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Abstract 
Background: Depression is a highly prevalent and heterogenous disorder. This study aims to determine 
whether depression with atypical features shows different heritability and different degree of overlap 
with polygenic risk for psychiatric and immuno-metabolic traits than other depression subgroups.   

Methods: Data included 30,069 European ancestry individuals from the UK Biobank who met criteria 
for lifetime major depression. Participants reporting both weight gain and hypersomnia were 
classified as ↑WS depression (N = 1,854) and the others as non-↑WS depression (N = 28,215). Cases 
with non-↑WS depression were further classified as ↓WS depression (i.e. weight loss and insomnia; 
N = 10,142). Polygenic risk scores (PRS) for 22 traits were generated using genome-wide summary 
statistics (Bonferroni corrected p=2.1x10-4). Single nucleotide polymorphism (SNP)-based heritability 
of depression subgroups was estimated.  

Results: ↑WS depression had a higher polygenic risk for BMI (OR=1.20, [1.15-1.26], p=2.37e-14) and 
C-reactive protein (OR=1.11, [1.06-1.17], p=8.86e-06) vs. non-↑WS depression and ↓WS depression. 
Leptin PRS was close to the significance threshold (p=2.99e-04), but the effect disappeared when 
considering GWAS summary statistics of leptin adjusted for BMI. PRS for daily alcohol use was 
inversely associated with ↑WS depression (OR=0.88, [0.83-0.93], p=1.04e-05) vs. non-↑WS 
depression. SNP-based heritability was not significantly different between ↑WS depression and ↓WS 
depression (14.3% and 12.2%, respectively).  

Conclusions: ↑WS depression shows evidence of distinct genetic predisposition to immune-metabolic 
traits and alcohol consumption. These genetic signals suggest that biological targets including 
immune-cardiometabolic pathways may be relevant to therapies in individuals with ↑WS depression.  
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Introduction 

Depressive disorders are highly prevalent and a leading cause of global disability and are associated 
with premature mortality (James et al., 2018) (Kessler & Bromet, 2013). Twin-based heritability of 
unipolar depression is estimated to be ~37% (Sullivan et al., 2000), with common single-nucleotide 
polymorphisms (SNPs) explaining ~9% of variation in depression liability (Wray et al., 2018) (Howard 
et al., 2019). Efforts to identify genetic variants associated with the disease are hindered by the 
heterogeneity among depressed cases, who can vary greatly in symptom presentation and severity, 
clinical course and treatment response (Fried & Nesse, 2015). Clinical heterogeneity may also reflect 
different underlying biological and causal pathways. Increasing evidence suggests that depressive 
symptoms and subtypes are differentially associated with genetic risk factors that overlap with other 
disorders (Beijers et al., 2019) (Milaneschi et al., 2016) (Milaneschi et al., 2017). Investigating the 
clinical and genetic correlates of more homogenous subtypes may improve the understanding of 
specific aetiological mechanisms and the development of potential treatment targets. Similarly, 
identifying whether genetic risk for other disorders overlaps with certain characteristics of depression 
may help to elucidate biological mechanisms underlying common symptom presentations across 
multiple disorders. 

The atypical subtype of major depression is specified in the DSM-5 by the presence of at least two of 
the following symptoms: hypersomnia, increased appetite and/or weight gain, leaden paralysis, and 
interpersonal rejection sensitivity (American Psychiatric Association, 2013). Reversed neurovegetative 
symptoms (hypersomnia, increased appetite and/or weight gain), in particular, have been found to be 
highly specific and predictive of clinically defined atypical MDD, as they identify patients with similar 
sociodemographic and clinical correlates as those reported for classification based on the full DSM-
criteria (Benazzi, 2002). Classification of atypical depression based on reversed neurovegetative 
symptoms alone is more feasible in epidemiological studies, many of which have adopted this criterion 
instead of the full DSM-5 criteria (Lee et al., 2009) (Matza et al., 2003). 

