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ABSTRACT  1 

Background: Non-alcoholic fatty liver disease (NAFLD) is highly prevalent and 2 

causes serious health complications in type 2 diabetes (T2D) and beyond. Early 3 

diagnosis of NAFLD is important, as this can help prevent irreversible damage to the 4 

liver and ultimately hepatocellular carcinomas.  5 

Methods and Findings: Utilizing the baseline data from the IMI DIRECT participants 6 

(n=1514) we sought to expand etiological understanding and develop a diagnostic tool 7 

for NAFLD using machine learning. Multi-omic (genetic, transcriptomic, proteomic, 8 

and metabolomic) and clinical (liver enzymes and other serological biomarkers, 9 

anthropometry, and measures of beta-cell function, insulin sensitivity, and lifestyle) 10 

data comprised the key input variables. The models were trained on MRI image-derived 11 

liver fat content (<5% or ³5%). We applied LASSO (least absolute shrinkage and 12 

selection operator) to select features from the different layers of omics data and Random 13 

Forest analysis to develop the models. The prediction models included clinical and 14 

omics variables separately or in combination. A model including all omics and clinical 15 

variables yielded a cross-validated receiver operator characteristic area under the curve 16 

(ROCAUC) of 0.84 (95% confidence interval (CI)=0.82, 0.86), which compared with 17 

a ROCAUC of 0.82 (95% CI=0.81, 0.83) for a model including nine clinically-18 

accessible variables. The IMI DIRECT prediction models out-performed existing non-19 

invasive NAFLD prediction tools.  20 

Conclusions: We have developed clinically useful liver fat prediction models (see: 21 

www.predictliverfat.org) and identified biological features that appear to affect liver fat 22 

accumulation. 23 

 24 
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INTRODUCTION 25 

Non-alcoholic fatty liver disease (NAFLD) is characterized by the accumulation of fat 26 

in hepatocytes in the absence of excessive alcohol consumption. NAFLD is a spectrum 27 

of liver diseases with its first stage, known as ‘simple steatosis’, defined as liver fat 28 

content >5% of total liver weight. Simple steatosis can progress to non-alcoholic 29 

steatohepatitis (NASH), fibrosis, cirrhosis, and eventually hepatocellular carcinoma. In 30 

NAFLD, triglycerides accumulate in hepatocytes and liver insulin sensitivity is 31 

diminished, promoting hepatic gluconeogenesis, thereby raising the risk of type 2 32 

diabetes (T2D) or exacerbating the disease pathology in those with diabetes (1-5). 33 

  34 

The prevalence of NAFLD is thought to be around 20-40% in the general population in 35 

Western countries, with an increasing trend across the world, imposing a substantial 36 

economic and public health burden (6-9). However, the exact prevalence of NAFLD 37 

has not been clarified, in part because liver fat is difficult to accurately assess. Liver 38 

biopsy, magnetic resonance imaging (MRI), ultrasounds and liver enzyme tests are 39 

often used for NAFLD diagnosis, but the invasive nature of biopsies, the high costs of 40 

MRI scans, the non-quantitative nature and low sensitivity of conventional ultrasounds, 41 

and the low accuracy of liver enzyme tests are significant limitations (10-12). To 42 

address this gap, several liver fat prediction indices have been developed, but none of 43 

these has sufficiently high predictive ability to be considered a gold standard (10). 44 

  45 

The purpose of this study was to use machine learning to identify novel molecular 46 

features associated with NAFLD and combine these with conventional clinical 47 

variables to predict NAFLD. These models include those variables that are likely to be 48 

informative of disease etiology, some of which may be of use in clinical practice. 49 
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METHODS AND MATERALS 50 

 51 
Participants (IMI DIRECT) 52 

The primary data utilized in this study were generated within the IMI DIRECT 53 

consortium, which includes a multicenter prospective cohort study of 3029 adults 54 

recently diagnosed with T2D (n=795) or at high risk of developing the disease 55 

(n=2234). All participants provided informed consent and the study protocol was 56 

approved by the regional research ethics committees for each clinical study center. 57 

Details of the study design and the core characteristics are explained elsewhere (13, 58 

14). 59 

 60 

Measures (IMI DIRECT) 61 

A T2*-based multiecho technique was used to derive liver fat content from MRI (15, 62 

16) and the percentage values were categorized into fatty (³5%) or non-fatty 63 

concentrations (<5%) to define the outcome variable. We elected not to attempt 64 

quantitative prediction of liver fat content, as this would require a much larger dataset 65 

to be adequately powered. A frequently-sampled 75g oral glucose tolerance test 66 

(OGTT) or a frequently sampled mixed-meal tolerance test (MMTT) was performed, 67 

from which measures of glucose and insulin dynamics were calculated, as previously 68 

described (13, 14, 17). Liver fat data were available for 1514 IMI DIRECT participants 69 

(503 diabetic and 1011 non-diabetic). The distribution of the liver fat data among 70 

different centers and cohorts is shown in S1 Fig and S2 Fig.  The list of the clinical 71 

input (predictor) variables (n=58), including anthropometric, plasma biomarkers and 72 

lifestyle factors, are shown in S1 Table. These clinical variables were controlled for 73 

center effect by deriving residuals from a linear model including each clinical variable 74 
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per model; these residuals were then inverse normalized and used in subsequent 75 

analyses. A detailed overview of participant characteristics for the key variables is 76 

shown in Table 1 for all IMI DIRECT participants with MRI data. There were no 77 

substantial differences in characteristics between these participants and those from IMI 78 

DIRECT who did not have MRI data (see S2 Table). 79 

 80 

           Non-diabetic cohort            Diabetic cohort Combined cohorts 
Characteristics Fatty  Non-fatty Fatty  Non-fatty Fatty  Non-fatty 

