Title: Upregulation of Human Endogenous Retrovirus-K (HML-2) mRNAs in hepatoblastoma:

Identification of potential new immunotherapeutic targets and biomarkers

Authors: David F Grabski^{1,2}, Aakrosh Ratan³, Laurie R Gray^{2,4}, Stefan Bekiranov⁵, David Rekosh^{2,3}, Marie-Louise Hammarskjold^{2,3}, Sara K Rasmussen^{2,6}

Author Affiliations:

¹Department of Surgery, University of Virginia School of Medicine

²Myles H. Thaler Center for AIDS and Human Retrovirus Research, University of Virginia

³Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia School of Medicine

⁴Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine

⁵Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine

⁶ Division of Pediatric Surgery, Department of Surgery, University of Virginia School of Medicine

Corresponding Author:

Sara K. Rasmussen, MD, PhD, FACS

University of Virginia Division of Pediatric Surgery

P.O. Box 800709 Charlottesville, VA 22908

Phone: +1 434-982-2796

Fax: 434-243-0036

Email: skr3f@virginia.edu

Short Title: HERV-K expression in Hepatoblastoma

Disclosures: The authors report no proprietary or commercial interest in any product mentioned or concept discussed in this article.

Funding: This work was supported by The National Cancer Institute of the National Institutes of Health (Grant number: T32 CA163177 and R01 CA206275).

Abbreviations: Human Endogenous Retrovirus-K (HERV-K), Hepatoblastoma (HB), Fetal Tumor (FT), Normal Control (NC)

Abstract

Purpose: Hepatoblastoma is the most common liver malignancy in children. In order to advance therapy against hepatoblastoma, novel immunologic targets and biomarkers are needed. Our purpose in this investigation is to examine hepatoblastoma transcriptomes for the expression of a class of genomic elements known as Human Endogenous Retrovirus (HERVs). HERVs are abundant in the human genome and are biologically active elements that have been associated with multiple malignancies and proposed as immunologic targets in a subset of tumors. A sub-family of HERVs, HERV-K (HML-2), have been shown to be tightly regulated in fetal development, making investigation of these elements in pediatric tumors paramount.

Methods: We first created a HERVK-FASTA file utilizing 91 previously described HML-2 proviruses. We then concatenated the file onto the GRCh38.95 cDNA library from Ensembl. We used this computational tool to evaluate existing RNA-seq data from 10 hepatoblastoma tumors and 3 normal liver controls (GEO accession ID: GSE89775). Quantification and differential proviral expression analysis between hepatoblastoma and normal liver controls was performed using the pseudo-alignment program Salmon and DESeq2, respectively.

Results: HERV-K mRNA was expressed in hepatoblastoma from multiple proviral loci. All HERV-K proviral loci were expressed at higher levels in hepatoblastoma compared to normal liver controls. Five HERV-K proviruses (1q21.3, 3q27.2, 7q22.2, 12q24.33 and 17p13.1) were significantly differentially expressed (p-adjusted value < 0.05, $|\log 2$ fold change| > 1.5) across conditions. The provirus at 17p13.1 had an approximately 300-fold increased expression in hepatoblastoma as compared to normal liver. This was in part due to the near absence of HERV-K mRNA at the 17p13.1 locus in fully differentiated liver samples.

Conclusions: Our investigation demonstrates that HERV-K is expressed from multiple loci in hepatoblastoma and that the expression is increased from several proviruses as compared to normal liver controls. Our results suggest that HERV-K mRNA expression may find use as a biomarker in hepatoblastoma, given the large differential expression profiles in hepatoblastoma, with very low mRNA levels in liver control samples.

Key Words: Human Endogenous Retrovirus-K, Hepatoblastoma, Fetal Tumor, Immunotherapy, Tumor Biomarker

1. Introduction

Hepatoblastoma is the most common pediatric liver malignancy, affecting approximately 500 children in the US each year [1, 2]. Similar to other fetal tumors, hepatoblastoma is thought to arise from embryonic liver progenitor cells that fail to differentiate into hepatocytes [3-5]. As hepatoblastoma precursor cells show different levels of differentiation prior to malignant transformation, this cancer is morphologically complex and histologically subcategorized as one of the following subtypes: fetal, embryonal, or mixed epithelial and mesenchymal undifferentiated small cell [6]. Treatment is multimodal, involving a combination of resection and chemotherapy or transplant [7]. Five-year survival in North America is between 70-80%, with the best outcomes in early stage disease [8, 9]. There is still a clear need to identify novel treatment strategies that can offer more children hope for a long term cure [10, 11]. Furthermore, a full understanding of the molecular drivers of these tumors will be advantageous in the search for new treatments [12].

This report focuses on the expression of Human Endogenous Retrovirus-K (HERV-K) (HML-2) mRNA in hepatoblastoma and identifies HERV-K expression as a potential disease marker in this cancer. HERVs have garnered increasing attention in translational investigative science in the last 30 years as evidence has accumulated that these genomic elements have significant effects on human biology, both in health and disease. Attention has recently turned to the potential role of HERVs as both targets for immunotherapy [13, 14] as well as tumor markers to stratify disease in different solid organ malignancies [15, 16].

Human endogenous retroviruses (HERVs) are transposable genomic elements that have integrated into the human germline over many millions of years. All together, HERVs comprise an estimated 8% of the human genome [17]. Several HERVs have been co-opted by the human cell for specific biologic functions. For example, the Syncytin protein, responsible for the formation of syncytiotrophoblasts and ultimately mammalian placentation, was exapted from a HERV envelope protein [18]. In addition, a HERV viral promoter activates and drives transcription of the amylase gene in the hominid parotid gland, which may have been key to the expansion of the hominid diet to include starches [19]. For in-depth reviews of HERV biology, see [20-22].

There have been numerous phylogenetically distinct integrations of HERVs over evolutionary time with approximately 40 independently identified sub-groups [23]. The HERV-K (HML-2) viruses represent the most recent retroviruses to integrate into the human germline and have thus undergone the least amount of genetic silencing. In addition, these viruses remain polymorphic in human populations [24]. When transcriptionally active, some of the HERV-K proviruses are still capable of producing viral proteins, which can exert varied functions, such as nucleocytoplasmic export of mRNA and cell-cell fusion. There are approximately 90 identified intact or partially intact HERV-K (HML-2) proviruses distributed throughout

the human genome, as well as over 900 solo long terminal repeats (LTRs) that are remnants of inserted viruses [25].

In the majority of human cell types and cell states, HERV-Ks have been transcriptionally silenced through DNA methylation and chromatin remodeling [26]. However, growing evidence suggests that there are multiple diseases and developmental states where HERV-K mRNAs are more highly expressed than in their normal adult somatic cell counter-parts [27-29]. Important to this investigation, HERV-K has been shown to be over-expressed in multiple tumors [30, 31], as well as during fetal development [32, 33], leading to increasing research into the potential effects of HERV-K expression in both oncogenesis and during embryogenesis.

In a previous study, Zhao et al. identified HERV-K envelope mRNA expression in breast cancer tissue, while expression was not detectable in healthy breast tissue controls [30]. Additional studies noted that HERV-K mRNA expression levels directly correlated with the eventual development of distant metastasis [15], while another investigation found that the overexpression of HERV-K was specifically associated with the basal cell subtype [34]. Similarly, in melanoma, HERV-K mRNA expression effectively distinguished tumor samples as well as metastatic lymph nodes from normal tissue and non-metastatic lymph nodes [31]. In an investigation of hepatocellular carcinoma and surrounding normal tissue it was noted that HERV-K mRNA levels were increased in hepatocellular carcinoma and that this provided an independent prognostic indicator for lower overall survival [35]. For the current understanding of HERV biology in cancer, see [36, 37].

Given the large differential expression profiles between disease and normal tissue and that HERV-Ks can express viral proteins capable of activating both innate, humoral and cell-mediated immune responses [38-42], attention has recently turned to the possibility of utilizing HERV-K neoantigens for targeted therapy. Chimeric antigen receptor (CAR) T cells that target HERV-K Env proteins have been developed and tested in *in vivo* murine models for both breast cancer and melanoma [43, 44]. In both models, the HERV-K Env CAR T-cells demonstrated tumor specific cytotoxicity, reduced the primary tumor mass and showed reduction of tumor metastases.