Epidemiological studies have shown differences between atypical and non-atypical depression in 
sociodemographic factors, clinical features, lifestyle factors and comorbidities. Atypical depression 
has been associated with earlier age of onset, female gender, more severe and recurrent depressive 
episodes (Agosti & Stewart, 2001) (Blanco et al., 2012) (Brailean et al., 2020). Findings from UK Biobank 
(UKB) showed higher rates of smoking, social isolation, loneliness, greater exposure to adverse life 
events and lower rates of moderate physical activity among atypical cases compared to non-atypical 
cases (Brailean et al., 2020). Atypical depression has also been associated with higher rates of bipolar 
disorder and psychiatric comorbidity such as anxiety disorders, binge eating disorder and substance 
abuse (Agosti & Stewart, 2001) (Blanco et al., 2012) (Brailean et al., 2020) (Lee et al., 2009) (Łojko et 
al., 2015). Physical health comorbidities more strongly associated with atypical cases include higher 
body mass index (BMI), inflammation, metabolic syndrome and cardiovascular disease (Brailean et al., 
2020) (Lasserre et al., 2014) (Milaneschi et al., 2017). Specifically, evidence suggests stronger links 
between atypical features of increased appetite and/or weight and immunometabolic dysregulations, 
such as BMI, C-reactive protein (CRP) and leptin (Milaneschi et al., 2017).  

There is increasing evidence to suggest partially distinct genetic profiles among depressive subtypes. 
SNP-based heritability (h2

SNP) was found to vary across individual depressive symptoms (h2
SNP range 

from 6-9%), and patterns of SNP associations and genetic correlations differed across symptoms 
(Thorp et al., 2019). A study that classified cases into subtypes according to change in neurovegetative 
symptoms (i.e. no change, increased or decrease appetite and/or weight [A/W]) found similar SNP-
heritability of 10-11% in all groups (Milaneschi et al., 2017). Polygenic risk scoring analyses confirmed 
that the increased A/W subtype had higher polygenic risk for CRP, BMI, leptin and triglycerides levels 
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than the decreased A/W subtype (Milaneschi et al., 2017) (Milaneschi et al., 2017a) (Milaneschi et al., 
2016). Overlapping genetic aetiology between depression and cardiovascular diseases (CAD) was 
demonstrated (Hagenaars et al., 2019), but no studies investigated if depression with atypical features 
may have a greater genetic overlap with CAD compared to other depression subtypes. 

In the present study, we examined the genetic overlap between depression with atypical features 
(increased weight and sleepiness: ↑WS) and a range of traits and disorders using polygenic risk scores. 
Based on previous findings, we hypothesised that ↑WS depression would show similar heritability to 
depression without ↑WS and higher polygenic risk for immune-cardio-metabolic, substance use and 
other psychiatric traits compared to depression without ↑WS. 

 

Materials and methods 

Sample 

Individuals who met lifetime criteria for major depression were drawn from the UK Biobank (UKB). 
UKB is a prospective population-based study of ~500,000 individuals recruited across the United 
Kingdom, aged between 40-69 at baseline (UK Biobank, 2019). A total of 157,387 participants 
completed an online Mental Health Questionnaire (MHQ) assessing self-reported psychiatric 
symptoms corresponding to clinical diagnostic criteria and self-reported professional diagnoses (K. A. 
S. Davis et al., 2020).  Genome-wide genetic data has been collected on all UKB participants (Bycroft 
et al., 2018), as detailed below. All participants provided written informed consent and all procedures 
contributing to this work comply with the ethical standards of the relevant national and institutional 
committees on human experimentation and with the Helsinki Declaration of 1975, as revised in 2008.  

Measures 

Lifetime psychiatric diagnoses were assessed in the MHQ using the Composite International Diagnostic 
Interview Short Form (CIDI-SF) (Kessler et al., 1998). Criteria for lifetime major depressive episode 
were in accordance with DSM-V. The full CIDI is a validated measure of depression, demonstrated to 
have good concordance with direct clinical assessment (Haro et al., 2006).  

Cases reporting both weight gain (data field 20536) and hypersomnia (data field 20534) were classified 
as ↑WS depression (N = 1,854), and the remaining cases classified as depression without ↑WS  (N = 
28,215). From this group, depression with both weight loss and decreased sleep (data fields 20533 
and 20535) was defined as ↓WS depression (N = 10,142). These definitions used the same coding 
conventions as those used in a previous study in the UKB (Brailean et al., 2020), however we preferred 
to avoid the terms atypical and typical depression to avoid confusion with the standard nosological 
classification. We did not consider variations in appetite to distinguish the subgroups, since the 
available measure (data field 20511) did not differentiate between hypophagia and hyperphagia. 