N (%) 344 (34)  667 (66) 296 (59) 207 (41) 640 (42) 874 (58) 

Age (yr) 61 (56, 66) 62 (56, 66) 62 (55, 67) 63 (58, 69) 61 (56, 66) 62 (56, 67) 

Sex, n (% female) 62 (18) 134 (20) 130 (44) 86 (42) 192 (30) 220 (25) 

Weight (kg) 
 

90.75 
(81.50, 100.25) 

81.40  
(75.67, 89.60) 

92.85 
(81.47, 103.75) 

80.80  
(73.00, 93.55) 

91.20  
(81.50, 102.00) 

81.40  
(74.03, 90.17) 

Waist circ. (cm)  105  
(98, 112) 

97 
(91, 103) 

107  
(97, 115) 

97  
(90, 107.25) 

106 
(98, 113) 

97 
(91, 103) 

BMI (kg/m^2)  29.23  
(26.91, 32.05) 

26.69  
(24.75, 28.71) 

31.47 
(28.37, 35.35) 

27.64  
(25.53, 31.07) 

30.05  
(27.53, 33.52) 

26.85  
(24.91, 29.23) 

SBP   134.70  
(125.3, 143.0) 

129.33  
(120, 140) 

131  
(122, 139.33) 

127.67  
(117.67, 138.33) 

132.67 
(124.00, 142.00) 

128.83  
(119.33, 140.00) 

DBP  83.50  
(79.33, 89.83) 

80.67  
(75.67, 86.00) 

76.67  
(72, 84) 

72.67  
(67.17, 80.67) 

81.33  
(5.33, 87.33) 

80.00  
(73.33, 84.67) 

HbA1c (mmol/mol) 38 (36, 40) 37 (35, 39) 47 (44, 51) 45 (42, 48) 41 (37, 46) 38 (36, 41) 

Fasting glucose (mmol/L) 5.90  
(5.60, 6.30) 

5.70  
(5.4, 6) 

7.20  
(6.3, 7.9) 

6.70  
(5.8, 7.6) 

6.30 
(5.8, 7.2) 

5.80 
(5.4, 6.3) 

Fasting insulin (pmol/L) 
 

75.60  
(54.30, 104.40) 

44.10  
(27.75, 66.00) 

115.8  
(75.8, 167.8) 

60.20 
(40.85, 82.90) 

90.90  
(61.2, 133.9) 

48.60  
(30.00, 69.60) 

2hr glucose (mmol/L) 
 

6.55  
(5.37, 8.20) 

5.70 
(4.70, 6.80) 

9 
(6.90, 10.65) 

7.90  
(6.20, 9.90) 

7.40  
(5.90, 9.60) 

6 
(4.90, 7.50) 

2hr insulin (pmol/L) 
 

345.60  
(198.40, 566.20) 

169.80  
(100.2, 274.2) 

489.30  
(297.40, 700.50) 

271 
(166.40, 418.10) 

403.20  
(236.60, 643.50) 

190.70  
(110.80, 317.60) 

Triglycerides (mmol/L) 
 

1.49  
(1.13, 2.09) 

1.12  
(0.86, 1.47) 

1.49 
(1.01, 1.99) 

1.12 
(0.86, 1.48) 

1.49 
(1.08, 2.02) 

1.12  
(0.86, 1.47) 

ALT (U/L) 21 (14, 29) 15 (10, 20) 25 (19, 33.25) 20 (16, 24) 23 (16, 32) 16 (12, 22) 

AST (U/L) 29 (24, 37) 25 (21, 29.75) 24 (20, 30) 22 (19, 27) 26 (22, 33) 24 (20, 29) 

Alcohol intake, n ("never", 
"occasionally", "regularly") 

21, 68, 255  91, 133, 443 52, 81, 163 38, 45, 124 73, 149, 418 129, 178, 567 

Liver fat 8.80  (6.60, 13) 2.2 (1.50, 3.30) 11.10 (7.30, 15.82) 2.70 (1.95, 4) 9.5 (6.80, 14.30) 2.4 (1.60, 3.50) 

 81 

Table 1. Characteristics of IMI DIRECT participants in the non-diabetes, diabetes and 82 

combined cohorts separated for fatty vs. non-fatty individuals. Values are median 83 

(interquartile range) unless otherwise specified. 84 

 85 

Genetic, transcriptomic, proteomic, and metabolomic datasets were used as input omic 86 

variables in the analyses. Buffy coat was separated from whole blood, and DNA was 87 
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then extracted and genotyped using the Illumina HumanCore array (HCE24 v1.0); 88 

genotype imputation was performed using the Haplotype Reference Consortium (HRC) 89 

and 1000 Genome (1KG) reference panels. Details of the quality control (QC) steps for 90 

the genetic data are described elsewhere (14). Transcriptomic data were generated using 91 

RNA-sequencing from fasting whole blood. Only protein-coding genes were included 92 

in the analyses, as reads per kilobase of transcript per million mapped reads (RPKM). 93 

The targeted metabolomic data of fasting plasma samples were generated using the 94 

Biocrates AbsoluteIDQ p150 kit. Additionally, untargeted LC/MS-based metabolomics 95 

was used to cover a broader spectrum of metabolites. A combination of technologies 96 

and quantitative panels of protein assays were used to generate ‘targeted’ proteomic 97 

data. This included Olink’s proximity extension assays (18), sandwich immunoassay 98 

kits using Luminex technology (MerckMillipore and R&D Systems, Sweden), 99 

microfluidic ELISA assays (ProteinSimple, USA (19)), as well as protein analysis 100 

services from Myriad RBM (Myriad GmbH, Germany) and for hsCRP (MLM Medical 101 

Labs GmbH, Germany). In addition, protein data were generated by single-binder 102 

assays using highly multiplexed suspension bead arrays (20). This approach (denoted 103 