Importantly, HERV-K expression has remained unexamined in pediatric tumors. This oversight is potentially impactful, given that HERV-K has also been shown to be regulated and transcribed during embryogenesis and progressively silenced as fetal development continues [32, 33]. Transcriptional activity of HERV-K proviruses in pediatric tumors are thus of specific interest as these cancers are thought to arise from embryonic precursor cells that fail to differentiate during organ development. Given the increased expression of HERV-K mRNA in hepatocellular carcinoma, as well as the fact that hepatoblastoma fits the paradigm of a fetal tumor which arises from a failure of cellular differentiation, we sought to investigate HERV-K expression in this tumor. We hypothesized that HERV-Ks may be more expressed in

hepatoblastoma, as compared to normal, fully differentiated liver tissue. In this investigation, we utilized publicly available RNA sequencing data from hepatoblastoma and normal liver controls generated by the Children's Hospital of Pittsburgh [45]. We utilized standard bioinformatics techniques to create a custom database that enabled us to examine RNA expression from HERV-K proviruses in these data sets. Here, we report on differences in HERV-K RNA expression in hepatoblastoma compared to normal liver controls.

2. Methods

2.1 Hepatoblastoma and Normal Liver RNA-seq Data

The dataset used in this investigation includes RNA sequencing (RNA-seq) data from 10 hepatoblastoma samples and 3 normal liver controls. Tumor excision and RNA isolation was performed by the University of Pittsburg Children's Hospital as part of a next-generation sequencing (NGS) study to identify activated cancer pathways in clinically aggressive hepatoblastoma [45]. The raw sequencing data are publicly available and were downloaded from the NCBI biorepository using the NCBI Sequence Read Archive (SRA) Toolkit (GEO accession ID GSE89775). According to the NCBI biorepository, total RNA (1 ug) was isolated from fresh frozen tissue (both hepatoblastoma and normal liver) and sequenced on an Illumina platform to generate 100 base-pair, strand-specific, paired-end reads to a sequencing depth of approximately 40M reads per sample. Prior to analysis in this study, all raw FASTQ files were preprocessed with Trimmomatic to remove adaptors and low-quality reads as well as to assure that only pairedends reads with a minimum read length of 50 nucleotides were included [46]. The quality of the raw and the trimmed reads from each sample was confirmed with program FASTOC (http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc).

2.2 Analysis of HERV-K mRNA expression

HERV-K proviruses are currently not well annotated in the human genome, meaning that standard RNA-seq analysis techniques cannot be used to determine the expression profile of HERV-Ks. To overcome this limitation, we created a HERV-K specific FASTA file using the genomic sequence of the 91 HERV-K proviruses deposited in NCBI (GenBank ID JN675007-JN675097). To determine the transcriptional profile and differential expression of HERV-K in all samples, we concatenated our working HERV-K FASTA file onto the GRCh38.95 cDNA fasta file downloaded from Ensembl. For RNA analysis, we did not annotate the individual potential spliced transcripts that would be expected to be expressed from an integrated provirus, but rather defined the entire proviral sequence as a single transcript. We then used the pseudo-aligner, Salmon [47] in mapping-based mode with the validateMappings flag to create a count matrix over the full human transcriptome including the concatenated HERV-K file (example code: salmon quant -i GRCh38_HERVK.fa -l -1 FT6_1.fq -2 FT6_2.fq –validateMappings -o FT6_quant). We then sub-selected read counts assigned to HERV-K loci.

We next indexed the HERV-K FASTA file with the alignment tool HISAT2 [48] and aligned our Hepatoblastoma and Normal Liver samples to the HISAT2-HERV-K index to create .BAM files. To control for multi-mapping of the repeat elements, we used SAMTOOLS to select for reads with a mapping quality (MAPQ) Score >= 50, which has been shown to be an effective way to eliminate multi-mapped reads from HERV-K analysis [49]. Uniquely aligned .BAM files for all samples were then imported into the software package Geneious (Biomatters, Auckland, New Zealand) for visualization of read position along an annotated HERV-K provirus which distinguishes reading frames for the different viral proteins.

2.3 HERV-K Expression Profiles and Differential Expression

Transcript abundance read estimates from Salmon were imported into R (version 3.5.1) using tximport [50]. Transcript abundance estimates were normalized for sample sequencing depth using the R Bioconductor package DESeq2 [51]. This allowed us to determine normalized HERV-K expression across all proviral loci by sample, together with the number of loci responsible for total HERV-K expression and the range of reads across each locus. Differential expression of HERV-K in hepatoblastoma as compared to normal liver was also analyzed using DESeq2. HERV-K proviruses were considered differentially expressed if the p-adjusted values (calculated using the Benjamini-Hochberg False Discovery Rate implemented in DESEq2) were less than 0.05 and the absolute value of the log2 fold changes were greater than 1.5 [52].

Given the apparent heterogeneity in HERV-K expression across different hepatoblastoma samples, we also stratified hepatoblastoma samples by overall HERV-K expression (total number of normalized reads across all proviral loci). We selected the top 3 highest HERV-K expressing hepatoblastoma samples and the three lowest HERV-K expressing hepatoblastoma samples. We then performed a differential gene expression analysis again using DESeq2 to compare the high expressing to low expressing tumors. Genes with a p-adj value < 0.05 and $|\log 2$ fold change| > 1.5 were considered significant and included in a Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) over-representation functional analysis. Gene pathways were considered enriched if they had a p-adj value < 0.05. GO and KEGG analysis was performed using the clusterProfiler package in R [53].

Unless otherwise specified, all plots denoting the RNA expression profile and differential expression were generated using the ggplot2 package in R [54]. The scatterplot was created using the EnchancedVolcano visualization package in R [55].

3. Results

The RNA-seq that was downloaded from the NCBI biorepository included 10 hepatoblastoma samples (HB) from children undergoing liver transplantation for their disease. These samples represent aggressive hepatoblastomas that were not amenable to up-front resection. It also included 3 normal liver

controls (NC) from orthotopic livers prior to transplant. Following pseudoalignment with Salmon and sample normalization with DESeq2 as described in the Methods, we found that the HERV-K RNA expression profile varied greatly across the hepatoblastoma (HB) samples and normal liver controls (NC). In HB, the median HERV-K read counts across all proviral locations for each sample was 342 (interquartile range (IQR) 235, 515). However, 2 samples had greater than 2,000 reads that aligned to several HERV-K proviruses, whereas 2 samples showed 150 read counts or less (Table 1). The general HERV-K expression profile across all samples is visualized in the HERV-K expression heatmap in Figure 1. Each cell in the heatmap represents the normalized expression Z-score calculated across samples (range -3 to 3) of a specific HERV-K provirus (y-axis) in individual HB or NC samples (x-axis). mRNA from numerous proviral loci were expressed at average levels across all the samples (Z-score = 0), which we confirmed were HERV-Ks expressed at low levels (average of less than 10 reads across a HERV-K provirus in individual samples). These HERV-K loci are represented by light blue in the heatmap. There was great heterogeneity in proviral expression in individual samples, including variation among the hepatoblastoma samples (9.5 expressed proviral loci, IQR 9.3). Variation was also was observed in the normal liver controls (3 expressed proviral loci, IQR 3) although the total number of expressed HERV-K loci was less than in HB. No proviral loci were common to all samples and many HERV-K loci were expressed in less than 5 total samples.