Genotyping and quality control 

Genetic data came from the full release of the UKB data (N = 488,377; (Bycroft et al., 2018). 
Genotyping was performed using two highly-overlapping arrays covering ~800,000 markers (UK 
Biobank Axiom Array Content Summary). Autosomal genotype data underwent centralised quality 
control to adjust for possible array effects, batch effects, plate effects, and departures from Hardy-
Weinberg equilibrium (HWE; (Bycroft et al., 2018)). Variants for this analysis were limited to common 
variants (minor allele frequency > 0.01) that were directly genotyped. SNPs were further excluded 
based on missingness (> 0.02) and on HWE (p < 10-8). Individuals were removed for high levels of 
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missingness (> 0.05) or abnormal heterozygosity (as defined during centralised quality control), 
relatedness of up to third-degree kinship (KING r < 0.044 (Manichaikul et al., 2010)), or phenotypic 
and genotypic gender discordance (phenotypic males with FX<0.9, phenotypic females with FX>0.6). 
Population structure within the UK Biobank cohort was assessed using principal component analysis, 
with European ancestry defined by 4-means clustering on the first two genetic principal components 
(Warren et al., 2017). Among respondents to the MHQ, 95% were of European ancestry and therefore 
individuals from other ancestries were excluded from further analyses to maximise statistical power. 
After quality control, the final sample of respondents to the MHQ consisted of 126,522 individuals 
with genotype data.  

Statistical analysis  

Polygenic risk scores 

Polygenic risk scores were calculated based on GWAS summary statistics for 22 traits reflecting the 
hypothesis formulated in the Introduction, including major psychiatric disorders, personality traits, 
substance use related traits, cardio-metabolic traits and C-reactive protein (CRP) (Supplementary 
Table 1). There was no overlap between the samples included in these GWASs and the sample 
included in this study, except a very marginal overlap with the GWAS of anorexia nervosa 
(349/16,992 (2%) of cases included in (Watson et al., 2019)). 

PRS were calculated using PRSice v.2 (Choi & O’Reilly, 2019) (Euesden et al., 2015). PRSice computes 
scores in an independent (target) sample by calculating the weighted sum of trait-associated alleles 
using summary data from GWAS discovery samples. SNPs in linkage disequilibrium (r2 ≥ 0.1 [250-kb 
window]) were removed using the clumping procedure. We used the default average option that 
calculates the ratio between the PRS and the number of alleles included in each individual and PRS 
were standardised (mean=0, SD=1). PRS were calculated at 11 p-value thresholds PT (5e-8, 1e-5, 1e-3, 
0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 1) and the most predictive PT was selected. Logistic regression models 
were used to estimate associations between ↑WS depression vs. non-↑WS depression and each PRS 
adjusting for covariates of six genetic ancestry principal components, centre and batch effects. We 
estimated the proportion of variance explained by PRS on the observed and liability scale (Lee et al., 
2012), considering a range of possible values of prevalence among depressed cases (Łojko & 
Rybakowski, 2017) (Levitan et al., 1997). For PRS of traits associated with ↑WS depression we 
calculated: 1) the OR of ↑WS depression vs. depression without ↑WS for each decile of the PRS, 
taking the first decile as reference and 2) if the effect was comparable when considering each of the 
symptoms separately (↑weight and ↑ sleep vs. no increase in weight or sleep). We estimated 
differences between PRS results of different comparisons by comparing their estimates (E1 and E2) 

and SE (SE1 and SE2) using a Z-test (! = ("#$"%)
'(("#)!)(("%)!). The code used for these analyses is available 

as supplementary material (code_used_for_analyses).   

A Bonferroni correction was applied to account for multiple testing, providing a required significance 
level of p < 2.1e-4 (the PRS of 17 traits were analysed at 11 PT, while for 5 traits there were no SNPs 
with p < 5e-8 and 10 thresholds were tested [0.05/(11 x 17 + 10 x 5)= 2.1e-4]). The use of Bonferroni 
correction is conservative, since the different PT are highly correlated. 

SNP-based heritability  

Using genome-wide complex trait analysis software v.1.93.1beta (GCTA) (J. Yang et al., 2011), genetic 
relationship matrix-restricted maximum likelihood (GREML) methods (Lee et al., 2011) were used to 
estimate the variance in liability attributable to the additive effects of all SNPs (h2

SNP) for ↑WS 
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depression, ↓WS depression and depression not falling in these two groups. A random subset of 8,000 
healthy controls were selected for the analyses among those who completed the MHQ. This number 
of controls was selected because it provided adequate power (at least 80%) to estimate heritability 
considering an expected heritability of 0.10 (Milaneschi et al., 2017), using GCTA-GREML Power 
Calculator  (Visscher et al., 2014). The genetic relationship matrix (GRM) was adjusted for incomplete 
tagging of causal SNPs and we excluded related individuals using a grm-cutoff of 0.05. We calculated 
the genetic correlation between depression subgroups using bivariate GREML with independent 
subsets of 8,000 healthy controls for each depression subgroup.  