‘exploratory’ proteomics) included a combination of antibodies targeting proteins 104 

selected by the consortium given published and unpublished evidence for association 105 

with glycemic-related traits. More information about data generation and QC of the 106 

transcriptomic, proteomic, and metabolomic data are described in the Supporting 107 

Information. Technical covariates for transcriptomics include guanine-cytosine mean 108 

content, insert size, analysis lane and RNA integrity number, cell composition, date and 109 

center. Technical covariates for proteomics were center, assay, plate number and plate 110 

layout (n=4), and for the targeted metabolites the technical covariates were center and 111 
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plate. These technical covariates were used to correct the omics data and the residuals 112 

were then extracted from these models and inverse normalized prior to further analyses. 113 

 114 

Feature selection (IMI DIRECT) 115 

We developed a series of NAFLD prediction models, comprised of variables that are 116 

available within clinical settings, as well as those not currently available in most clinics 117 

(see S3 Table). We had two strategies for selecting the clinical variables: i) we selected 118 

variables based on the clinical-accessibility and their established association with fatty 119 

liver from existing literature  without applying statistical procedures for data reduction 120 

(models 1-3); ii) a pairwise Pearson correlation matrix was used for feature selection of 121 

the clinical variables by placing a pairwise correlation threshold of r>0.8. We then 122 

selected the variables we considered most accessible among those that were collinear 123 

(model 4). Feature selection was undertaken in the combined cohort (diabetic and non-124 

diabetic) in order to maximize sample size and statistical power.  Of 1514 participants 125 

with liver fat data, 1049 had all necessary clinical and multi-omics data for a complete 126 

case analysis. We used k-nearest neighbors (k-NN) (21) imputation method with k 127 

equal to 10 as a means to reduce the loss of sample size but found that this did not 128 

materially improve predictive power in subsequent analyses and determined not to 129 

include these imputed data. An overview of the pairwise correlations among the clinical 130 

variables available in 1049 IMI DIRECT Study participants is presented in Fig 1. The 131 

abbreviations used for the variables in the figure are defined in S1 Table.  132 
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 133 

Fig 1. Pearson pairwise correlation matrix of clinical variables (data are inverse normal 134 

transformed) in the cohort combining participants with or without diabetes in IMI 135 

DIRECT (n=1049). The magnitude and direction of the correlation are reflected by the 136 

size (larger is stronger) and color (red is positive and blue is negative) of the circles 137 

respectively. The abbreviations used for the variables in the figure are defined in S1 138 

Table. 139 

 140 

The high-dimensionality nature of omics data also necessitated data reduction using the 141 

feature selection tool LASSO prior to building the model. LASSO is a regression 142 

analysis method that minimizes the sum of least squares in a linear regression model 143 
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and shrinks selected beta coefficients (𝛽") using penalties (formula (1)). Minimizing 144 

the following value, LASSO excludes the least informative variables and selects those 145 

features of most importance for the outcome of interest (𝑦) in a sample of n cases, each 146 

of which consists of m parameters. The penalty applied by 𝜆 can be any value from zero 147 

to positive infinity and is determined through a cross-validation step (22).  148 

 149 

 ∑ (𝑦( − 𝑦*+), + 𝜆 × ∑ |𝛽"|0
"12

3
(12      (1) 150 

 151 

To minimize bias (for example by overfitting), we randomly divided the dataset and 152 

used 70% (n=735) for feature selection and 30% (n=314) for the model generation (see 153 

below). We selected these thresholds for partitioning the dataset in order to maximize 154 

the power to select the informative features. Stratified random sampling (23) based on 155 

the outcome variable was undertaken in order to preserve the distribution of the liver 156 

fat categories in the two feature selection and model generation sets. We selected 157 

LASSO, as a non-linear data reduction tool might lead to overfitting owing to the high 158 

dimensionality of omics data. LASSO was conducted with package glmnet in R (24) 159 

with a ten-fold cross-validation step for defining the 𝜆 parameter that results in the 160 

minimum value for the mean square error of the regression model.  161 

Feature selection using LASSO was undertaken in each omics dataset (genetic, 162 

transcriptomic, proteomic and metabolomic) using 70% of the available data (models 163 

5-18). For the genetic dataset, we first performed a genome-wide association study 164 

(GWAS) prior to LASSO in order to identify single-nucleotide polymorphisms (SNPs) 165 

tentatively associated with liver fat accumulation (P<5 × 1078). LASSO was then 166 

applied to these index variants for feature selection in 70% of the study sample. The 167 

individual SNP association analysis was conducted with rvTests v2.0.2 (25), which 168 
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applies a linear mixed-model with an empirical kinship matrix to account for familial 169 

relatedness, cryptic relatedness, and population stratification. Only common variants 170 

with minor allele frequency (MAF) greater than 5% contributed to the kinship matrix. 171 

Liver fat data was log-transformed and then adjusted for age, age,, sex, center, body 172 

mass index (BMI) and alcohol consumption. These values were then inverse normal 173 

transformed and used in the GWAS analyses. S3 Fig and S4 Fig show the resulting 174 

Manhattan plot, depicting each SNP’s association with liver fat percentage and the 175 

quantile-quantile (QQ) plot of the GWAS results for liver fat. For the genetic data, 46 176 

SNPs were selected out of the 623 SNPs with p-values < 5 × 1078 . For the 177 

transcriptomics, 93 genes were selected out of 16,209 protein-coding genes. In the 178 

exploratory and targeted proteomics, 22 out of 377 and 48 out of 483 proteins were 179 

selected, respectively. In the targeted and untargeted metabolomic data, 39 out of 116 180 

and 48 out of 172 were selected by LASSO, respectively.  181 

    182 

Model training and evaluation  183 

The remaining 30% of the data was used to develop the binary prediction models for 184 

fatty liver (yes/no) with selected features used as input variables. We utilized the 185 

