisms 
underlying the changes that occur in PBMC (T, B and NK lymphocytes and monocytes) during 
atherosclerosis and MI are still poorly understood. One of those mechanisms might be the 
dysregulation of intracellular signaling pathways in immune cells [5].  
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One way to establish MI transcriptional signatures, which include both dysregulated 
individual genes and signaling pathways, containing dysregulated genes, is to simultaneously 
study of transcriptional profiles of protein-coding genes and genes for regulatory non-coding 
RNA. Among non-coding RNAs, miRNAs are of particular interest in the context of robustness 
of biological processes, since they regulate key elements of extensive segments of signaling 
pathways’ networks [6–8]. To date, consistency of expressional changes of miRNAs and their 
target genes has been investigated in macrophages of pigs and rats with experimental MI [9] and 
in the whole blood of MI patients [10]. 

In the present study, we performed a transcriptome profiling in PBMC of MI patients 
and healthy individuals and revealed MI-associated signatures, consisting of individual protein-
coding genes or functional patterns of genes, such as miRNA with its co-expressed target genes 
or combination of co-expressed genes, attributed to a definite signaling pathway.  

Materials and methods 
 

Pipeline 
The pipeline of the study design is illustrated in Figure 1. RNA Microarray analysis was 

used to identify genes that were significantly (p<0.05) associated with MI (differentially 
expressed genes, DEGs). Those DEGs that have passed threshold for multiple comparisons were 
considered MI transcriptional signatures. Functional patterns of co-expressed DEGs were also 
considered MI transcriptional signatures. Such functional patterns included i) differentially 
expressed miRNA and its co-expressed target mRNA(s) and ii) DEGs attributed to a Reactome 
gene set. In the latter case, the Reactome gene sets were considered the most informative if they 
i) account for more than 10% of all co-expressed DEGs and/or ii) include DEGs passed multiple 
comparisons correction. 

The validation of identified MI transcriptional signatures was performed on two open 
data sets; DEGs which were not validated on at least one of these sets were excluded from further 
consideration. The DEGs within validated MI transcriptional signatures were used to construct 
binary classifiers. Given the high quality of classification and stability of the detected composite 
transcriptional biomarker, a logistic regression with the L1-norm penalty function was used to 
select the most significant DEGs on test dataset.  
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Figure 1. A schematic pipeline of the study for MI transcriptional signatures’ identification. 
DEGs – differentially expressed genes. MI – patients with myocardial infarction. CTRLs – 
individuals in the control group, CV - cross-validation. 

 
Patients and controls 

Six patients (all men, mean age 51.3 ± 5.9 years) with first ST-segment elevation MI 
were enrolled in this study. All patients were diagnosed at the National Medical Scientific Center 
for Cardiology (Moscow, Russia) based on symptoms of myocardial ischemia, increase of high-
sensitivity cardiac troponin I (hs-cTn-I) and/or emergence of new or presumed new ST-segment 
elevation, new left bundle branch block or development of pathological Q waves in accordance 
with Third Universal Definition of MI [11]. Hs-cTn-I was measured during the initial patient 
assessment (from 1 to 18 h after the onset of disease symptoms). All patients underwent coronary 
angiography on admission and were treated according to contemporary guidelines. The 
characteristics of MI patients are presented in Table S1. A total of 6 CTRLs (all men, mean age 
51.0 ± 7.1 years) with normal electrocardiogram, no history of CVD and diabetes mellitus were 
included in the study; CTRLs characteristics by smoking status and body mass index were 
compatible to MI patients. All participants lived in European Russia. The ethical approval was 
obtained from the local Ethics Committee, and written informed consent had been received from 
each person in accordance with the Declaration of Helsinki. 