We also calculated h2
SNP using GCTB (Genome-wide Complex Trait Bayesian analysis) Bayes S method, 

which estimates polygenicity from the data (i.e., the proportion of SNPs with nonzero effects, Pi). 
GCTB also calculates the relationship between effect size and MAF (S) which can be used to detect 
signatures of natural selection (Zeng et al., 2018). We used the standard settings of 21,000 simulations 
with the first 1,000 as burn-in and standard initial S and Pi values.     

GCTA-GREML and GCTB Bayes S analyses were adjusted for the same covariates included in the PRS 
analysis, but we also adjusted for BMI because there was a significant difference in BMI between cases 
with ↑WS depression (30.55±5.78), ↓WS depression (25.93±4.41) and healthy controls (26.45±4.14) 
(p=1.51e-221 and p=1.25e-154, respectively); heritability estimates would be confounded by this 
variable which was demonstrated to have heritability of about 28% (Zeng et al., 2018).  

Possible differences among h2
SNP of depression subgroups were compared by a Z-test as explained for 

PRS results. h2
SNP estimates were transformed to a liability scale (S. H. Lee et al., 2012) and we reported 

heritability considering a range of plausible prevalence values (Lim et al., 2018) (Łojko & Rybakowski, 
2017) (Levitan et al., 1997). The code used for these analyses is available as supplementary material 
(code_used_for_analyses).   

Sensitivity analyses  

Analyses were repeated 1) excluding cases with probable bipolar disorder or missing information for 
this variable (wider bipolar disorder definition, as described in (Brailean et al., 2020), n=1747) and 
schizophrenia or missing information for this variable (n=61); 2) comparing ↑WS depression with 
↓WS depression (rather than non-↑WS  depression); and 3) comparing both ↑WS depression and 
↓WS depression with healthy controls who completed the MHQ (n=64,604) (Figure 1).  

 

Results 

Sample characteristics  

The total sample comprised of 30,069 participants who met criteria for lifetime major depressive 
episode, including 1,854 cases classified as ↑WS depression and 28,215 classified as depression 
without ↑WS. Non-↑WS  cases were further classified as ↓WS depression (N = 10,142). The ↑WS 
group was 75% female and had a mean age of 59.99 (SD = 7.09) years, compared to the non-↑WS 
group which was 68% female and had a mean age of 62.50 (7.53) years. The ↓WS depression group 
was 75% female and had a mean age of 62.55 (7.49). Further description of the clinical-demographic 
features of the subtypes can be found in a previous paper in UKB that used the same classification 
criteria (Brailean et al., 2020). 

Polygenic risk analysis  
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Traits where the PRS were significantly associated with ↑WS depression compared to non-↑WS 
depression included BMI (OR=1.20 [1.15-1.26], p=2.37e-14), CRP (OR=1.11 [1.06-1.17], p=8.86e-06), 
daily alcohol use (OR=0.88 [0.83-0.93], p=1.04e-05) and MDD (OR=1.10 [1.05-1.15], p=1.14e-04), as 
shown in Table 1 (see Supplementary Table 2 for all results). The OR for ↑WS depression was 2.03 
(1.62-2.55), 1.36 (1.10-1.68), 0.62 (0.49-0.79) and 1.30 (1.04-1.61) in the 10th PRS decile vs. the 1st PRS 
decile for BMI, CRP, daily alcohol use and MDD, respectively (Figure 2). Results were consistent 
between different PT (Supplementary Figure 1). The same direction of effect was observed when 
comparing cases with weight gain vs. cases without weight gain, with similar effect size for alcohol 
daily use, MDD, leptin and CRP PRS, while larger effect size for BMI PRS (z=2.12, p=0.03). These PRS 
showed the same direction of effect though not significant when considering depression with 
hypersomnia compared to depression without this symptom (Supplementary Table 2C). The results 
were consistent when comparing ↑WS depression with ↓WS depression and ↑WS depression with 
healthy controls (Supplementary Table 3 and 4). Interestingly, the effect of BMI PRS was very close to 
the significance threshold for being inversely associated with ↓WS depression vs. healthy controls 
(p=1.24e-04) while leptin, CRP and alcohol daily use PRS had no effect (Supplementary Table 5).  