We next calculated differential proviral expression across the HB and NC samples. All proviral loci were expressed at higher levels in HB compared to NC as demonstrated by the HERV-K expression profile scatter plot (Figure 2). Five proviruses (1q21.3, 3q27.2, 7q22.2, 12q24.33 and 17p13.1) were significantly differentially expressed (p-adjusted value < 0.05, $|\log 2$ fold change| > 1.5) across conditions (Table 2). Boxplots of the log10 normalized counts for the HB and NC samples across each differentially expressed provirus reveal much higher expression in HB compared to NC samples (Figure 3). For 3 proviruses (17p13.1, 3q27.2 and 7q22.2), the normalized expression across all 3 NC samples was less than 10 reads and was too low for graphical comparison. The absence of expression in NC led to large fold-changes between HB and NC. Thus 17p13.1 showed a 294-fold increase expression in HB as compared to NC (padj = 0.009). This provirus was expressed in all hepatoblastoma samples with one exception and was not expressed in 2 of the 3 normal controls. Similarly, in HB samples, 7q22.2 was expressed 93.1-fold above NC (padj = 0.027), while 3q27.2 was expressed 55-fold above NC (padj = 0.026).

Following alignment of all HB and NC samples with our HISAT2-HERV-K index and selection for uniquely mapped reads, we imported the alignment file (.BAM) into the bioinformatics platform Geneious. This allowed visualization of where the reads aligned across each provirus in the different samples. For provirus 17p13.1, the reads aligned across the entire provirus (Figure 4, panel A). Reads similarly mapped across the length of the provirus at 12q24.33 (Figure 4, panel B), with a small concentration of reads in the 5' LTR (long terminal repeat). A similar pattern was seen in provirus 1q21.3, but with a concentration of

reads in the 3' LTR (Figure 4, panel C). Interestingly, despite 3q27.2 being a relatively complete provirus (9,100 bp), the majority of the reads aligned in the 3' LTR for all samples (Figure 4, panel D). Conversely, all of the reads for 7q22.2 aligned uniquely to the 5' LTR in all samples (Figure 4, panel E). Larger images for each individual provirus in Figure 4 are provided in Supplemental File 1.

Hepatoblastoma samples FT8 (531 HERV-K reads), FT9 (2,778 HERV-K reads and FT11 (2,503 HERV-K reads) represented the tumor samples with the highest HERV-K expression. Conversely, FT7 (223 HERV-K reads), FT10 (148 HERV-K reads) and FT15 (152 HERV-K reads) represented the tumors with the lowest expression. A differential expression analysis comparing the high to low tumors revealed 775 differential expressed genes (Supplemental File 2). GO Biological Process enrichment analysis of the differentially expressed genes revealed over-representation of cellular processes involved in leukocyte activation and leukocyte mediated immunity (Table 3). Additional GO terms (top 20) for cellular localization and molecular function as well as enriched KEGG terms are provided in Supplemental File 3.

4. Discussion

The data in this investigation establish that HERV-Ks are expressed in hepatoblastoma. Furthermore, the mRNA profile of HERV-K in hepatoblastoma is complex, with multiple proviruses transcribed from different loci in tumors from different individuals. The data also show that overall HERV-K expression is increased in hepatoblastoma compared to normal liver controls and that several proviruses show large fold increases in tumors compared to normal liver tissue. The significant increase makes HERV-Ks intriguing targets for immunotherapy. In addition, our data suggest that they could also serve as potential biomarkers for disease recurrence or progression, though further studies will be required to confirm this. This investigation is the first to demonstrate HERV-K expression in a pediatric solid organ malignancy. In addition, the bioinformatics pipeline described in this manuscript provides an effective tool to measure HERV-K RNA profiles in disease versus non-disease states that could be used to screen other fetal malignancies for HERV-K expression.

4.1 Expression of HERV-K in Hepatoblastoma and Potential Clinical Applications

Multiple HERV-K proviruses showed increased expression in hepatoblastoma. The HERV-K provirus at 17p13.1 was the most dramatic example of a large differential expression value, with an almost 300-fold change in expression from the provirus compared to normal liver tissue. Similarly, large differential expression values were seen for proviral loci 1p21.3, 3q27.2, 7q22.2 and 12q24.33.

The magnitude of the increased expression levels over normal liver controls was prominent in several instances. This is in part because mRNA levels from HERV-K proviruses in normal liver control were either not present at all, or present at very low levels (less than 10 read counts across the entire provirus). Our findings of low HERV-K expression in fully differentiated liver is consistent with previous

investigations that have examined HERV-K expression in liver tissue [35, 56]. This finding is also consistent with the reported low levels of HERV-K expression in the majority of fully differentiated somatic tissues [35, 56].

Proviral expression profiles also differed across the hepatoblastomas themselves. Several hepatoblastoma samples had over 100 read counts aligned to the provirus at 17p13.1, while several other tumors had less than 10 counts (which was more similar to the expression profile in NC). This variation in proviral expression across HB samples was true for total HERV-K expression as well. Two hepatoblastoma samples had over 2,000 normalized read counts summed over all proviruses. In contrast, two HB samples had ~150 normalized read counts across all proviruses with only 1 or 2 proviral locations with over 10 read counts. The HERV-K RNA expression in these tumors was thus more similar to the normal liver controls than to the other tumor samples. In follow-up investigations it will be important to determine whether HERV-K expression correlates with the molecular subtype of hepatoblastoma.

Furthermore, a differential gene expression analysis and GO enrichment analysis comparing high and low HERV-K expressing tumors demonstrated a strong correlation with cellular pathways involving leukocyte activation as well as neutrophil and leukocyte mediated immunity. Cellular pathway enrichment analyses such as GO and KEGG are useful adjuncts to understand how a complex set of differentially expressed genes may regulate specific biological process or known phenomenon. Our data suggest that HERV-K mRNA levels may correlate with either direct tumor immunogenicity or an inflammatory microenvironment surrounding the tumors. The possibility that expressed HERV-K proteins in these tumors could be acting as cancer neoantigens is an intriguing possibility, but this will require additional experimental validation. In a recent investigation, Rooney et al. analyzed approximately 20 solid organ tumors as well as normal tissue controls from TCGA mRNA-seq datasets for expression of both endogenous retrovirus (ERV) families as well as cytolytic activity. The investigation found that several tumor specific ERVs existed across multiple tumors and that high gene expression of these tumor specific ERVs correlated with significantly enriched immune activation pathways [57]. In addition, experimental evidence has demonstrated that HERV-K viral proteins can directly activate both innate and adaptive immune response in multiple solid organ tumors including breast cancer, melanoma and colorectal cancer [38-42].

The read distribution across individual proviruses varied but was consistent for each provirus across all samples in this study. The proviruses located at 17p13.1, 12q24.33 and 1q21.3 had read counts distributed across the entire provirus. 17p13.1 and 1q21.3 do not have intact 5' LTRs suggesting that transcription is driven by an upstream cellular promoter and proviral expression represents read-through transcription from a cellular promoter. This phenomenon has been previously described [58]. Interestingly, the provirus at 3q27.2 had the majority of reads located in the 3' LTR region, suggesting that transcription was initiating at the 3' LTR. In 7q22.2, reads in all samples aligned to the 5' LTR but ceased before

progressing through the viral genome suggesting that either the 5' polyA site was being utilized or epigenetic modifications silenced expression. Another important possibility is that this expression phenomenon of all reads aligning in the LTR (either 5' or 3') is associated with multi-mapped reads to an unannotated HERV-K LTR that is not included in our annotation file. While we controlled for multi-mapped reads in our bioinformatic pipeline, our analysis is dependent on 'known' HERV-Ks included in NCBI. This particular aspect of the analysis highlights the importance of detailed alignment. For example, 3q27.2 has an open reading frame for viral proteins Gag and Pol. However, in the case of this provirus, all the reads align in the 3' LTR, and thus no proteins will be produced. It is important to note that transcription from the 5'LTR or 3'LTR of HERV-K proviruses may still be of biological significance as proviral enhancers can affect transcription of cellular genes up to 100,000 base pairs upstream or downstream of the HERV-K provirus [59].