 
Peripheral blood mononuclear cells collection and RNA extraction 

Blood samples were collected in the morning from MI patients (24-36 h after the disease 
onset) and CTRLs. PBMC were isolated using Ficoll-Hypaque density gradient method (Sigma-
Aldrich, St. Louis, MO, USA) within 3 h of sampling. Total RNA including small RNA was 
extracted using miRNeasy Mini Kit (Qiagen, Hildren, Germany) following the manufacturer's 
instructions. The RNA quantity was measured using the NanoDropTM spectrophotometer 
(Thermo Fisher Scientific, Waltham, MA, USA); the RNA integrity was assessed by QIAxcel 
Advanced System (Qiagen, Hilden, Germany). Samples with RNA integrity number (RIN) value 
above eight were included in subsequent experiments.  
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RNA Microarray analysis 

The transcriptome analysis was performed using GeneChip Human Transcriptome 
Array 2.0, which provides the ability to analyze the expression of 44,699 protein-coding genes 
and 22,829 non-protein coding genes, including 1346 miRNA genes (ThermoFisher Scientific, 
Santa Clara, CA, USA). Briefly, total RNA (500 ng) of samples were each proceeded to 
poly(A)tailing and biotin ligation reactions using FlashTag Biotin HSR RNA Labeling Kit 
(ThermoFisher Scientific, Santa Clara, CA, USA). The biotin-labeled RNA samples were 
hybridized on GeneChip Human Transcriptome Array 2.0 using manufacturer's instructions and 
scanned on the GeneChip Scanner 7G System. Computational analysis of the microarray data 
files was performed using R programming language version 3.5.1. Data processing was carried 
out based on the affy package written in R [12]. A biomaRt package was used to annotate the 
obtained data [13]. Probes demonstrating evidence for cross-hybridization, i.e. transcript 
sequences annotated to more than two coding genes were excluded from this study. If transcripts 
belong to the same gene ID, a transcript with the most detectable expression level was selected. 
To detect differentially expressed genes, calculate the levels of statistical significance and adjust 
them for multiple comparisons by Benjamini-Hochberg procedure (p and padj, respectively) the 
standard limma package protocol was used [14]. All expression data are deposited in the Gene 
Expression Omnibus international public repository under accession identification as 
GSE141512 [15]. 

 
Bioinformatic analysis 

MirTarBase was used to select experimentally validated target genes for miRNAs [16]. 
Gene set enrichment analysis (over-representation analysis) was performed using Tools of 
Reactome Database [17]. 

To construct and analyze the gene-gene interaction networks, NetworkX 2.0 package 
for Python was used [18]. STRING database [19] was used to find protein-protein interactions. 

 
Statistics analysis and Machine learning 

Statistical analysis was performed using R programming language version 3.5.1. Null 
hypotheses were rejecting if p<0.05. To study the dependence/correlation of two continuous 
random variables, the Spearman's Rank Correlation test was used. The logistic regression 
classifier was trained using the tools of scikit-learn v0.20.3 for Python [20]. To reduce the 
possible classification model overfitting the l2-norm regularization and 10-fold cross validation 
were used. The selection of the optimal regularization coefficient was performed by grid search 
using the GridSearchCV () function. The quality of the classification model was estimated by the 
areas under receiver operating characteristic curve (ROC-AUC). The final assessment of the 
quality of the classification model was carried out on the test dataset that was not used for 
training. For training and testing the model z-scaling of continuous features was performed at the 
preprocessing data stage. 

 
Validation analysis 

The Gene Expression Omnibus database (GEO, http://www.ncbi.nlm.nih.gov/geo) was 
used in order to validate the obtained results.  Two open data sets - GSE59867 and GSE62646 
with gene expression profiles in PBMC of MI patients and healthy individuals without a history 
of CVD were investigated; they were obtained on GeneChip Human Gene 1.0 ST Array 
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[transcript (gene) version]. The dataset GSE59867 included expression data of 111 MI cases and 
48 CTRLs; the dataset GSE62646 - of 28 MI patients and 14 CTRLs (mixed-gender sets).  

Results 
Array-based transcriptome profiling 
Transcriptome profiling in PBMC of six MI patients and six gender- and age-matched 

control individuals (CTRLs) was performed using GeneChip Human Transcriptome Array 2.0 
(Figure 2). As a result, a total of 84 differentially expressed genes (DEGs) were identified (-
0.5<Log2FC>0.5, р<0.05) (Table S2), from which 48 protein-coding genes and 2 miRNA genes 
(MIR21 and MIR223) were upregulated, while 34 protein-coding genes were downregulated in 
MI patients. Among all observed DEGs KLRB1 and ADAP2 passed the threshold for multiple 
comparisons correction (Log2FC=-0.64, р.adj=0.0454 and Log2FC=0.64, р.adj=0.0495, 
respectively); both these genes were further considered as MI transcriptional signatures.  
 