The association between ↑WS vs. depression without ↑WS and leptin PRS was close to the 
significance threshold (OR=1.09 [1.04 – 1.14], p=4.13e-04) but disappeared when considering GWAS 
summary statistics of leptin adjusted for BMI. Nominal significant associations (p < 0.05) included PRS 
for type 2 diabetes, coronary artery disease, triglycerides, total HDL cholesterol, and ischemic stroke 
(Figure 3; Supplementary Table 2). The PRS for coronary artery disease reached statistical significance 
for association with both ↑WS depression and ↓WS depression when the comparator group was 
healthy controls, in addition to triglycerides PRS only for ↑WS depression vs. controls. Case-healthy 
controls analyses showed expected associations with the PRS of psychiatric traits and contributed to 
clarifying the effect of alcohol use-related traits PRS: higher PRS for alcohol dependence but not daily 
alcohol use increased the risk of ↓WS depression, while ↑WS depression was still associated with 
lower daily alcohol use PRS (Supplementary Table 4-5, Figure 4). Sensitivity analysis revealed very 
similar results when excluding cases with probable bipolar disorder and schizophrenia or missing 
information for these variables (n=196 and n=12 among patients with ↑WS depression; n=1551 and 
n=49 among those with non-↑WS  depression; Supplementary Figures 2-4).  

SNP-based heritability 

SNP-based heritability (h2
SNP) on the liability scale for ↑WS depression was estimated to be 0.14 (95% 

CI 0.03-0.25) using GCTB-Bayes S and 0.21 (95% CI 0.07-0.35) using GCTA-GREML (Table 2).  h2
SNP was 

0.12 (95% CI 0.08-0.16) and 0.16 (95% CI 0.10-0.22) for ↓WS depression using the two methods, 
respectively.  GCTA-GREML h2

SNP was not significantly different comparing ↑WS depression with ↓WS 
depression (z=0.57, p=0.56), depression with weight gain (z=1.09, p=0.27), depression with weight loss 
(z=0.75, p=0.46) or depression without ↑WS or ↓WS (z=1.25, p=0.21). GCTB-Bayes S estimates were 
not significantly different compared with GCTA-GREM estimates for any depression subgroup (Table 
2). The estimated proportion of SNPs contributing to h2

SNP ranged from 2% to 4%; S estimation was 
negative for all traits but not significantly different from zero, except for depression with weight gain 
(z=2.36, p=0.018), which however did not survive Bonferroni correction for five tests (Supplementary 
Figure 5).   

Genetic correlations were 0.54 (SE=0.14) for ↑WS depression and ↓WS depression, 1.05 (SE=0.15) 
for ↑WS depression and depression without ↑WS or ↓WS, and 0.74 (SE=0.14) between ↓WS 
depression and depression without ↑WS or ↓WS.  
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Discussion 

This study examined the genetic overlap between depression with atypical features (↑WS) and a 
range of traits and disorders using polygenic risk scores in 30,069 cases with major depression from 
the UKB. The findings showed that persons with higher BMI PRS, CRP PRS and MDD PRS are more likely 
to have ↑WS depression vs. non-↑WS  depression and ↓WS depression, while those with lower PRS 
for alcohol daily use were more likely to have non-↑WS depression rather than ↑WS depression. 
Associations with these PRS were consistent among different PT. The effect of BMI PRS and CRP PRS 
on the risk of ↑WS depression was similar when taking healthy controls as comparator group, while 
it was in the opposite direction or absent, respectively, when we compared ↓WS depression vs. 
healthy controls. The analyses of individual symptoms (weight changes and sleep changes) showed 
that BMI, non-BMI adjusted leptin and CRP PRS had a higher effect size on depression with weight 
increase than sleep increase, but not the PRS of alcohol daily use and MDD; however, the direction of 
the effect on weight and sleep increase was the same for all these PRS, suggesting that the symptoms 
of weight gain and sleepiness in depression have shared rather than divergent genetics. The PRS of 
coronary artery disease and triglycerides was associated with ↑WS depression vs. healthy controls, 
in line with nominal associations between the PRS of other cardio-metabolic traits (e.g. type 2 
diabetes) and the risk of ↑WS depression compared to other depression subgroups as well as healthy 
controls. The PRS for alcohol dependence was associated with the risk of ↓WS depression compared 
to healthy controls but not for ↑WS depression compared to healthy controls, though the direction 
of the effect was the same. Interestingly, the PRS of alcohol daily use was similar between ↓WS 
depression and healthy controls, but significantly lower in ↑WS depression, suggesting that the 
pathogenesis of alcohol use disorders may involve different mechanisms in ↑WS compared to ↓WS 
depression. A recent GWAS demonstrated that alcohol consumption and alcohol use disorders (AUD) 
show significant genetic differences, with the genetics of AUD being more closely related to other 
psychiatric disorders, and the genetics of alcohol consumption to that of some positive health 
outcomes, such as reduced risk of cardiovascular disease, and lower BMI, in line with our findings 
(Kranzler et al., 2019). 