Similar to the findings of our current investigation in Hepatoblastoma, increased HERV-K expression has been associated with multiple solid organ malignancies when compared to normal tissuematched samples- most notably with breast cancer [60], melanoma [61] and germ cell tumors [62]. More recent preliminary studies in hepatocellular carcinoma [63] and pancreatic adenocarcinoma [64] have also found increased HERV-K mRNA levels in cancer as compared to normal tissues. In all of these tumors, significant debate remains as to whether HERV-K expression acts as a disease driver or is simply a result of global epigenetic changes in the cancer cell [65]. Though causality remains unclear, there is clear evidence that HERV-K expression can have significant effects on the transcriptome of the cancer cell through insertional position near, for example, proto-oncogenes, or through acting as alternative promoters, polyadenylation signals or alternative splice sites within introns of human genes [66-68]. HERV-K-*env* expression has specifically been linked to perturbations in both the p53 and RAS signaling pathways in breast cancer [69], while in pancreatic adenocarcinoma, RNA-seq analysis following sh-RNA knock-down of HERV-K-*env* showed decreased expression of genes on the RAS-ERK-RSK pathway [64].

Equally important, HERV-K expression has been proposed as an important potential biomarkers for all the above diseases [15, 16], due in part to the very low expression levels in corresponding normal tissue. In breast cancer, HERV-K expression was found to effectively differentiate basal cell carcinoma from other breast cancer subtypes [34]; a clinically important finding given the aggressive nature of this tumor. Like many pediatric solid organ tumors, the next steps in hepatoblastoma therapy involves finding appropriate molecular targets for immunotherapy, as well as the ability to molecularly stratify clinically aggressive tumors. This has led multiple groups to explore the potential role of both microRNAs and long non-coding RNA (lncRNAs) in hepatoblastoma [70-72]. However, the field remains limited by a lack of preserved tissue, including normal patient-matched tissue controls that would enable a more extensive molecular analysis of these rare but important childhood tumors.

4.2 Importance of RNA-seq Analysis Pipelines for HERV-K Expression and its Limitations.

With the advancement in massive parallel sequencing technologies, which have now generated numerous RNA-seq datasets of multiple tumor types, bioinformatic techniques that allow analysis of these powerful datasets are becoming increasingly necessary [73]. HERV-K proviruses pose a difficult challenge for computational analysis of RNA-seq data as these regions are poorly annotated and constitute repeat elements making unique alignment of RNA-seq reads difficult [49]. As a result of these limitations, the vast majority of investigations into HERV-K RNA expression in cancer have not been able to localize expressed RNAs to individual HERV-K proviral loci. This has fundamentally limited the ability to discover how these proviruses may affect cell biology and identify potential translated HERV-K proteins that may also affect cell biology, as well as present unique targets for immunotherapy. Nevertheless, given the abundance of HERV sequences in the human genome, a complete understanding of human cancer biology will undoubtedly require elucidating the effects that these entities have on the cellular machinery.

The methodology presented in this investigation allows for simple analysis and screening of RNAseq datasets for HERV-K expression. Furthermore, methods used to quantify read counts across specific proviral loci allowed for a fuller description of the HERV-K expression, in addition to simple detection of the presence or absence of HERV-K mRNA. In our analysis, we used the Salmon alignment tool in transcriptome alignment mode (pseudoalignment). As Salmon identifies unique k-mers across the transcriptome, we were thus able to effectively distinguish unique k-mers across the different HERV-Ks and could assign uniquely aligned reads to individual proviruses. The alignment tool then allocated multimap reads to proviral locations that had at least one unique alignment across the provirus. The limitation of the Salmon pseudoalignment analysis was that we could not determine where reads were aligning across the provirus. As the proviruses themselves have complex transcriptomes, some with large insertions or deletions of nucleotides (i.e. indels), this was necessary to infer the potential proviral mRNAs and proteins that could be produced. The use of a standard RNA-seq alignment tool HiSAT2 accomplished this task, though we still had to control for multi-mapped reads which was accomplished with Samtools. With this step, we lost ~20-25% of the total reads that aligned to HERV-K loci. While this was acceptable for mapping reads across different regions of the proviruses, it confounded effective quantification. Furthermore, multi-map reads are more likely to occur with more recently integrated proviruses that are more complete [49]. This is unfortunate as these proviruses are also the most likely to produce viral proteins and therefore have the largest potential effect on the cell.

4.3 Overall Limitations of this Study

There are several limitations in the dataset that we used in this analysis. The use of non-patient matched liver control tissue prevented a more thorough analysis of differential expression between tumors and normal liver, given that HERV-Ks remain polymorphic in the human population. A lack of aged-matched

and patient-matched normal tissue controls is a common issue with current RNA-seq analysis studies of fetal solid organ malignancies. Furthermore, the small dataset did not allow the ability to correlate HERV-K transcription with clinical outcomes, including stage of disease, reoccurrence, disease resistance and over-all survival. It also limited the potential to correlate HERV-K expression with differentiation/histologic subtypes of hepatoblastoma including fetal, embryonal and undifferentiated disease. Lastly, from a bioinformatics perspective, a future annotation of all viral mRNAs- including Gag, Env, Rec and/or Np9 that can be produced from each individual provirus, will allow for direct screening of viral mRNAs that have the potential to encode for viral proteins.

5. Conclusion

The current investigation demonstrates that several Human Endogenous Retrovirus-K proviruses are transcribed in hepatoblastoma, with increased RNA expression from several proviral loci in hepatoblastoma as compared to normal liver controls. The large difference in HERV-K expression profiles between hepatoblastoma and normal liver sheds light on several important questions that make HERV-K studies important. Future investigations are required both to explore HERV-K expression as a tool for molecular disease stratification, as well as for targeted immunotherapy. This study also highlighted the complex nature of HERV-K RNA expression in hepatoblastoma. Hepatoblastoma samples demonstrated large differences in overall expression profiles of HERV-K, both in total aligned reads to HERV-K proviruses and in the total number of expressed proviruses. Finally, our study highlights the important need to continue to develop tumor banks for pediatric solid organ tumors that include patient matched tissue controls for appropriate molecular comparison.

Acknowledgements

The authors kindly acknowledge Dr. Rakesh Sindhi of UPMC, who made the Hepatoblastoma RNA-seq dataset available for this analysis. Partial salary support for MLH and DR was provided by the Charles H. Ross Jr and Myles H. Thaler Professorship endowments at the University of Virginia. This work was supported by The National Cancer Institute of the National Institutes of Health (Grant numbers: T32 CA163177 and R01 CA206275).