Figure 2. Volcano plot of gene expression changes in PBMC of MI patients compared 
to CTRLs. Blue dot indicates downregulated gene (Log2FC<-0.5); red dot indicates upregulated 
gene (Log2FC>0.5), which passed threshold for multiple comparisons (р.adj<0.05); Among 
differentially expressed genes (DEGs) MIR21 and its target genes are marked in orange, MIR223 
and its target gene − in purple (-0.5<Log2FC>0.5, р<0.05).  

The search for MI transcriptional signatures: miRNA and its target mRNA(s)  
Among identified DEGs (р<0.05) presented in Figure 2, BCL6, CCR1, PDGFD, SGK1, 

and TGFBR3 genes were found to be targets of miR-21, while MAFB – target of miR-223 based 
on MirTarBase database. As assessed by Spearman’s correlation analysis the expression levels 
of BCL6, CCR1, and SGK1 were positively correlated (p<0.001, Ro>0.9) and PDGFD and 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted February 3, 2020. ; https://doi.org/10.1101/2020.01.29.20019554doi: medRxiv preprint 

https://doi.org/10.1101/2020.01.29.20019554


 

 

TGFBR3 - negatively correlated (p<0.05; Ro<-0.6) with MIR21 expression level in MI patients 
and CTRLs (Figure S1). A positive correlation between the expression levels of MAFB and 
MIR223 (p<0.1, Ro=0.5) was also observed (Figure S2). Thus, MIR21 and MIR223 genes, 
together with their functionally associated co-expressed target genes, were considered as two MI 
transcriptional signatures. 

 
The search for MI transcriptional signatures: Reactome gene sets  

 

The enrichment analysis was undertaken in order to search for the functional patterns 
which included DEGs attributed to a Reactome gene set (Table 1). Nine Reactome gene sets were 
significantly overrepresented (FDR<0.05) among the 48 upregulated protein-coding genes (see 
above). The first three sets included each more than 10% of upregulated genes: “Immune system” 
− 22 DEGs from 2663 genes presented in the set (FDR=0.023), “Neutrophil degranulation” − 13 
DEGs from 480 genes (FDR=0.0035) and “Cytokine Signaling in Immune system” − 9 DEGs 
from 1055 genes (FDR=0.015). “Immune system” gene set is at the highest level of the Reactome 
hierarchy and includes “Neutrophil degranulation” and “Cytokine Signaling in Immune system” 
pathways that are separately characterized by more significant overrepresentation of DEGs. So 
that, the DEGs from these two pathways were chosen to further analysis in the context of 
potential MI transcriptional signatures. Notably, “Cytokine Signaling in Immune system” 
pathway involves BCL6 and CCR1 - the target genes of miR-21, which were already included in 
one of the identified MI transcriptional signatures. 

 
Table 1. Reactome gene sets significantly overrepresented among the differentially 

expressed genes in PBMC from MI patients when compared to controls 
 

№ 
Reactome set 

name 

Total 
number of 
genes in 
the set 

Number of 
differentially 

expressed 
genes (DEGs) 

DEGs FDR 

 Upregulated genes 
1 Immune System 2663 22 BCL6, BST1, 

C3AR1, CCR1, 
CD14, CLEC4D, 
CLEC6A, CR1, 

FCGR1A, 
FCGR1B, FLT3, 

FPR1, FPR2, 
GRN, HLA-DQB1, 

PADI2, PYGL, 
S100A12, 

SLC11A1, SOCS3, 
TLR2, TLR8 

0.023 
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2 Neutrophil 
degranulation 