Taken together, these results suggest partially distinct genetic pathways between depression with 
atypical and typical neurovegetative symptoms and that this divergence may be attributable to 
distinct genetic predisposition to immune-metabolic traits. Although there is no convincing evidence 
that these depression subgroups may respond differently to conventional antidepressant treatments, 
drugs acting on the specific biological mechanisms implicated in ↑WS depression may have clinical 
benefits. For example, peroxisome proliferator-activated receptor (PPAR)-γ agonists target insulin 
resistance and the related oxidative and pro-inflammatory changes (which are also involved in the 
pathogenesis of depressive symptoms); they were demonstrated to have antidepressant effects in 
patients with treatment-resistant resistant bipolar depression and concomitant insulin resistance 
(Kemp et al., 2014). 

The SNP-based heritability was estimated to be similar between ↑WS depression and other subtypes 
and it did not significantly change after excluding cases with probable bipolar disorder and 
schizophrenia. GCTA-GREML h2

SNP was similar to a previous study of depression with weight/appetite 
gain (h2

SNP = 0.11 (SE=0.03)) and weight/appetite loss (h2
SNP = 0.10 (SE=0.02)) (z=1.24, p=0.22; z=1.72, 

p=0.09, respectively) (Milaneschi et al., 2017). However, this study considered both weight and 
appetite changes in the definition of the subgroups, while we used only weight changes because of 
the lack of information on the direction of appetite changes in UKB. Genetic correlations suggested 
that ↑WS depression genetics is highly shared with depression without ↑WS or ↓WS, and the 
genetic correlation between these subgroups was significantly higher than the genetic correlation 
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between ↑WS depression and ↓WS depression (z=2.49, p=0.013). In line with previous evidence, 
major depression subgroups did not show evidence of negative natural selection based on GCTB-Bayes 
S estimates (Zeng et al., 2018).  

Observational studies have shown differential pathophysiological correlates among subtypes of 
depression, with atypical depression more strongly associated with obesity and metabolic 
dysregulations than other depression groups (Brailean et al., 2020) (Lasserre et al., 2014) (Milaneschi 
et al., 2017). Consistent with previous research, the present findings suggest that the phenotypic 
association between depression with atypical features and cardiometabolic traits may partly result 
from shared genetic and biological mechanisms (Milaneschi et al., 2016) (Milaneschi et al., 2017). For 
example, pleiotropy may occur when shared genetic variants influence obesity-related traits and ↑WS 
depression through common pathways such as inflammation and/or leptin system dysregulation (Guo 
& Lu, 2014) (Ring & Zeltser, 2010). A previous study (Milaneschi et al., 2017) reported that the genetic 
correlation between leptin and ↑WS depression was decreased but not absent when considering 
leptin adjusted for BMI, while we found no association between PRS for BMI-adjusted leptin levels 
and ↑WS depression or depression with weight increase. Leptin reduces food intake and obesity is 
associated with increased leptin levels, through the induction of leptin-resistance (Myers et al., 2010). 
The adjustment of leptin levels for BMI eliminates an important source in leptin inter-individual 
variability, and separates the genetic factors regulating BMI from those that regulate only leptin 
production. Our results indicate that the genetic factors predisposing to increased BMI and increased 
leptin levels in ↑WS depression are highly correlated, in line with the hypothesis that increased leptin 
levels are generally a consequence of increased BMI rather than a cause (at least in common forms of 
obesity), although different pathogenetic mechanisms may lead to similar phenotypes (Myers et al., 
2010). This discrepancy may also relate to the different criteria used to define depression subgroups 
and sample-specific characteristics.   

The current findings also showed that PRS for alcohol daily use was inversely associated with risk for 
↑WS depression both in case only and case-control analyses, while it showed no difference between 
↓WS depression and healthy controls. In case-control comparisons, the PRS of alcohol dependence 
was associated with ↓WS depression and at the nominal level with ↑WS depression. Epidemiological 
studies have shown increased alcohol consumption and/or risk of alcohol use disorders among 
persons with atypical depression (Blanco et al., 2012) (Brailean et al., 2020). There are no previous 
studies which examined the genetic overlap between alcohol use and atypical depression, although a 
positive genetic correlation between MDD and alcohol dependence has been reported (Andersen et 
al., 2017) (Kranzler et al., 2019). Our results suggest that genetic risk for daily alcohol use is lower in 
↑WS depression vs other groups, in contrast with epidemiological observations of higher risk of 
alcohol use disorders in atypical cases. However, as previously noted, the genetics of alcohol daily use 
only partially overlaps with the genetics of alcohol dependence. In addition, the increased rate of 
alcohol use among cases with ↑WS depression may result from secondary or environmental risk 
factors rather than from a genetic aetiology. In line with this hypothesis, depression with atypical 
features in UKB show longer, more severe and recurrent disease episodes, increased risk of 
comorbidities, and more lifetime deprivation and adversity (Brailean et al., 2020), and these factors 
may be responsible for increased risk of alcohol use disorders (Yang et al., 2018). 