Random Forest supervised machine learning method, which is an aggregation of 186 

decision trees built from bootstrapped datasets (a process called ‘bagging’). Typically, 187 

two-thirds of the data are retained in these bootstrapped datasets and the remaining third 188 

is termed the ‘out of bag’ dataset (OOB), the latter of which is used to validate the 189 

performance of the model. To avoid over-fitting and improve generalizability, five-fold 190 

cross-validation was done for resampling the training samples and was repeated 5 times 191 

to create multiple versions of the folds. The number of trees was set to 1000 to provide 192 

an accurate and stable prediction. Receiver Operator Characteristic (ROC) curves were 193 
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used to evaluate model performance by measuring the area under the curve (AUC). A 194 

ROC curve uses a combination of sensitivity (true positive rate) and specificity (true 195 

negative rate) to assess prediction performance. In our analysis, the Random Forest 196 

model is used to derive probability estimates for the presence of fatty liver. In order to 197 

make a class prediction, it is necessary to impose a cut-off above which fatty liver is 198 

deemed probable and below which it is considered improbable. The choice of cut-off 199 

influences both sensitivity and specificity for a given prediction model. We considered 200 

the effect of different cut-offs on these performance measurements. Additionally, we 201 

calculated the F1 score (26), which is the harmonic mean of precision (positive 202 

predictive value) and sensitivity, derived as follows: 203 

F1 score = ,×=>3=(?(@(?A×BC>D(=(E3
(=>3=(?(@(?AFBC>D(=(E3)

     (2) 204 

Balanced Accuracy was also evaluated, which is the proportion of individuals correctly 205 

classified (true positives and true negatives) within each class individually. 206 

Measurements of sensitivity, specificity, F1 score and balanced accuracy were 207 

computed and compared at different cut-offs for diabetic, non-diabetic and the 208 

combined cohorts.  The variable importance was also determined via a “permutation 209 

accuracy importance” measure using Random Forest. In brief, for each tree, the 210 

prediction accuracy was calculated in the OOB test data. Each predictor variable was 211 

then permuted and the accuracy was recalculated. The difference in the accuracies was 212 

averaged over all the trees and then normalized by the standard error. Accordingly, a 213 

measure for variable importance is the difference in prediction accuracy before and 214 

after the permutation for each variable (27). Statistical analyses were undertaken using 215 

R software version 3.2.5 (28) and the Random Forest models were built using the Caret 216 

package (29). Fig 2 shows an overview of the different stages involved in the data 217 

processing and model training.  218 
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 219 

Fig 2. Overview of the different stages involved in data processing and model training: 220 

Clinical (C), Genetic (G), Transcriptomic (T), Exploratory Proteomic (E-P), Targeted 221 

Proteomic (T-P), Targeted Metabolomic (T-M) and Untargeted Metabolomic (U-M). 222 

 223 

Comparison with other fatty liver indices 224 

Given the accessible data within the IMI DIRECT cohorts, several existing fatty liver 225 

indices could be calculated and compared with the IMI DIRECT prediction models. 226 

These included the fatty liver index (FLI) (30), hepatic steatosis index (HSI) (31) and 227 

NAFLD liver fat score (NAFLD-LFS) (32).  228 

 229 

FLI 230 

The FLI is commonly used to estimate the presence or absence of fatty liver 231 

(categorized into fatty (>=60) or non-fatty liver (<60) FLI units) (30). FLI uses data on 232 

plasma triglycerides (TG), waist circumference, BMI and serum gamma-glutamyl 233 

transpeptidase (GGTP) and is calculated as follows: 234 

FLI =  	H
((I.KLM×NO(PQ))R(I.SMK×TUV)R(I.WSX×NO(QQPY))R(I.ILM×Z[\]^)	_SL.W`L	)×2aa
(2FH((I.KLM×NOPQ))R(I.SMK×TUV)R(I.WSX×NO(QQPY))R(I.ILM×Z[\]^)	_SL.W`L	))

      (3) 235 
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 236 

 NAFLD-FLS 237 

NAFLD-FLS was calculated using fasting serum (fs) insulin, aspartate transaminase 238 

(AST), alanine transaminase (ALT), T2D and metabolic syndrome (MS) (defined 239 

according to the International Diabetes Federation (33)) to provide an estimate of liver 240 

fat content. A NAFLD-FLS value above -0.64 is considered to indicate the presence of 241 

NAFLD: 242 

 NAFLD-LFS =  −2.89+ 1.18 ×MS	(yes	1, no	0) + 0.45× T2D	(yes	2, no	0) + 0.15× fs	Insulin	  (4) 243 

 244 

 HSI 245 

The HSI uses BMI, sex, T2D diagnosis (yes/no) and the ratio of ALT to AST and 246 

calculated as follows: 247 

 HSI = 8 × tuv
twv

+ BMI(+2	if	T2D	yes, +2	if	female)    (5) 248 

HSI values above 36 are deemed to indicate the presence of NAFLD.  249 

 250 

External validation (UK Biobank cohort) 251 

The UK Biobank cohort (34) was used to validate the clinical prediction models 252 

(models 1 and 2) derived using IMI DIRECT data (UK Biobank application ID: 18274). 253 

The same protocol and procedure have been used to quantify MRI-derived liver fat in 254 

IMI DIRECT and UK Biobank (16). In addition, we validated the FLI and HSI using 255 

UK Biobank data. Field numbers for the UK Biobank variables used in the validation 256 

step can be found in the S4 Table. The data analysis procedures used for the UK 257 