480 13 BST1, C3AR1, 
CD14, CLEC4D, 

CR1, FPR1, FPR2, 
GRN, PADI2, 

PYGL, S100A12, 
SLC11A1, TLR2 

0.0035 

3 Cytokine 
Signaling in 

Immune system 

1055 9 BCL6, CCR1, 
FCGR1A, 

FCGR1B, FLT3, 
FPR1, HLA-

DQB1, S100A12, 
SOCS3 

0.015 

4 Interferon gamma 
signaling 

250 4 FCGR1A, 
FCGR1B, 

HLA-DQB1, 
SOCS3 

0.015 

5 Signaling by Non-
Receptor Tyrosine 

Kinases 

70 2 NRG1, SOCS3  0.033 

6 Signaling by 
PTK6 

70 2 NRG1, SOCS3 0.033 

7 PTK6 Activates 
STAT3 

7 1 SOCS3 0.033 

8 GRB7 events in 
ERBB2 signaling 

6 1 NRG1 0.031 

9 Transport of 
glycerol from 

adipocytes to the 
liver by 

Aquaporins 

3 1 AQP9 0.015 

 Downregulated genes 
1 Immunoregulatory 

interactions between 
a Lymphoid and a 
non-Lymphoid cell 

297 6 KLRB1, KLRC1, 
KLRD1, KLRF1, 

KIR2DL1, 
KIR2DL3 

0.021 

2 DAP12 signaling 
 

29 4 KLRC1, KLRC2, 
KLRC3, KLRD1  

0.021 

 
As can be seen from Table 1, two Reactome gene sets were significantly overrepresented 

among the 34 downregulated in MI genes: “Immunoregulatory interactions between a Lymphoid 
and a non-Lymphoid cell” (6 DEGs from 297 genes, FDR=0.021) and “DAP12 signaling” (4 
DEGs from 29 genes, FDR=0.021). Each of these sets includes more than 10% of the 
downregulated genes and is involved in signal transduction in lymphoid cells, namely in natural 
killers (NK). The “DAP12 signaling” pathway was overrepresented exclusively among the genes 
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which encode the killer cell lectin-like receptors (KLR) expressed in NK cells, two of these DEGs 
(KLRD1 and KLRC1) were as well observed in “Immunoregulatory interactions between a 
Lymphoid and a non-Lymphoid cell” pathway. The last mentioned pathway was also 
overrepresented by KIR2DL1 and KIR2DL3 genes, encoding a killer cell immunoglobulin-like 
receptors, the transmembrane glycoproteins expressed by NK and T cells’ subsets. Notably, 
KLRB1 gene, defined previously individually as MI transcriptional signature (Log2FC=-0.64, 
р.adj=0.0454) was included only in “Immunoregulatory interactions between a Lymphoid and a 
non-Lymphoid cell” pathway. The DEGs from this pathway were chosen for further analysis in 
the context of potential MI transcriptional signatures.  

The search for interacting genes/proteins among the DEGs from selected Reactome sets 
“Neutrophil degranulation”, “Cytokine Signaling in Immune system” and “Immunoregulatory 
interactions between a Lymphoid and a non-Lymphoid cell” (lines 2, 3 and 10 in Table 1) was 
performed using String database. Almost all the DEGs from the “Neutrophil degranulation” set 
(with the exception of the PADI2, GRN and PYGL genes) were found to interact among 
themselves (Figure 3A). The expression levels of these 10 interacting genes were significantly 
positively correlated between each other (0.93>Ro>0.51, p<0.05) (Figure S3). Thus, we 
considered the pattern of interacting genes from this pathway, namely BST1, C3AR1, CD14, 
CLEC4D, CR1, FPR1, FPR2, S100A12, SLC11A1 and TLR2 as potential MI transcriptional 
signature.  

In the “Cytokine Signaling in Immune system” gene set six interacting genes (CCR1, 
FCGR1A, FCGR1B, FPR1, HLA-DQB1 and S100A12) were found (Figure 3B), and the 
expression levels of these genes, with the exception of the HLA-DQB1, were positively correlated 
with each other (0.99>Ro>0.62, p<0.05) (Figure S4). As previously mentioned, CCR1 is the 
target gene of miR-21, and has already been included to MIR21-containing MI transcriptional 
signature. According to correlation analysis, MIR21 expression level positively correlates not 
only with CCR1, but also with FCGR1A, FCGR1B, FPR1 and S100A12 expression levels 
(0.93>Ro>0.71, p<0.01) (Figure S4). Thus, we considered these genes as components that extend 
the MIR21-containing MI transcriptional signature.  