Several limitations should be considered when interpreting the results from the present study. First, 
the UK Biobank is not representative of the general population, with respondents more likely to be 
older, female, healthier, of a higher socioeconomic background and better educated (Fry et al., 2017). 
Compared to the overall UKB cohort, respondents of the MHQ have on average higher educational 
and occupational attainment, are less likely to smoke, or report longstanding illness/disability (Davis 
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& Hotopf, 2019). This is likely to impact on prevalence and severity of depression within the sample, 
with persons with severe depression less likely to have completed the MHQ. Second, measures for 
depression were based on recall of the worst episode of depression and assessed using self-reported 
symptoms, rather than clinical diagnoses. This raises the possibility that self-reported symptoms may 
be affected by recall bias or other medical conditions, and we are not able to exclude that participants 
had other depressive episodes with different neurovegetative symptoms compared to the one 
reported in the MHQ. Third, our measurement of depression with atypical features did not capture all 
DSM-5 symptoms but only the neurovegetative component. Our results were in line with previous 
studies and contributed to characterise the genetics of these symptoms, but future research using the 
full atypical spectrum should be considered in future research and dimensional classifications should 
be considered as an alternative to binary categorisation. Fourth, due to the small numbers of 
individuals of non-European groups in UK biobank, and their systematic under-representation in 
GWAS studies used to derive PRS, our sample is limited to individuals of European descent, limiting 
the generalisability of our findings. Last, we had no statistical power to perform a genome-wide 
association study of ↑WS depression or Mendelian randomization to assess the causal relationship 
between immune-metabolic traits and ↑WS depression.   

In conclusion, this study showed specific genetic overlap of ↑WS and ↓WS depression with  immune-
metabolic and alcohol-related traits. Our findings suggest that depression with typical and atypical 
neurovegetative symptoms may represent relatively homogenous subtypes characterised by partially 
distinct genetic liabilities. Understanding the shared genetic aetiology between immune-metabolic 
traits and depression subtypes could play an important role in the prevention/treatment of depressive 
episodes and the development of tailored treatments. 
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Table 1. Polygenic risk scores associated with depression with atypical features (↑WS depression) 
compared with depression without atypical features. Results are shown for the PT threshold attaining 
the lowest p-value.  

Polygenic 
Risk Score 

Reference Sample 
size 

PT p OR (95% CI) R2 

BMI (Locke et al., 
2015) 

322,154 0.001 2.37e-14* 1.20 (1.15 – 1.26) 0.00520 

Leptin (Kilpeläinen et 
al., 2016) 

31,816 0.001 2.99e-04 1.09 (1.04 – 1.14) 0.00117 

CRP (Ligthart et al., 
2018) 

204,402 0.4 8.86e-06* 1.11 (1.06 – 1.17) 0.00177 

Daily 
alcohol use 

(Schumann et 
al., 2016) 

70,460 0.4 1.04e-05* 0.88 (0.83 – 0.93) 0.00174 

Major 
depressive 
disorder 

(Wray et al., 
2018) 

143,265 0.3 1.14e-04* 1.10 (1.05-1.15) 0.00133 

Note. R2 estimated on the observed scale as the results are referred to case only comparisons. 
*Significant associations (p < 2.1e-4). 
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Table 2: SNP heritability (SNP-h2) of depression with weight gain and hypersomnia (↑WS depression), depression with weight loss and reduced sleep (↓WS 
depression), major depression not falling in any of these two groups (no ↑WS or ↓WS), depression with weight gain or weight loss. Heritability and SE in 
parenthesis are reported on the liability scale according to different possible values of prevalence (K) of each subtype in the population. The most credible values 
of population prevalence are in bold and a Z-test was performed to compare the estimate and SE of GCTA-GREML and GCTB Bayes S results. 