Biobank validation analyses mirror those used in IMI DIRECT (as described above).  258 

 259 
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RESULTS 260 

The following section describes fatty liver prediction models that are likely to suit 261 

different scenarios. We focus on a basic model (model 1), which includes variables that 262 

are widely available in both clinical and research settings. Models 2 and 3 focus on 263 

variables that could in principle be accessed within the clinical context, but which are 264 

not routinely available in the clinical setting at this time. Model 4 includes clinical 265 

variables, more detailed measures of glucose and insulin dynamics, and physical 266 

activity. Models 5 to 18 are more advanced models that include omic predictor variables 267 

alone or in combination with clinical predictor variables. See S3 Table for a full 268 

description of models. 269 

 270 

Clinical models (Models 1-3) 271 

We developed models 1-3 for NAFLD prediction, graded by perceived data 272 

accessibility for clinicians. These models were developed on the full dataset without 273 

applying any statistical procedures for feature selection. Model 1 includes six non-274 

serological input variables: waist circumference, BMI, systolic blood pressure (SBP), 275 

diastolic blood pressure (DBP), alcohol consumption and diabetes status. Model 2  276 

includes eight input variables: waist circumference, BMI, TG, ALT, AST, fasting 277 

glucose (or hemoglobin A1C (HbA1c) if fasting glucose is not available), alcohol 278 

consumption and diabetes status.  Model 3 includes nine variables: waist circumference, 279 

BMI, TG, ALT, AST, fasting glucose, fasting insulin, alcohol consumption and 280 

diabetes status. The three clinical models along with FLI, HSI and NAFLD-LFS indices 281 

were applied to the non-diabetic and diabetic cohort datasets separately, as well as in 282 

the combined dataset; the ROCAUC results are presented in Fig 3. Model 1 yielded a 283 

ROCAUC of 0.73 (95% confidence interval (CI)=0.72, 0.75) in both cohorts combined. 284 
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Adding serological variables to model 2 (with either fasting glucose or HbA1c) for the 285 

combined cohorts yielded the ROCAUC of 0.79 (95% CI=0.78, 0.80). Model 3 (fasting 286 

insulin added) yielded a ROCAUC of 0.82 (95% CI=0.81, 0.83) in the combined 287 

cohorts. The FLI, HSI and NAFLD-LFS had the ROCAUCs of 0.75 (95% CI=0.73, 288 

0.78), 0.75 (95% CI=0.72, 0.77) and 0.79 (95% CI=0.76, 0.81) in the combined cohorts, 289 

respectively. The predictive performance of the clinical models 1-3, FLI, HSI and 290 

NAFLD-LFS in the non-diabetes and diabetes cohorts are presented in S5 Table.  291 

 292 

Fig 3. Receiver operator characteristic area under the curve (ROCAUC) with 95% 293 

confidence intervals (error bars) for the clinical models 1-3, FLI, HSI and NAFLD-LFS 294 

(x-axis) in the IMI DIRECT cohorts.  Model 1 includes six non-serological input 295 
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variables: waist circumference, BMI, SBP, DBP, alcohol consumption and diabetes 296 

status. Model 2 includes eight input variables: waist circumference, BMI, TG, ALT, 297 

AST, fasting glucose (or hemoglobin A1C (HbA1c) if fasting glucose is not available), 298 

alcohol consumption and diabetes status. Model 3 includes nine variables: waist 299 

circumference, BMI, TG, ALT, AST, fasting glucose, fasting insulin, alcohol 300 

consumption and diabetes status. 301 

 302 

Performance metrics  303 

We further investigated sensitivity, specificity, balanced accuracy and F1 score (a score 304 

considering sensitivity and precision combined) metrics. These measurements were 305 

calculated for different cut-offs applied to the output of the Random Forest model (0.1, 306 

0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9) using the clinical models (models 1-3) in the 307 

diabetic, non-diabetic and the combined cohorts. The performance metrics for models 308 

1 and 2 are presented in S5 Fig and S6 Fig and for model 3 the metrics are presented in 309 

Fig 4. We aimed to find the optimal cut-off for these models based on the cross-310 

validated balanced accuracy. The highest balanced accuracy for models 1-3 in the non-311 

diabetic, diabetic and combined cohorts were observed at cut-offs of 0.4, 0.6 and 0.4, 312 

respectively (see Table 2).  313 
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 314 

Fig 4. Measurements of F1, sensitivity, specificity and balanced accuracy (y-axis) at 315 

different cut-offs (x-axis) for model 3 in the diabetic, non-diabetic and the combined 316 

cohorts of the IMI-DIRECT. The measurements are calculated by defining the 317 

predicted probabilities of fatty liver equal or above these cut-offs as fatty and below as 318 

non-fatty.  319 

Measurements of sensitivity, specificity, F1 score and balanced accuracy were 320 

computed for FLI, HSI and NAFLD-LFS indices and compared with those of the 321 

clinical models (1-3). These measurements were computed at the optimal cut-off values 322 

for these indices: -0.640 for NAFLD-LFS; 60 for FLI and 36 for HSI, respectively. A 323 

comprehensive overview of the prediction models’ performance metrics for all of the 324 

fatty liver indices listed above is shown in Table 2.  325 
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Model Cut-off Sensitivity Specificity F1 score Balanced-accuracy 

Non-diabetic (IMI DIRECT)      

1 0.4 0.51 0.75 0.51 0.63 

2 0.4 0.60 0.79 0.59 0.69 

3 0.4 0.64 0.80 0.63 0.72 

FLI 60 0.89 0.41 0.58 0.65 

HSI 36 0.62 0.68 0.55 0.65 

NAFLD-LFS -0.64 1 0.04 0.51 0.52 

      

Diabetic (IMI DIRECT)      