In Reactome pathway “Immunoregulatory interactions between a Lymphoid and a non-
Lymphoid cell” different interacting gene pairs were found between all the genes from this set: 
KLRB1, KLRC1, KLRD1, KLRF1, KIR2DL1, KIR2DL3 (Figure 2C) and they were 
predominantly characterized by significantly positive correlation between their expression levels 
(0.88>Ro>0.55, p<0.05) (Figure S5). Noteworthy, KLRB1 gene whose differential expression 
passed correction for multiple comparisons and could be considered as the MI transcriptional 
signature, interacts with KLRD1 and KLRF1 from this gene set. Therefore, we included genes 
KLRC1, KLRD1, KLRF1, KIR2DL1 and KIR2DL3 in the KLRB1-containing MI transcriptional 
signature. 
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Figure 3. Network analysis of the Reactome gene sets “Neutrophil degranulation” (A), 

“Cytokine Signaling in Immune system” (B) and “Immunoregulatory interactions between a 
Lymphoid and a non-Lymphoid cell” (С). The edges indicate molecular interactions between 
nodes based on String database. 

 
Overall, the conducted analysis allowed us identifying the following five MI 

transcriptional signatures containing all in all 29 DEGs: {ADAP}, {KLRB1 + KLRC1, KLRD1, 
KLRF1, KIR2DL1, and KIR2DL3}, {MIR21 + BCL6, CCR1, PDGFD, SGK1, TGFBR3, 
FCGR1A, FCGR1B, FPR1, and S100A12}, {MIR223 + MAFB} and {BST1, C3AR1, CD14, 
CLEC4D, CR1, FPR1, FPR2, S100A12, SLC11A1, and TLR2}. 

 
The validation analysis of differential expression of genes in identified MI 

transcriptional signatures using GEO datasets  
To confirm the differential expression of genes in identified MI transcriptional 

signatures we used open datasets GSE62646 and GSE59867 from GEO database, in which gene 
expression profiles in PBMC of MI patients and healthy individuals without a history of 
cardiovascular diseases (CVD) were investigated using GeneChip Human Gene 1.0 ST Array. 
The genes KIR2DL1, KIR2DL3, FCGR1A and FCGR1B that were according to our results 
included in MI transcriptional signatures were not represented on this array and were therefore 
excluded from the corresponding MI transcriptional signatures on further consideration. Thus, in 
a further analysis, 25 genes were considered. 

Of the five MI transcriptional signatures we identified, the differential expression of all 
genes included in the ADAP2-, KLRB1-, and MIR223-containing MI transcriptional signatures 
was validated in both open datasets GSE62646 and GSE59867 (Table 2). The differential 
expression of all genes included in the MIR21-containing MI transcriptional signature and MI 
transcriptional signature from “Neutrophil degranulation” Reactome gene set was validated in 
GSE59867 dataset. The differential expression of a number of these genes was validated also on 
GSE62646 dataset with the exception of FPR1 and SGK1 from the MIR21-containing signature 
and BST1, CLEC4D, FPR1, FPR2 and TLR2 from the “Neutrophil degranulation” signature; 
these genes were excluded from the corresponding MI transcriptional signatures on further 
consideration. 