References

- [1] Ranganathan S, Lopez-Terrada D, Alaggio R. Hepatoblastoma and Pediatric Hepatocellular Carcinoma: An Update. Pediatric and developmental pathology : the official journal of the Society for Pediatric Pathology and the Paediatric Pathology Society 2019:1093526619875228.
- [2] Kremer N, Walther AE, Tiao GM. Management of hepatoblastoma: an update. Current opinion in pediatrics 2014;26(3):362-9.
- [3] Mavila N, Thundimadathil J. The Emerging Roles of Cancer Stem Cells and Wnt/Beta-Catenin Signaling in Hepatoblastoma. Cancers 2019;11(10).
- [4] Wu JF, Chang HH, Lu MY, Jou ST, Chang KC, Ni YH, et al. Prognostic roles of pathology markers immunoexpression and clinical parameters in Hepatoblastoma. Journal of biomedical science 2017;24(1):62.
- [5] Ruck P, Xiao JC, Pietsch T, Von Schweinitz D, Kaiserling E. Hepatic stem-like cells in hepatoblastoma: expression of cytokeratin 7, albumin and oval cell associated antigens detected by OV-1 and OV-6. Histopathology 1997;31(4):324-9.
- [6] Czauderna P, Lopez-Terrada D, Hiyama E, Haberle B, Malogolowkin MH, Meyers RL. Hepatoblastoma state of the art: pathology, genetics, risk stratification, and chemotherapy. Current opinion in pediatrics 2014;26(1):19-28.
- [7] Meyers RL, Tiao G, de Ville de Goyet J, Superina R, Aronson DC. Hepatoblastoma state of the art: pre-treatment extent of disease, surgical resection guidelines and the role of liver transplantation. Current opinion in pediatrics 2014;26(1):29-36.
- [8] Feng J, He Y, Wei L, Chen D, Yang H, Tan R, et al. Assessment of Survival of Pediatric Patients With Hepatoblastoma Who Received Chemotherapy Following Liver Transplant or Liver Resection. JAMA network open 2019;2(10):e1912676.
- [9] Carceller A, Blanchard H, Champagne J, St-Vil D, Bensoussan AL. Surgical resection and chemotherapy improve survival rate for patients with hepatoblastoma. Journal of pediatric surgery 2001;36(5):755-9.
- [10] Ilmer M, Garnier A, Vykoukal J, Alt E, von Schweinitz D, Kappler R, et al. Targeting the Neurokinin-1 Receptor Compromises Canonical Wnt Signaling in Hepatoblastoma. Molecular cancer therapeutics 2015;14(12):2712-21.
- [11] Indersie E, Lesjean S, Hooks KB, Sagliocco F, Ernault T, Cairo S, et al. MicroRNA therapy inhibits hepatoblastoma growth in vivo by targeting beta-catenin and Wnt signaling. Hepatology communications 2017;1(2):168-83.
- [12] Lee H, El Jabbour T, Ainechi S, Gay LM, Elvin JA, Vergilio JA, et al. General paucity of genomic alteration and low tumor mutation burden in refractory and metastatic hepatoblastoma: comprehensive genomic profiling study. Human pathology 2017;70:84-91.
- [13] Smith CC, Beckermann KE, Bortone DS, De Cubas AA, Bixby LM, Lee SJ, et al. Endogenous retroviral signatures predict immunotherapy response in clear cell renal cell carcinoma. The Journal of clinical investigation 2018;128(11):4804-20.
- [14] Wang-Johanning F, Rycaj K, Plummer JB, Li M, Yin B, Frerich K, et al. Immunotherapeutic potential of anti-human endogenous retrovirus-K envelope protein antibodies in targeting breast tumors. Journal of the National Cancer Institute 2012;104(3):189-210.
- [15] Wang-Johanning F, Li M, Esteva FJ, Hess KR, Yin B, Rycaj K, et al. Human endogenous retrovirus type K antibodies and mRNA as serum biomarkers of early-stage breast cancer. International journal of cancer 2014;134(3):587-95.
- [16] Hahn S, Ugurel S, Hanschmann KM, Strobel H, Tondera C, Schadendorf D, et al. Serological response to human endogenous retrovirus K in melanoma patients correlates with survival probability. AIDS research and human retroviruses 2008;24(5):717-23.
- [17] Barbulescu M, Turner G, Seaman MI, Deinard AS, Kidd KK, Lenz J. Many human endogenous retrovirus K (HERV-K) proviruses are unique to humans. Current biology : CB 1999;9(16):861-8.
- [18] Rote NS, Chakrabarti S, Stetzer BP. The role of human endogenous retroviruses in trophoblast

differentiation and placental development. Placenta 2004;25(8-9):673-83.

- [19] Samuelson LC, Wiebauer K, Snow CM, Meisler MH. Retroviral and pseudogene insertion sites reveal the lineage of human salivary and pancreatic amylase genes from a single gene during primate evolution. Molecular and cellular biology 1990;10(6):2513-20.
- [20] Meyer TJ, Rosenkrantz JL, Carbone L, Chavez SL. Endogenous Retroviruses: With Us and against Us. Frontiers in chemistry 2017;5:23.
- [21] Garcia-Montojo M, Doucet-O'Hare T, Henderson L, Nath A. Human endogenous retrovirus-K (HML-2): a comprehensive review. Critical reviews in microbiology 2018;44(6):715-38.
- [22] Grandi N, Tramontano E. HERV Envelope Proteins: Physiological Role and Pathogenic Potential in Cancer and Autoimmunity. Frontiers in microbiology 2018;9:462.
- [23] Mayer J, Blomberg J, Seal RL. A revised nomenclature for transcribed human endogenous retroviral loci. Mobile DNA 2011;2(1):7.
- [24] Sverdlov ED. Retroviruses and primate evolution. BioEssays : news and reviews in molecular, cellular and developmental biology 2000;22(2):161-71.
- [25] Subramanian RP, Wildschutte JH, Russo C, Coffin JM. Identification, characterization, and comparative genomic distribution of the HERV-K (HML-2) group of human endogenous retroviruses. Retrovirology 2011;8:90.
- [26] Schmitt K, Reichrath J, Roesch A, Meese E, Mayer J. Transcriptional profiling of human endogenous retrovirus group HERV-K(HML-2) loci in melanoma. Genome biology and evolution 2013;5(2):307-28.
- [27] Kury P, Nath A, Creange A, Dolei A, Marche P, Gold J, et al. Human Endogenous Retroviruses in Neurological Diseases. Trends in molecular medicine 2018;24(4):379-94.
- [28] Nakagawa K, Harrison LC. The potential roles of endogenous retroviruses in autoimmunity. Immunological reviews 1996;152:193-236.
- [29] Bergallo M, Galliano I, Montanari P, Gambarino S, Mareschi K, Ferro F, et al. CMV induces HERV-K and HERV-W expression in kidney transplant recipients. Journal of clinical virology : the official publication of the Pan American Society for Clinical Virology 2015;68:28-31.
- [30] Zhao J, Rycaj K, Geng S, Li M, Plummer JB, Yin B, et al. Expression of Human Endogenous Retrovirus Type K Envelope Protein is a Novel Candidate Prognostic Marker for Human Breast Cancer. Genes & cancer 2011;2(9):914-22.
- [31] Muster T, Waltenberger A, Grassauer A, Hirschl S, Caucig P, Romirer I, et al. An endogenous retrovirus derived from human melanoma cells. Cancer research 2003;63(24):8735-41.
- [32] Grow EJ, Flynn RA, Chavez SL, Bayless NL, Wossidlo M, Wesche DJ, et al. Intrinsic retroviral reactivation in human preimplantation embryos and pluripotent cells. Nature 2015;522(7555):221-5.
- [33] Bergallo M, Galliano I, Pirra A, Dapra V, Licciardi F, Montanari P, et al. Transcriptional activity of human endogenous retroviruses is higher at birth in inversed correlation with gestational age. Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases 2019;68:273-9.
- [34] Johanning GL, Malouf GG, Zheng X, Esteva FJ, Weinstein JN, Wang-Johanning F, et al. Expression of human endogenous retrovirus-K is strongly associated with the basal-like breast cancer phenotype. Scientific reports 2017;7:41960.
- [35] Ma W, Hong Z, Liu H, Chen X, Ding L, Liu Z, et al. Human Endogenous retroviruses-k (HML-2) expression is correlated with prognosis and progress of hepatocellular carcinoma. BioMed Research International 2016;2016((Ding L.; Zhou F.) Department of Clinical Hematology, Zhongnan Hospital, Wuhan University, Wuhan, China).
- [36] Gonzalez-Cao M, Iduma P, Karachaliou N, Santarpia M, Blanco J, Rosell R. Human endogenous retroviruses and cancer. Cancer biology & medicine 2016;13(4):483-8.
- [37] Grabski DF, Hu Y, Sharma M, Rasmussen SK. Close to the Bedside: A Systematic Review of Endogenous Retroviruses and Their Impact in Oncology. The Journal of surgical research 2019;240:145-55.