1 0.6 0.63 0.64 0.67 0.64 

2 0.6 0.65 0.68 0.69 0.67 

3 0.6 0.69 0.75 0.74 0.72 

FLI 60 0.77 0.54 0.73 0.66 

HSI 36 0.83 0.48 0.75 0.65 

NAFLD-LFS -0.64 1 0.01 0.73 0.50 

      

Combined (IMI DIRECT)      

1 0.4 0.67 0.65 0.62 0.66 

2 0.4 0.72 0.69 0.67 0.71 

3 0.4 0.74 0.73 0.70 0.74 

FLI 60 0.84 0.44 0.64 0.64 

HSI 36 0.71 0.63 0.64 0.67 

NAFLD-LFS -0.64 1 0 0.58 0.50 

      

UK Biobank      

1 0.4 0.49 0.78 0.43 0.63 

2 0.4 0.67 0.74 0.52 0.71 

FLI 60 0.62 0.76 0.50 0.69 

HSI 36 0.66 0.72 0.50 0.69 
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 326 

Table 2: An overview of the prediction models’ performance metrics for all of the fatty 327 

liver indices in the IMI DIRECT and UK Biobank datasets 328 

 329 

Validation in UK Biobank and IMI DIRECT 330 

Liver fat data were available in 4617 UK Biobank participants (1011 with >=5% and 331 

3606 with <5% liver fat). Of these individuals, 4609 had all the required variables to 332 

replicate the clinical model 1. To perform model 2 either with fasting glucose or 333 

HbA1c, 3807 participants had data available for a complete case analysis. Given the 334 

limited availability of variables in the UK Biobank dataset, only models 1 and 2 of the 335 

NAFLD prediction models we developed could be externally validated. To facilitate 336 

this validation analysis, the Random Forest models developed in the IMI DIRECT 337 

cohorts were used to predict the liver fat category (fatty vs. non-fatty) for the UK 338 

Biobank participants. The performance of FLI and HSI was also tested in the UK 339 

Biobank cohort. We validated both models 1 and 2 in the UK Biobank cohort with a 340 

similar ROCAUC as seen in the IMI DIRECT dataset. The ROCAUCs were 0.71 (95% 341 

CI= 0.69, 0.73), 0.79 (95% CI= 0.77, 0.80), and 0.78 (95% CI= 0.76, 0.79), for model 342 

1 and model 2 (with fasting glucose or with HbA1c), respectively. The FLI had a 343 

ROCAUC of 0.78 (95% CI= 0.76, 0.80), which is similar to model 2. The HSI yielded 344 

a ROCAUC of 0.76 (95% CI= 0.75, 0.78). 345 

Measurements of sensitivity, specificity, F1 score and balanced accuracy were also 346 

computed at the optimal cut-off values for these models: 0.4 for clinical models 1and  347 

2; 60 for FLI; 36 for HSI, respectively (see Table 2). 348 

 349 

 350 
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Omics models separately or in combination with clinical variables (models 5-14) 351 

More advanced models using omics data were also developed. These models were 352 

generated using the omics features selected by LASSO in the combined cohorts. The 353 

models include only omics or include omics plus 22 clinical variables as the input 354 

variables. These clinical variables, selected based on the pairwise Pearson correlation 355 

matrix, are: BMI, waist circumference, SBP, DBP, alcohol consumption, ALT, AST, 356 

GGTP, HDL, TG, fasting glucose, 2-hour glucose, HbA1c, fasting insulin, 2-hour 357 

insulin, insulin secretion at the beginning of the carbohydrate challenge tests (OGTT or 358 

MMTT), insulin sensitivity 2-hour OGIS, mean insulin clearance during the 359 

OGTT/MTT, fasting glucagon concentration, fasting plasma total GLP-1 360 

concentration, and mean physical activity intensity. Diabetes status (non-361 

diabetic/diabetic) was also included as a clinical predictor in the models, given that 362 

analyses were undertaken in the combined diabetic and non-diabetic cohorts. The 363 

ROCAUCs for these models (models 4-14) are shown in Fig 5. The clinical model with 364 

the 22 selected clinical variables (model 4) yielded in ROCAUC of 0.79 (95% CI= 0.76, 365 

0.81). Omics models with only the genetic (model 5), transcriptomic (model 7), 366 

proteomic (model 9) and targeted metabolomic (model 11) data as input variables 367 

resulted in ROCAUCs of 0.69 (95% CI= 0.66, 0.71), 0.72 (95% CI= 0.69, 0.74), 0.74 368 

(95% CI= 0.71, 0.76) and 0.70 (95% CI= 0.67, 0.72), and respectively. Including all 369 

the omics variables in one model (model 13) resulted in a ROCAUC of 0.81 (95% CI= 370 

0.76, 0.84).  Adding the clinical variables to each omics model improved the prediction 371 

ability; models with the clinical variables plus genetic (model 6), transcriptomic (model 372 

8), exploratory proteomic (model 10) and targeted metabolomic (model 12) resulted in 373 

ROCAUCs of 0.82 (95% CI= 0.80, 0.84), 0.81 (95% CI= 0.79, 0.83), 0.80 (95% CI= 374 

0.78, 0.83) and 0.80 (95% CI= 0.77, 0.82), respectively. The highest performance was 375 
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observed for model 14 (ROCAUC of 0.84, 95% CI= 0.82, 0.86). The variable 376 

importance for model 14 is presented in Fig 6, which shows that measures of insulin 377 

secretion rank amongst the highest of all input variables. Rankings for the individual 378 

clinical and omics variables are presented in S7-13 Figs.  379 

 380 

Fig 5. Receiver operator characteristic area under the curve (ROCAUC, y-axis) with 381 

95% confidence intervals (error bars) for the Clinical model (C) with the 22 selected 382 

clinical variables (model 4),  for  the omics models separately (Genetic (G) (model 5), 383 