 
Table 2. The expression of genes from identified MI transcriptional signatures based on 

our data and data obtained from GSE62646 and GSE59867 GEO datasets. Grey colour indicates 
p-value > 0.05. 
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MI signature Gene Our data GSE62646 GSE59867 
logFC p-value logFC p-value logFC p-value 

ADAP2-containing 
MI signature 

ADAP2 0.64 8.70E-05 0.62 6.40E-08 0.42 4.54E-13 

KLRB1-containing 
MI signature 

KLRB1 -0.64 3.82E-05 -0.57 1.27E-03 -0.44 2.85E-06 

KLRC1 -0.69 1.09E-02 -0.80 3.60E-05 -0.70 5.28E-10 

KLRD1 -0.77 3.78E-04 -0.69 1.64E-04 -0.70 7.77E-13 

KLRF1 -0.65 1.90E-03 -0.79 1.06E-03 -0.70 1.20E-08 

MIR21-containing 
MI signature 

MIR21 1.51 5.45E-03 0.36 3.57E-02 0.80 2.03E-12 

BCL6 0.80 3.38E-03 0.51 1.06E-04 0.48 2.37E-12 

CCR1 0.55 1.97E-02 0.57 1.63E-04 0.67 1.29E-13 

PDGFD -0.52 1.29E-04 -0.68 1.56E-04 -0.65 3.06E-12 

SGK1 0.54 3.91E-02 0.18 3.00E-01 0.34 4.78E-04 

TGFBR3 -0.56 7.32E-03 -0.59 1.06E-03 -0.58 4.65E-11 

FPR1 0.66 6.74E-03 0.28 5.20E-02 0.52 7.58E-12 

S100A12 0.70 4.78E-03 0.43 4.71E-03 0.55 1.07E-10 

MIR223-containing 
MI signature 

MIR223 0.63 9.43E-03 0.61 6.85E-05 0.53 4.85E-09 

MAFB 0.65 2.16E-02 0.45 5.70E-04 0.52 7.80E-12 

Neutrophil  
degranulation 
MI signature 

BST1 0.54 5.13E-03 0.12 2.70E-01 0.50 9.74E-15 

C3AR1 0.60 1.88E-02 0.34 3.14E-02 0.48 1.07E-06 

CD14 0.57 5.09E-03 0.48 3.67E-05 0.60 5.79E-18 

CLEC4D 0.81 3.75E-02 -0.29 6.48E-02 0.22 1.72E-02 

CR1 0.58 3.57E-02 0.62 9.67E-04 0.64 1.51E-13 

FPR1 0.66 6.74E-03 0.28 5.20E-02 0.52 7.58E-12 

FPR2 0.65 4.06E-02 0.34 6,67E-02 0.63 6.28E-10 

S100A12 0.70 4.78E-03 0.43 4.71E-03 0.55 1.07E-10 

SLC11A
1 

0.59 2.38E-04 0.54 6.12E-05 0.50 2.58E-12 
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TLR2 0.70 5.09E-03 0.06 5.93E-01 0.22 3.57E-04 

 

Thus, after the validation analyses MI transcriptional signatures look as follows: 
{ADAP2}, {KLRB1 + KLRC1, KLRD1, KLRF1}, {MIR21 + BCL6, CCR1, PDGFD, TGFBR3, 
S100A12}, {MIR223 + MAFB} and {C3AR1, CD14, CR1, S100A12, SLC11A1}. 

 
The diagnostic value of the identified MI transcriptional signatures 
The design of our study does not allow to assess the causality between MI and validated 

transcriptional signatures, which does not exclude the possibility of considering them as 
diagnostic biomarkers. Their diagnostic value can be assessed by the quality of the classification 
of MI patients from healthy controls. To search for such an optimal classifier, a L2 regularized 
logistic regression model was trained on the GSE59867 dataset (Figure 4). 
 

 
Figure 4. Quality and robustness of the classification model with a L2-norm penalty 

function based on the considered MI transcriptional signatures: {ADAP2}, {KLRB1 + KLRC1, 
KLRD1, KLRF1}, {MIR21 + BCL6, CCR1, PDGFD, TGFBR3, S100A12}, {MIR223 + MAFB} 
and {C3AR1, CD14, CR1, S100A12, SLC11A1}. (A) Areas Under receiver operating 
characteristic Curve (ROC-AUC) for the training (GSE59867) and test (GSE62646) datasets. (B) 
Time-depended (starting from MI onset) ROC-AUC metrics of the classification model.  