- [38] Chiappinelli KB, Strissel PL, Desrichard A, Li H, Henke C, Akman B, et al. Inhibiting DNA Methylation Causes an Interferon Response in Cancer via dsRNA Including Endogenous Retroviruses. Cell 2015;162(5):974-86.
- [39] Roulois D, Loo Yau H, Singhania R, Wang Y, Danesh A, Shen SY, et al. DNA-Demethylating Agents Target Colorectal Cancer Cells by Inducing Viral Mimicry by Endogenous Transcripts. Cell 2015;162(5):961-73.
- [40] Kershaw MH, Hsu C, Mondesire W, Parker LL, Wang G, Overwijk WW, et al. Immunization against endogenous retroviral tumor-associated antigens. Cancer research 2001;61(21):7920-4.
- [41] Sacha JB, Kim IJ, Chen L, Ullah JH, Goodwin DA, Simmons HA, et al. Vaccination with cancerand HIV infection-associated endogenous retrotransposable elements is safe and immunogenic. Journal of immunology (Baltimore, Md : 1950) 2012;189(3):1467-79.
- [42] Wang-Johanning F, Radvanyi L, Rycaj K, Plummer JB, Yan P, Sastry KJ, et al. Human endogenous retrovirus K triggers an antigen-specific immune response in breast cancer patients. Cancer research 2008;68(14):5869-77.
- [43] Zhou F, Krishnamurthy J, Wei Y, Li M, Hunt K, Johanning GL, et al. Chimeric antigen receptor T cells targeting HERV-K inhibit breast cancer and its metastasis through downregulation of Ras. Oncoimmunology 2015;4(11):e1047582-e.
- [44] Krishnamurthy J, Rabinovich BA, Mi T, Switzer KC, Olivares S, Maiti SN, et al. Genetic engineering of T cells to target HERV-K, an ancient retrovirus on melanoma. Clinical Cancer Research 2015;21(14):3241-51.
- [45] Ranganathan S, Ningappa M, Ashokkumar C, Higgs BW, Min J, Sun Q, et al. Loss of EGFR-ASAP1 signaling in metastatic and unresectable hepatoblastoma. Scientific reports 2016;6:38347.
- [46] Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics (Oxford, England) 2014;30(15):2114-20.
- [47] Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware quantification of transcript expression. Nature methods 2017;14(4):417-9.
- [48] Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL. Transcript-level expression analysis of RNAseq experiments with HISAT, StringTie and Ballgown. Nature protocols 2016;11(9):1650-67.
- [49] Bhardwaj N, Montesion M, Roy F, Coffin JM. Differential expression of HERV-K (HML-2) proviruses in cells and virions of the teratocarcinoma cell line Tera-1. Viruses 2015;7(3):939-68.
- [50] Soneson C, Love MI, Robinson MD. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Research 2015;4:1521.
- [51] Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome biology 2014;15(12):550.
- [52] Jornsten R, Wang HY, Welsh WJ, Ouyang M. DNA microarray data imputation and significance analysis of differential expression. Bioinformatics (Oxford, England) 2005;21(22):4155-61.
- [53] Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 2012;16(5):284-7.
- [54] Wickham H. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York; 2016.
- [55] Blighe K RS, Lewis M. EnhancedVolcano: Publication-ready volcano plots with enhanced colouring and labeling. R package version 1.4.0, https://github.com/kevinblighe/EnhancedVolcano; 2019.
- [56] Flockerzi A, Ruggieri A, Frank O, Sauter M, Maldener E, Kopper B, et al. Expression patterns of transcribed human endogenous retrovirus HERV-K(HML-2) loci in human tissues and the need for a HERV Transcriptome Project. BMC genomics 2008;9:354.
- [57] Rooney MS, Shukla SA, Wu CJ, Getz G, Hacohen N. Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 2015;160(1-2):48-61.
- [58] Montesion M, Bhardwaj N, Williams ZH, Kuperwasser C, Coffin JM. Mechanisms of HERV-K (HML-2) Transcription during Human Mammary Epithelial Cell Transformation. Journal of virology 2018;92(1).
- [59] Jern P, Coffin JM. Effects of retroviruses on host genome function. Annual review of genetics

2008;42:709-32.

- [60] Wang-Johanning F, Frost AR, Johanning GL, Khazaeli MB, LoBuglio AF, Shaw DR, et al. Expression of human endogenous retrovirus k envelope transcripts in human breast cancer. Clinical cancer research : an official journal of the American Association for Cancer Research 2001;7(6):1553-60.
- [61] Humer J, Waltenberger A, Grassauer A, Kurz M, Valencak J, Rapberger R, et al. Identification of a melanoma marker derived from melanoma-associated endogenous retroviruses. Cancer research 2006;66(3):1658-63.
- [62] Kleiman A, Senyuta N, Tryakin A, Sauter M, Karseladze A, Tjulandin S, et al. HERV-K(HML-2) GAG/ENV antibodies as indicator for therapy effect in patients with germ cell tumors. International journal of cancerJournal international du cancer 2004;110(3):459-61.
- [63] Ma W, Hong Z, Liu H, Chen X, Ding L, Liu Z, et al. Human Endogenous Retroviruses-K (HML-2) Expression Is Correlated with Prognosis and Progress of Hepatocellular Carcinoma. Biomed Res Int 2016;2016:8201642.
- [64] Li M, Radvanyi L, Yin B, Li J, Chivukula R, Lin K, et al. Downregulation of Human Endogenous Retrovirus Type K (HERV-K) Viral env RNA in Pancreatic Cancer Cells Decreases Cell Proliferation and Tumor Growth. Clin Cancer Res 2017;23(19):5892-911.
- [65] Kassiotis G, Stoye JP. Making a virtue of necessity: the pleiotropic role of human endogenous retroviruses in cancer. Philosophical transactions of the Royal Society of London Series B, Biological sciences 2017;372(1732).
- [66] Rebollo R, Romanish MT, Mager DL. Transposable elements: an abundant and natural source of regulatory sequences for host genes. Annual review of genetics 2012;46:21-42.
- [67] Schulte AM, Lai S, Kurtz A, Czubayko F, Riegel AT, Wellstein A. Human trophoblast and choriocarcinoma expression of the growth factor pleiotrophin attributable to germ-line insertion of an endogenous retrovirus. Proceedings of the National Academy of Sciences of the United States of America 1996;93(25):14759-64.
- [68] Cohen CJ, Lock WM, Mager DL. Endogenous retroviral LTRs as promoters for human genes: a critical assessment. Gene 2009;448(2):105-14.
- [69] Zhou F, Li M, Wei Y, Lin K, Lu Y, Shen J, et al. Activation of HERV-K Env protein is essential for tumorigenesis and metastasis of breast cancer cells. Oncotarget 2016;7(51):84093-117.
- [70] Wu JF, Ho MC, Ni YH, Hsu HY, Lee PH, Chang MH. Dysregulation of liver developmental microRNA contribute to hepatic carcinogenesis. Journal of the Formosan Medical Association = Taiwan yi zhi 2019.
- [71] Dong R, Jia D, Xue P, Cui X, Li K, Zheng S, et al. Genome-wide analysis of long noncoding RNA (lncRNA) expression in hepatoblastoma tissues. PloS one 2014;9(1):e85599.
- [72] Luo Z, Cao P. Long noncoding RNA PVT1 promotes hepatoblastoma cell proliferation through activating STAT3. Cancer management and research 2019;11:8517-27.
- [73] Parvizpour S, Razmara J, Omidi Y. Breast cancer vaccination comes to age: impacts of bioinformatics. BioImpacts : BI 2018;8(3):223-35.

Figure Legends

Figure 1: Heatmap of HERV-K expression in hepatoblastoma and normal liver controls. All tumor samples and normal liver controls are represented on the x-axis. All HERV-K proviral loci are represented on the y-axis. Color expression key is located in upper left of figure and is based on the calculated Z score (scale -3 to 3) across all samples in the study. Each individual cell represents the normalized HERV-K proviral expression (x-axis) in the respective sample (y-axis).

Figure 2: Scatter plot of HERV-K differential expression profile between hepatoblastoma and normal liver controls. Each point on the figure represents the log2 fold change (x-axis) between conditions of an individual HERV-K provirus plotted against the corresponding -log10 p-adjusted value (y-axis). Orange points represent HERV-K proviruses that were not significantly differentially expressed (p-adj < 0.05, |log2fold change| > 1.5) between conditions. Green points represent differentially expressed provirus, which are also labeled by genomic location (HK_1q21.3 represents the HERV-K provirus located at 1q21.3).

Figure 3: Boxplot and overlaid dotplot of significantly differentially expressed HERV-K proviruses. Individual proviruses are represented on the x-axis. Log10 normalized count values are represented on the y-axis. The normalized count value for each provirus in each sample is represented by an individual colored point. Hepatoblastoma samples are represented in orange while normal liver controls are represented in green. The central line of the boxplot is determined by the median log10 normalized expression value across all grouped samples (hepatoblastoma or normal liver controls) for each significantly differentially expressed provirus. The 'box' represents the 25th (lower line) and 75th (upper line) percentile log10 normalized expression across grouped samples.