Transcriptomic (T) (model 7), Exploratory Proteomic (P) (model 9) and Targeted 384 

Metabolomic (M) (model 11)), for all omics together (G+T+M+P)(model 13) and for 385 

omics combined with the clinical model (C+G (model 6), C+T (model 8), C+P (model 386 
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10), C+M (model 12) and C+G+T+M+P (model 14)) in the  cross-validated test data of 387 

IMI DIRECT combined cohorts. 388 

 389 

  390 

 391 
Fig 6. Variable importance for the Advanced model 14 with 222 omics and clinical 392 

input variables (clinical=22, genetic=46, transcriptomic=93, exploratory proteomic=22 393 

and targeted metabolomic=39). The y-axis shows the top 20 predictors in the model. 394 

The x-axis shows the variable importance, calculated via a “permutation accuracy 395 

importance” measure using Random Forest as the difference in prediction accuracy 396 

before and after the permutation for each variable scaled by the standard error.  397 
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 398 

Additional proteomic and metabolomic analyses (models 15-18) 399 

Data from targeted proteomics and untargeted metabolomic data were further utilized 400 

to develop the omics models separately or in combination with the clinical data. 401 

However, as some participants lacked these omics data, their models were developed 402 

using a smaller data subset and were, hence, not included in the advanced (model 14) 403 

analyses. The complete case analysis was primarily defined on the availability of the 404 

22 clinical variables (n=1049). Within this complete case set, 511 had a complete set 405 

of untargeted metabolomics data and 686 had a complete set of targeted proteomics 406 

data. Models with either targeted proteomic data only, or proteomic and clinical 407 

variables combined resulted in ROCAUCs of 0.81 (95% CI=0.78, 0.84) and 0.84 (95% 408 

CI=0.81, 0.87), respectively. The untargeted metabolomic model alone had a ROCAUC 409 

of 0.66 (95% CI=0.63, 0.69), which increased to 0.78 (95% CI= 0.75, 0.80) when the 410 

22 clinical variables were added.   411 

A web interface for the diagnosis of NAFLD was developed using the findings 412 

described above (www.predictliverfat.org), which we anticipate will render the models 413 

(1-3) developed here accessible for the wider community of clinicians and researchers. 414 

DISCUSSION 415 

Using data from the IMI DIRECT consortium, we developed 18 diagnostic models for 416 

early-stage NAFLD. These models were developed to reflect different scenarios within 417 

which they might be used: these included both clinical and research settings, with the 418 

more complex (and less accessible) models having the greatest predictive ability. The 419 

models were successfully validated in the UK Biobank, where data permitted. Overall, 420 

the basic clinical variables proved to be stronger predictors of the fatty liver than more 421 
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complex omics data, although adding omics data yielded the most powerful model, with 422 

very good cross-validated predictive ability (ROCAUC=0.84).  423 

NAFLD is etiologically complex, rendering its prevention and treatment difficult, and 424 

diagnosis can require invasive and/or relatively expensive procedures. Thus, non-425 

invasive and cost-effective prediction models with good sensitivity and specificity are 426 

much needed. This is especially important because if NAFLD is detected early, 427 

treatment through lifestyle interventions can be highly effective (35). However, simple 428 

NAFLD is usually asymptomatic and many patients only come to the attention of 429 

hepatologists when serious complications arise (36).  430 

To date, several prediction models have been developed to facilitate the diagnosis of 431 

steatosis (thoroughly reviewed elsewhere (11)). FLI is the most well-established and 432 

commonly used index, initially developed using ultrasound-derived hepatic steatosis 433 

data (30). The FLI yielded similar predictive performance in the diabetic and non-434 

diabetic cohorts of IMI DIRECT (ROCAUC ~ 0.75). 435 

Though commonly used for liver fat prediction, the FLI has a similar discriminative 436 

ability as waist circumference alone (37). Better discrimination can be obtained by 437 

incorporating additional serological and hemostatic measures, which is the case with 438 

the NAFLD-LFS (12), the SteatoTest (38) and the HSI (31), for example. 439 

Notwithstanding the added complexity and cost of these scores, the FLI, HSI and the 440 

NAFLD-LFS yielded similar predictive ability in a series of liver biopsy-diagnosed 441 

NAFLD cases (n=324) (32). 442 

Omics technologies have been used in a small number of studies to identify molecular 443 

biomarkers of NAFLD (39-41). This includes tests utilizing genetic data such as 444 

FibroGENE for staging liver fibrosis (42), and tests using metabolomic data derived 445 

from liver tissue to differentiate simple hepatitis from NASH (43), as well as a multi-446 
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component NAFLD classifier using genomic, proteomic and phenomic data (41). Using 447 

data from IMI DIRECT, we explored the predictive ability of genetic, transcriptomic, 448 

proteomic and metabolomic data from the blood for the diagnosis of NAFLD. The top 449 

twenty features of each omic model are presented in the S7-13 Figs. The details of the 450 

LASSO selected features are summarized in the Supporting Information (Excel file). 451 

Reassuringly, several of the features that ranked highest have been previously described 452 

for their association with liver fat content or closely related traits; this includes PNPLA3 453 

gene variants (40, 44), fetal liver tyrosine kinase-3 (FLT3) transcripts (45), IGFBP1(46-454 

48) and Lipoprotein lipase (Lpl) (49) proteins, and the metabolite glutamate (50). In the 455 

analysis of the targeted metabolites, phosphatidylcholines, including PC.aa.C32, 456 