 
Figure 4A shows that MI patients at the time of admission to hospital could be classified 

from healthy individuals based on the selected MI transcriptional signatures, and the quality of 
the classification model on the test dataset (AUC=0.926) is slightly higher than on the training 
dataset (AUC=0.910), illustrating the stability of the model and the lack of its overfitting. While 
analyzing the available data from GSE62646 dataset on the levels of gene expression during the 
six-month follow-up after MI (Figure 4B), we observed that the classification model remains 
effective within 6 days after MI onset (AUC=0.773, blue line) but 6 month after MI onset the 
effectiveness of this model considerably decreases (AUC=0.594, red line). 

For the feature selection and to reduce the number of DEGs included in the classification 
model we used a logistic regression with the L1-norm penalty function (Figure 5). As a result, 
ADAP2, KLRC1, MIR21, PDGFD and CD14 genes were selected for the classification model as 
the most important DEGs (Figure 5A). ROC-curves constructed for these genes are demonstrated 
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in Figures 5B and C. The comparison of ROC-curves from Figures 4 and 5 demonstrates that the 
quality of the classification on test dataset slightly decreased from 0.926 (dark green curve on 
Figure 4B) to 0.911 after applying L1 regularization (dark green curve on Figure 5B). While 
analyzing the changes in the quality of the classification model based on the levels of gene 
expression over time after MI onset, ROC-AUC values also slightly changed after applying L1 
regularization (see Figures 4B and 5C). Thus, five DEGs are sufficient for the classification; 
among these genes DEGs from MIR223-containing MI transcriptional signature were not 
presented. 

 

 
Figure 5. Quality and robustness of the classification model with a L1-norm penalty 

function based on the considered MI transcriptional signatures: {ADAP2}, {KLRB1 + KLRC1, 
KLRD1, KLRF1}, {MIR21 + BCL6, CCR1, PDGFD, TGFBR3, S100A12}, {MIR223 + MAFB} 
and {C3AR1, CD14, CR1, S100A12, SLC11A1}. (A) Coefficients of the classification model; the 
most important upregulated genes ADAP2, MIR21 and CD14 are marked in red, downregulated 
genes KLRC1 and PDGFD - in blue colour. (B) ROC-AUC metrics of the L1-regularized 
classification model consisted of ADAP2, MIR21 and CD14 genes. ROC-AUC were constructed 
using the training (GSE59867) and test (GSE62646) datasets. (C) Time-depended (starting from 
MI onset) ROC-AUC metrics of the L1-regularized classification model based on test dataset. 

Discussion 
In the study we searched for MI transcriptional signatures (individual dysregulated 

genes or functional patterns of dysregulated genes) that could be potentially used in MI diagnosis. 
We compared the transcriptome profiles in PBMC of patients with first MI and healthy 
individuals using GeneChip Human Transcriptome Array 2.0 and identified five MI 
transcriptional signatures containing from 1 to 6 DEGs: {ADAP2}, {KLRB1 + KLRC1, KLRD1, 
KLRF1}, {MIR21 + BCL6, CCR1, PDGFD, TGFBR3, S100A12}, {MIR223 + MAFB} and 
{C3AR1, CD14, CR1, S100A12, SLC11A1}.  

In order to select the most important for classification DEGs, further research steps 
included: validation on open datasets GSE62646 [21] and GSE59867 [22], construction of L2 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted February 3, 2020. ; https://doi.org/10.1101/2020.01.29.20019554doi: medRxiv preprint 

https://doi.org/10.1101/2020.01.29.20019554


 

 

regularized logistic regression model for estimation the diagnostic value of the MI transcriptional 
signatures and feature selection using L1-norm penalty function. This approach allowed to 
exclude from the classification model MI transcriptional signature (MIR223 + MAFB) as 
insufficiently effective and to reduce the number of DEGs from other signatures to ADAP2, 
KLRC1, MIR21, PDGFD and CD14. According to the ROC-AUC analysis the obtained 
classification model, including 5 genes, is enable classifying MI patients and healthy controls 
with a quality of 0.911 while the quality of initial classification model, including 18 genes, was 
equal to 0.926. Thus, a decrease in the number of genes did not significantly affect the quality of 
the model. A comparable decline in the quality of both classification models over time from MI 
onset was shown; this decline occurs rather slowly, for days and weeks.  