Figure 4: Graphical representation of uniquely aligned reads across HERV-K provirus (A)17p13.1 (B) 12q24.33 (C) 1q21.3 (D) 3q27.2 and (E) 7q22.2 created in bioinformatics platform Geneious. The x-axis represents the genomic position along the provirus. Major annotated regions of the proviral genome at each provirus are illustrated at the bottom of the panel. Coding regions for viral proteins Gag, Pro, Pol, Env, Rec or Np9 are represented by green bars, but does not necessarily infer an open-reading frame for the protein. Individual reads from each sample are represented on the y-axis. Abbreviations: FT- fetal tumor (hepatoblastoma), NC- normal control (liver).

Table 1: Normalized HERV-K read counts and number of transcribed HERV-K loci in hepatoblastoma and normal liver controls

Sample	Normalized Read Count	Total HERV-K locations	Range of Reads Across
	across all HERV-K Loci	with > 10 normalized reads	Individual Provirus
Hepatoblastoma			
FT6	273.2	10	10.4- 29.5
FT7	223.3	5	12.6-74.6
FT8	532.0	3	20.1-363.8
FT9	2,778.8	42	14.4-243.5
FT10	148.3	1	10.1
FT11	2,503.8	28	22.2-410.3
FT12	270.4	9	10.4- 26.9
FT13	465.1	13	10.5-162.1
FT14	412.2	12	10.2- 51.2
FT15	153.0	2	11.9-35.1
Normal Liver		· · ·	
NC1	141.2	3	11.5- 50.3
NC2	98.1	1	14.6
NC3	203.4	7	11.6-23.4

Abbreviations: FT- Fetal Tumor (Hepatoblastoma), NC- Normal Control (Normal Liver)

		Log2 Fold Change		
HERVK Provirus	Log2 Fold Change	Standard Error	P-Value	P-adjusted Value
1q21.3	4.0397	1.3917	0.00369	0.03891
3q27.2	5.8226	1.8781	0.00193	0.02645
7q22.2	6.5405	2.1196	0.00203	0.02713
12q24.33	5.3952	1.6643	0.00119	0.01941
17p13.1	8.2095	2.3046	0.00037	0.00927

Table 2: Differential gene expression of HERV-K between hepatoblastoma and normal liver controls

Table 3: Gene Ontology Biological Process Enrichment Analysis following differential gene expression analysis of high HERV-K expressing HB vs low HERV-K expressing HB.

			Envichment Folge
Functional Category	Differentially Expressed Genes	Total Genes in Functional Pathway	Discovery Rate (Adjusted p-value)
Regulated exocytosis	82	901	1.33E-12
Exocytosis	85	1023	2.41E-11
Neutrophil activation	61	594	2.41E-11
Granulocyte activation	61	603	2.55E-11
Myeloid leukocyte activation	69	766	8.96E-11
Myeloid leukocyte mediated immunity	62	647	8.96E-11
Neutrophil mediated immunity	59	591	8.96E-11
Secretion	124	1861	8.96E-11
Myeloid cell activation involved in immune response	61	640	1.60E-10
Neutrophil activation involved in immune response	57	583	3.11E-10
Cell activation	109	1591	4.16E-10
Neutrophil degranulation	56	577	5.59E-10
Secretion by cell	114	1715	6.51E-10
Leukocyte degranulation	59	632	6.51E-10
Vesicle-mediated transport	134	2220	5.32E-09
Immune effector process	96	1392	5.32E-09
Leukocyte mediated immunity	74	965	1.11E-08
Leukocyte activation	96	1416	1.21E-08
Cell activation involved in immune response	66	819	1.48E-08
Leukocyte activation involved in immune response	65	815	3.06E-08

*Table represents the top 20 functional categories in the Gene Ontology Biological Process Enrichment Analysis stratified by false discovery rate.

Supplemental File 2- Significant Differential Gene Expression Analysis (Pseudoalignment with Salmon, Differential Gene Expression with DESeq2) of High HERV-K Expression Hepatoblastoma Samples compared to Low HERV-K Expression Hepatoblastoma Samples (top 100 genes ranked by log2fc).

Gene_Symbol	Gene_Ensembl_ID	baseMean	log2FoldChange	padj
AC010970.1	ENSG00000225840	4091871.811	25.58649925	5.22E-17
RTL1	ENSG00000254656	33.05735061	23.55870912	1.27E-11
RNA5SP202	ENSG00000201185	1083.282101	14.68388487	3.11E-05
NOS1AP	ENSG00000198929	106.6727031	11.33920845	0.002516312
ZACN	ENSG00000186919	92.83449212	11.14137145	0.001725542
LRRC75A	ENSG00000181350	229.2868567	10.92063082	0.000719551
LRRC37A16P	ENSG00000267023	106.1675703	10.89945798	0.001503372
RNA5SP149	ENSG00000201822	65.61712433	10.63275295	0.007560641
ERICH3	ENSG00000178965	64.63895786	10.59237992	0.017724784
RAB11FIP1P1	ENSG00000228492	61.1815703	10.5316707	0.008119703
TMEM52B	ENSG00000165685	57.49828505	10.45803747	0.005406543
CICP14	ENSG00000281490	57.28417004	10.4260215	0.009696774
AC010507.1	ENSG00000282051	56.42677775	10.40690811	0.009696774
SPDYE10P	ENSG00000274570	56.2187497	10.40622302	0.004042745
SPDYE3	ENSG00000214300	50.87409277	10.25251506	0.01095637
SPDYE2	ENSG00000205238	44.04967381	10.03982686	0.012274692
SPDYE1	ENSG00000136206	43.6652868	10.02878074	0.011793257
CEMP1	ENSG00000205923	39.301951	9.880801846	0.012059115
AL590627.1	ENSG00000255585	36.28950676	9.767233131	0.012634784
AC098934.1	ENSG00000214796	34.98115507	9.739083023	0.004211152
ANKRD19P	ENSG00000187984	82.26444706	9.618303746	0.004805867
AC006116.7	ENSG00000267459	31.97610894	9.571424785	0.016993644
HIST2H2AC	ENSG00000184260	30.99940737	9.552938905	0.017073074
SPDYE15P	ENSG00000278080	28.42695147	9.407594267	0.017147805
OR2A7	ENSG00000243896	28.27954406	9.383537617	0.034217837
AC239799.1	ENSG00000213240	26.70009139	9.315613897	0.018440141
RIMKLBP1	ENSG00000189089	26.25957663	9.274331333	0.036329659
AC018638.1	ENSG00000229413	25.76126588	9.264153505	0.01938907
NAP1L4P1	ENSG00000177173	25.733931	9.261757469	0.019115839
NA	ENSG00000283186	84.03591027	9.225414142	0.005635334
UHRF2P1	ENSG00000223650	24.66585027	9.200871906	0.020150585