PC.aa.C38, PC.aa.C40 and PC.aa.C42, glycerophospholipids and valine were amongst 457 

the highest-ranked metabolites that are known for their correlation with NAFLD and 458 

metabolic disorders (51, 52). For exploratory proteomics, the most important variables 459 

were proteins secreted into the blood, expressed by the liver as well as those leaking 460 

from the blood cells (53). The prediction model that only included targeted proteomic 461 

data (model 15) performed well (ROCAUC=0.81), rendering it an interesting candidate 462 

biomarker for future clinical tests. Among the top 20 most important proteins were 463 

many secreted into blood or leaked by the liver, as well as the pancreas, fat or muscle 464 

tissue (54). 465 

The models developed here may be used for screening. In order to stratify people likely 466 

to have NAFLD who might then undergo more invasive and/or costly assessments, it 467 

would be necessary for the prediction model to have high sensitivity. However, the 468 

predictive utility of a given model can be further improved, by selecting model cut-offs 469 

that optimize sensitivity or specificity, as the two metrics rarely perform optimally at 470 

the same cut-off. This issue was apparent for models 1-3 in the current analyses, where 471 
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we selected cut-offs that maximize balanced accuracy (considering both sensitivity and 472 

specificity); these features are especially important in screening algorithms, where the 473 

cost of false negatives can be high. Models 1-3 resulted in higher sensitivity in the 474 

diabetic cohort than the non-diabetic cohort, whereas the specificity was higher in the 475 

non-diabetic and in both cohorts combined than in the diabetic cohort. 476 

It is noteworthy that the analytical methods deployed here required a complete case 477 

analysis, which diminishes sample size considerably and is, thus, a limitation of this 478 

approach; although imputing missing data here helped preserve sample size, it did not 479 

improve the prediction ability of the models, and we hence elected to use the complete 480 

case analysis. The linear Lasso method was used to minimize overfitting that can occur 481 

with high-dimensionality data, while Random Forests was used to identify non-linear 482 

associations where data structure allowed. 483 

Heavy alcohol consumption is a key determinant of fatty liver but is unlikely to be a 484 

major etiological factor in IMI DIRECT owing to the demographics of this cohort. 485 

Nevertheless, a further limitation of this analysis is that alcohol intake was self-reported 486 

and may lack validity. To address this limitation, we removed all self-reported heavy 487 

alcohol consumers from the UK Biobank cohort and undertook sensitivity analyses, but 488 

this did not materially affect the results. A further consideration for future work is the 489 

impact lifestyle and medications are likely to have on the prediction of NAFLD. Here 490 

we considered lifestyle variables, but not medications. However, the use of medicines 491 

affecting liver fat is likely to be less in the non-diabetic than in the diabetic cohorts, yet 492 

the models fit better in the latter, suggesting that glucose-lowering medication use in 493 

the DIRECT cohorts does not have a major detrimental impact on prediction model 494 

performance. 495 
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In summary, we have developed prediction models for NAFLD that may have utility 496 

for clinical diagnoses and research investigations alike. Our finding that a model 497 

focused on proteomic data yielded high predictive utility may warrant further 498 

investigation. Our analysis also suggests that insulin sensitivity and beta-cell 499 

dysfunction may be involved in liver fat accumulation, which are at present not 500 

considered as features of conventional NAFLD risk models. 501 
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SUPPORTING INFORMATION CAPTIONS 

 
S1 Text. QC of the transcriptomic, proteomic, and metabolomic 

S1 Fig. Violin plot showing the distribution of liver fat percentage (y-axis) for the 

diabetic and non-diabetic cohorts (x-axis) of IMI DIRECT.  

S2 Fig. Distribution of liver fat percentage (y-axis) among the different centers (x-axis) 

contributing to the IMI DIRECT cohorts. 

S3 Fig. Manhattan plot showing SNPs associated with liver fat level (~18 million 

imputed SNPs) in the IMI DIRECT cohorts. The chromosomal position is plotted on 

the x-axis and the statistical significance of association for each SNP is plotted on the 

y-axis. Red line indicates genome-wide significance level (5 × 107z) and the blue line 

corresponds to the significance level of  5 × 1078. 

S4 Fig. Quantile-quantile (QQ) plot showing results of genome-wide association study 

(GWAS) for liver fat content in the IMI DIRECT consortium (1514 individuals). X-

axis illustrates the expected distribution of p-values from association test across all the 

SNPs and the y-axis shows the observed p-values.  
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S5 Fig. Measurements of F1, sensitivity, specificity and balanced accuracy (y-axis) at 

different cut-offs (x-axis) for model 1 in the diabetic, non-diabetic and the combined 

cohorts of the IMI-DIRECT.  

S6 Fig. Measurements of F1, sensitivity, specificity and balanced accuracy (y-axis) at 

different cut-offs (x-axis) for model 2 in the diabetic, non-diabetic and the combined 

cohorts of the IMI-DIRECT.  

S7 Fig. Variable importance for the clinical model (only top 20) 

S8 Fig. Variable importance for the genetic model (only top 20) 

S9 Fig. Variable importance for the transcriptomic model (only top 20) 

S10 Fig. Variable importance for the exploratory proteomic model (only top 20) 

S11 Fig. Variable importance for the targeted metabolomic model (only top 20) 

S1 Table. The list of the clinical input variables with the abbreviation used in the 

analyses and their meaning 

S2 Table. Characteristics of the study in the non-diabetes, diabetes and combined 

cohorts separated for participants from IMI DIRECT who had MRI data vs. those who 

did not have MRI data. Values are median (interquartile range) unless otherwise 

specified. 

S3 Table. Variables used to construct each of the NAFLD prediction models developed 

in the IMI DIRECT.  

S4 Table. UK Biobank fields used in the analyses. 

S5 Table. The ROCAUC results of the clinical models in the non-diabetes and diabetes 

cohorts separately. 

Supporting Information (Excel file). The details of the LASSO selected features of 

the omics layers. 
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