Depression 
type 

Method SNP-h2 
K=0.02 

SNP-h2 
K=0.03 

SNP-h2 
K=0.04 

SNP-h2 
K=0.05 

SNP-h2  
K=0.06 

SNP-h2 
K=0.07 

z test GCTA- 
GCTB results 

Weight gain + 
increased sleep 
(↑WS) 

GCTA 0.2073 
(0.0726) 

0.2287 
(0.0796) 

0.2457 
(0.0852) 

   z=0.71, p=0.50 

GCTB 0.1425 
(0.0560) 

0.1578 
(0.0616) 

0.1701 
(0.0662) 

   

Weight gain GCTA  0.1185 
(0.0362) 

0.1278 
(0.0387) 

0.1358 
(0.0408) 

  z=0.85, p=0.39 

GCTB  0.0808 
(0.0252) 

0.0874 
(0.0270) 

0.0930 
(0.0286) 

  

Weight loss + 
reduced sleep 
(↓WS) 

GCTA   0.1620 
(0.0305) 

0.1718 
(0.0321) 

0.1803 
(0.0335) 

 z=1.09, p=0.27 

GCTB   0.1215 
(0.0210) 

0.1290 
(0.0222) 

0.1357 
(0.0232) 

 

Weight loss GCTA    0.1490 
(0.0291) 

0.1566 
(0.0305) 

0.1633 
(0.0317) 

z=1.09, p=0.27 

GCTB    0.1071 
(0.0249) 

0.1127 
(0.0261) 

0.1177 
(0.0272) 

No ↑WS or 
↓WS 

GCTA    0.1060 
(0.0239) 

0.1115 
(0.0251) 

0.1165 
(0.0262) 

z=0.77, p=0.44 

GCTB    0.0820 
(0.0197) 

0.0864 
(0.0207) 

0.0903 
(0.0217) 
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Major psychiatric disorders
Personality traits

Substance use related traits
Immune and cardio-metabolic traits

PRS

↑WS  depression 
vs. 

non-↑WS depression

Analyses including only 
unipolar depression

↑WS depression 
vs. 

↓WS  depression

Figure 1: flow chart of the performed analyses. ↑WS = depression with increased weight and 
sleepiness; ↓WS  depression = depression with decreased weight and insomnia. 

Main analysis

Sensitivity
analyses

↑WS depression 
vs. 

healthy controls

↓WS  depression 
vs. 

healthy controls
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Figure 2: Decile plots showing the odds ratio of ↑WS depression (depression with atypical features) 
vs. depression without ↑WS for BMI PRS (A), C-reactive protein (CRP) PRS (B), daily alcohol use PRS 
(C) and major depressive disorder (MDD) PRS (D). *p<0.05; **p<1e-05. 
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C. Daily alcohol use 

 
D. Major depressive disorder 
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Figure 3: PRS odds ratio (OR) and 95% confidence intervals of ↑WS depression vs. depression without ↑WS. 
Colors indicate different groups of traits (substance related disorders, major psychiatric disorders, 
personality traits, immune metabolic traits). BP=bipolar disorder; SCZ=schizophrenia; ANX=anxiety disorders; 
PTSD=post-traumatic stress disorder; AN=anorexia nervosa; ALCDEP=alcohol dependence; ALCUSE=daily 
alcohol use; N_CIGARETTES=n cigarettes per day; CANN=cannabis use lifetime; EXTR=extraversion; 
NEU=neuroticism; DM2=type 2 diabetes mellitus; CAD=coronary artery disease; ISCH_STROKE=ischemic 
stroke; TG=triglycerides; LDL=total LDL cholesterol; HDL=total HDL cholesterol; BMI=body max index; 
BMI_adjust_leptin=leptin adjusted for BMI; CRP=C-reactive protein. 
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Figure 4: PRS odds ratio (OR) and 95% confidence intervals of ↑WS depression and ↓WS depression 
compared with healthy controls. BP=bipolar disorder; SCZ=schizophrenia; ANX=anxiety disorders; 
PTSD=posttraumatic stress disorder; AN=anorexia nervosa; ALCDEP=alcohol dependence; ALCUSE=daily 
alcohol use; N_CIGARETTES=n cigarettes per day; CANN=cannabis use lifetime; EXTR=extraversion; 
NEU=neuroticism; DM2=type 2 diabetes mellitus; CAD= coronary artery disease; ISCH_STROKE=ischemic 
stroke; TG= triglycerides; LDL=total LDL cholesterol; HDL=total HDL cholesterol; BMI=body max index; 
BMI_adjust_leptin=leptin adjusted for BMI; CRP=C-reactive protein. 
 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 3, 2020. ; https://doi.org/10.1101/2020.02.18.20024091doi: medRxiv preprint 

https://doi.org/10.1101/2020.02.18.20024091
http://creativecommons.org/licenses/by-nc-nd/4.0/