Consider consistently the characteristics of genes-classifiers. The gene ADAP2 encodes 
ArfGAP With Dual PH Domains 2 protein and was designated in our study as individual MI 
transcriptional signature; no data on the involvement of this gene in the development of CVD 
and/or its complications were found. However, the product of this gene was shown to be involved 
in heart development, and its dysfunction presumably is associated with cardiovascular 
malformations in NF1 microdeletion syndrome [23]. 

The gene KLRC1 refers to a MI transcriptional signature containing the genes of killer 
cell lectin-like receptors (KLR) that encode a family of transmembrane proteins, characterized 
by a type II membrane orientation and the presence of a C-type lectin domain; they are 
predominantly expressed in NK cells. The association of some genes from this signature (KLRD1 
and KLRC1) with MI or its complications was previously shown by Maciejak et al and Kiliszek 
et al, whose data were used for validation analysis in our study [21,22]. We have shown that the 
expression of the genes KLRB1, KLRC1, KLRD1, KLRF1 is consistently decreased in MI, that is 
in a good accordance with the study by Yan et al [24], where a loss of NK cell activity was found 
in patients with acute MI, in particular, due to a decrease in KLRB1 expression.  

The MIR21 gene and target genes of miR-21 were included in one MI transcriptional 
signature, composed mainly of genes from “Cytokine Signaling in Immune system” pathway. 
Thus, in addition to cytokine signaling pathways, which role in MI development was previously 
described [25], we have identified and validated on independent GEO datasets the influence of 
miR-21 through the regulation of this pathway in PBMC during MI. The functional role of miR-
21 in cardiac tissue has been studied for a long time, and by now a large amount of data has been 
accumulated on this subject [26], while in PBMC its role remains unclear. In one of the studies 
the negative correlation of miR-21 expression level in MI with the levels of IL-1β, IL-6, and 
TNF-α cytokines was shown due to regulatory effect of this miRNA on the expression of 
KBTBD7; this gene encodes a member of BTB-kelch proteins, kelch repeat and BTB (POZ) 
domain containing 7, which promotes inflammatory responses in macrophages [27]. In turn, in 
our study, the association of miR-21 and its target genes PDGFD, TGFBR3, CCR1 and BCL6 
expression levels with MI was demonstrated, from which PDGFD gene encoded platelet derived 
growth factor D was found to be the most important based on the results of L1 regularization. 
The genes of the PDGF family and their involvement in the pathogenesis of various diseases are 
well studied; in particular, PDGFD is known to be involved in the fibrosis and neovascularization 
of the cardiac tissue [28]. 

The gene CD14 encodes a receptor on the surface of myeloid cells, which participates 
in CD14/TLR4/MD2 signaling pathway involved in the recognition of lipopolysaccharides [29]. 
This gene was identified in our study as a component of “Neutrophil degranulation” pathway. 
The neutrophils are known to be actively involved in the development and elimination of MI 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted February 3, 2020. ; https://doi.org/10.1101/2020.01.29.20019554doi: medRxiv preprint 

https://doi.org/10.1101/2020.01.29.20019554


 

 

consequences [30]. Furthermore, polymorphic variants in CD14 gene were found to be associated 
with MI [31].  

Further investigations are implicitly needed to clarify the causality between MI and the 
identified MI-associated signatures. 

The data on differential expression of a number of genes in PBMC of MI patients 
obtained in our study were validated on two independent datasets that indicates their value. The 
identified DEGs could be suitable for the prediction of the first MI before the appearance of the 
disease symptoms, as it was previously described for some miRNAs [32]. Further investigations 
are implicitly needed to clarify the functional role of the identified MI-associated genes in the 
development of this disease. 

Conclusions 
 

The present study implements the pipeline designed to the collapsing the list of 
differential expressed in MI genes into a diagnostic signature; the obtained classification model 
is enable classifying MI patients and healthy controls with a quality of 0.911 on a test data. This 
pipeline could be useful in high-throughput data analysis for the searching of diagnostic signature 
of other diseases. 
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