SLC5A2	ENSG00000140675	147.0998851	9.18225622	0.00379274
TNFSF4	ENSG00000117586	40.11592425	9.152166319	0.002106795
AC138409.1	ENSG00000215156	76.83588876	9.145051041	0.009696774
AL671277.1	ENSG00000227766	23.02087131	9.124723718	0.020019583
ABCC11	ENSG00000121270	23.07506169	9.095204882	0.02225255
EPS8L3	ENSG00000198758	68.88099066	9.086998608	0.008139284
LHX4	ENSG00000121454	22.2219767	9.083985193	0.011513186
NSRP1P1	ENSG00000235613	22.64124858	9.077155283	0.021793467
RPL6P2	ENSG00000227056	22.21964176	9.027468219	0.042060283
CLDN22	ENSG00000177300	21.02849797	8.959460497	0.024393675
GPRC5D	ENSG00000111291	20.17251593	8.915335381	0.024451427
SKINT1L	ENSG00000242267	101.0365844	8.891302102	0.009696774
SATL1	ENSG00000184788	18.80398912	8.788277967	0.028224944
CCDC114	ENSG00000105479	19.94194504	8.746077984	0.018114198
AC097063.1	ENSG00000224570	18.01486771	8.722519461	0.030258333
CDR1	ENSG00000184258	17.24731336	8.709381632	0.047699515
NUF2	ENSG00000143228	16.51864422	8.687687009	0.018181527
AC112497.1	ENSG00000279413	17.12815226	8.685214698	0.029019188
AC138951.1	ENSG00000233974	17.24677605	8.678731827	0.028695264
ALOX12B	ENSG00000179477	17.0695303	8.678484582	0.033061621
AL627230.7	ENSG00000278134	16.40468653	8.634912255	0.033393099
PIK3C2G	ENSG00000139144	150.2972016	8.629295101	0.024739607
TRIM67	ENSG00000119283	16.66747848	8.628735318	0.030198847
ACAN	ENSG00000157766	22.44510057	8.619269945	0.014164622
IPP	ENSG00000197429	29.47080519	8.601740121	0.004211152
MMP25	ENSG0000008516	17.55215	8.595807633	0.019115839
POTEI	ENSG00000196834	15.7348339	8.576470526	0.034687012
TMEM262	ENSG00000187066	15.98396235	8.57244938	0.031108731
CR788268.1	ENSG00000270909	15.70310704	8.564887943	0.032799305
DNAH11	ENSG00000105877	16.02935806	8.561856152	0.032052746
AL589880.1	ENSG00000229939	24.04372433	8.552978051	0.012059115
NRIP2	ENSG00000053702	15.55135525	8.549996031	0.020478645
SYCP3	ENSG00000139351	15.80577069	8.545541485	0.032052746
NA	ENSG00000233438	15.73030109	8.530475088	0.016228556
CXCR5	ENSG00000160683	25.881473	8.499874845	0.014261537

DUSP28	ENSG00000188542	61.70692827	8.493280426	0.00088236
KAAG1	ENSG00000146049	14.86274184	8.483865475	0.016180782
ODCP	ENSG00000244556	15.01245265	8.467797921	0.034177988
PRR27	ENSG00000187533	16.03140675	8.459909182	0.036078213
ZBTB45P1	ENSG00000225108	14.7456211	8.42963194	0.036141391
KCNK12	ENSG00000184261	14.53838021	8.428479057	0.03487786
C6orf201	ENSG00000185689	14.32142725	8.39426497	0.036141391
JSRP1	ENSG00000167476	32.27298907	8.377024906	0.012634784
FKBP6	ENSG0000077800	14.07194039	8.372071538	0.036639762
AL583844.1	ENSG00000227236	13.73637294	8.347469364	0.018279268
AD000091.1	ENSG00000267135	202.1551464	8.32351416	0.006082821
CFAP73	ENSG00000186710	13.58842914	8.300835516	0.028964335
IL15	ENSG00000164136	33.87278437	8.278196009	0.013892554
CHRM5	ENSG00000184984	13.06858868	8.265718545	0.039344501
DLEC1	ENSG0000008226	80.37672972	8.260461406	0.015205586
HEPN1	ENSG00000221932	34.21641499	8.229411046	0.029969725
TATDN2P2	ENSG00000218226	12.5365546	8.217029887	0.041350728
NUDT4P2	ENSG00000271121	12.23890901	8.196089684	0.04262468
LRRC46	ENSG00000141294	12.23589239	8.17904649	0.042104363
AC012513.2	ENSG00000236478	12.26242788	8.16948291	0.04262468
GPR39	ENSG00000183840	20.26106046	8.131776218	0.020563205
SRRM5	ENSG00000226763	11.84078726	8.12465022	0.044146341
RPL7P9	ENSG00000137970	52.31788937	8.124477932	0.026486379
SMARCB1	ENSG0000099956	29.35146147	8.107417268	0.012069371
SPRN	ENSG00000203772	11.04191731	8.082624987	0.047977544
DDX3P1	ENSG00000232928	11.29124671	8.075265182	0.046639931
FAM216A	ENSG00000204856	47.59781672	8.051949587	0.00887882
RAD51AP1	ENSG00000111247	11.246235	8.035914549	0.029969725
IQCC	ENSG00000160051	19.85514963	8.032039212	0.011269771
HIST2H4A	ENSG00000270882	10.64297921	7.998016381	0.021046164
RNF32	ENSG00000105982	25.7994181	7.958537953	0.027169179
SLC30A3	ENSG00000115194	9.707443186	7.957551833	0.038639101
CCDC39	ENSG00000145075	12.59878428	7.941085757	0.029969725
TDRD6	ENSG00000180113	9.751585097	7.930051589	0.024981655

Supplemental Figure 3. Gene Ontology (GO) terms for cellular localization (Supplemental Table 1) and molecular function (Supplemental Table 2) as well as enriched Kyoto Encyclopedia Genes and Genomes (KEGG) (Table 3) terms for significantly differentially expressed genes between high HERV-K expressing hepatoblastoma samples and low HERV-K expressing hepatoblastoma samples.

Supplemental Table 1: Gene Ontology (GO) molecular function analysis following differential gene expression analysis of high HERV-K expressing Hepatoblastoma vs low HERVK expressing Hepatoblastoma

Functional Category	Genes in list	Total genes	Enrichment False Discovery
			Rate
			(Adjusted-p-value)
Phospholipid binding	32	441	0.021578265
Collagen binding	10	72	0.023567822
Lipid binding	45	761	0.023567822
Identical protein binding	92	1871	0.023567822
Extracellular matrix structural constituent	16	179	0.040987689
Growth factor binding	14	150	0.043859833
Extracellular matrix binding	8	56	0.043859833
Protein kinase binding	39	673	0.046968545

Supplemental Table 2: Gene Ontology (GO) cellular localization analysis following differential gene expression analysis of high HERV-K expressing Hepatoblastoma vs low HERVK expressing Hepatoblastoma (Top 20 terms)

Functional Category	Genes in list	Total genes	Enrichment FDR
Secretory granule	80	946	9.06E-12
Vesicle	225	4252	1.39E-11
Secretory vesicle	87	1108	1.39E-11
Extracellular region part	201	3693	2.14E-11
Vesicle lumen	45	386	3.07E-11
Extracellular organelle	141	2326	6.29E-11
Cytoplasmic vesicle lumen	44	385	6.29E-11
Extracellular exosome	140	2300	6.29E-11
Extracellular vesicle	141	2324	6.29E-11
Extracellular space	188	3479	1.41E-10
Secretory granule lumen	41	367	6.38E-10
Extracellular region	228	4617	2.16E-09
Cytoplasmic vesicle part	109	1761	7.46E-09
Cytoplasmic vesicle	144	2625	2.85E-08
Intracellular vesicle	144	2628	2.88E-08
Collagen-containing extracellular matrix	38	425	1.26E-06
Platelet alpha granule lumen	14	70	1.92E-06
Extracellular matrix	44	551	2.64E-06
Endomembrane system	225	4988	6.27E-06
Lysosome	54	797	1.78E-05

Supplemental Table 3: Kyoto Encyclopedia of Genes and Genomes Enrichment Analysis following differential gene expression analysis of high HERV-K expressing Hepatoblastoma vs low HERVK expressing Hepatoblastoma.

Functional Category	Genes in list	Total genes	Enrichment False Discovery Rate (Adjusted p-value)
Amoebiasis	14	96	0.000793149
Complement and coagulation cascades	12	78	0.001119036
Fatty acid degradation	8	44	0.005062775
Legionellosis	9	55	0.005062775
Peroxisome	10	82	0.012590092
Focal adhesion	17	199	0.012590092
Human papillomavirus infection	24	330	0.012590092
PI3K-Akt signaling pathway	24	353	0.020654396
Rheumatoid arthritis	10	89	0.020654396
ECM-receptor interaction	9	82	0.034941883
AGE-RAGE signaling pathway in diabetic complications	10	100	0.034941883
Epithelial cell signaling in Helicobacter pylori infection	8	68	0.034941883
Salmonella infection	9	85	0.036101621
Regulation of actin cytoskeleton	16	214	0.036577774
Tryptophan metabolism	6	42	0.038157306
Oocyte meiosis	11	124	0.041198024
IL-17 signaling pathway	9	92	0.047460432
Toxoplasmosis	10	111	0.04997533