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Abstract  

Crohn’s disease (CD) is a multifactorial incurable chronic disorder. Current medical treatment 

seeks to induce and maintain a state of remission. During episodes of inflammation, monocytes 

infiltrate inflamed mucosa whereupon they differentiate into macrophages with a pro-inflammatory 

phenotype. Here, we sought to characterize the circulating monocytes by profiling their DNA 

methylome and relate it to the level of CD activity. We gathered an all-female age-matched cohort of 

16 CD patients and 7 non-CD volunteers. CD patients were further subdivided into 8 CD patients with 

active disease (CD-active) and 8 CD patients in remission (CD-remissive) as determined by physician 

global assessment. We identified 15 and 12 differentially methylated genes (DMGs) when comparing 

CD with non-CD and CD-active with CD-remissive, respectively. Differential methylation was 

predominantly found in the promoter regions of inflammatory genes. Comparing our observations 

with gene expression data on classical (CD14++CD16-), non-classical (CD14+CD16++) and intermediate 
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(CD14++CD16+) monocytes indicated that while 7 DMGs were differentially expressed across the 3 

subsets, the remaining DMGs could not immediately be associated with differences in known 

populations. We conclude that CD activity is associated with differences in DNA methylation at the 

promoter region of inflammation-associated genes. 

Introduction 

Crohn’s disease (CD) is a debilitating disorder belonging to the family of inflammatory bowel 

disease (IBD). CD is characterized by episodes of transmural inflammation that can affect any part of 

entire gastrointestinal tract. Inflammatory episodes typically manifest as a disproportionate immune 

response against the commensal microbiota [1], which is accompanied by infiltration of leukocytes 

into the inflamed intestinal mucosa [2]. Despite the extensive research performed on CD, it remains 

an incurable disease whose etiology and pathogenesis is not fully understood. Treatment regimens 

therefore aim to reduce inflammation by inducing and subsequently maintaining a state of remission. 

Genome-wide association studies (GWAS) have made it clear that genetics alone does not fully 

explain heritability in CD [3–5]. As such, CD has been classified as a complex disorder whose etiology 

is likely a combination of genetic [4], epigenetic [6, 7] and other environmental factors. Epigenetics 

pertain mitotically heritable changes that affect the readability of the genome that are not caused by 

changes to the genetic sequence. DNA methylation is one of the most studied epigenetic mark and 

represents the presence of a methyl group on a cytosine [8]. Functionally, the presence of DNA 

methylation in the promoter area is often inversely correlated with gene expression [9–11], which in 

certain cases was found to be a causal relationship [12, 13]. Previous epigenetic studies reported 

differences in the DNA methylome of peripheral blood or peripheral blood mononuclear cells 

(PBMCs), with differentially methylated loci occurring in genes associated to inflammatory pathways 

[14–16]. Here, we sought to build on the previous studies by focusing on an individual immune cell 

type: monocytes.  

Monocytes can differentiate into macrophages or dendritic cells (DCs), which altogether are 

known as the mononuclear phagocyte system (MPS) [17]. Blood monocytes are typically identified by 

their cell-surface expression of CD14, a pattern recognition receptor that acts as a co-receptor for 

detecting bacterial lipopolysaccharides [18]. Further sub-classification based on the expression of 

CD16, a type III Fcγ receptor, lead to the definition of classical (CD14++CD16-), non-classical 

(CD14+CD16++) and intermediate (CD14++CD16+) monocytes [19–21]. Where classical monocytes are 

typified by their phagocytic behavior and innate immune response, intermediate monocytes were 

found to be involved in cytokine secretion, antigen presentation and apoptosis, while non-classical 

monocytes are associated with adhesion, complement and Fc gamma-mediated phagocytosis [22–

24]. 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 12, 2020. ; https://doi.org/10.1101/2020.03.09.20033043doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.09.20033043
http://creativecommons.org/licenses/by/4.0/


Circulating monocytes alongside the intestinal macrophages and DCs have been implicated in 

the pathogenesis of IBD [25–31], with a recent study indicating that 170 CD-associated loci obtained 

from GWAS coincide with the gene co-expression networks from monocytes [32]. Relative to non-CD 

individuals or CD patients in remission, blood monocytes obtained from CD patients with active 

disease were more prone to secrete the inflammatory cytokines IL6 [33], CCL2 [34], and IL1β [34]. 

Subsequent flow cytometry studies identified fewer non-classical monocytes, but increased classical 

and intermediate monocytes among CD patients relative to healthy individuals [28, 31]. The same 

held true when comparing CD patients with active disease (CDAI>150) versus CD patients with 

quiescent disease (CDAI<150) [28, 31]. It has been suggested that the classical monocytes infiltrate 

the mucosa during inflammatory episodes of IBD [35] whereupon they differentiate into 

macrophages that display an inflammatory phenotype [36]. Among IBD patients, such an increased 

presence of inflammatory macrophages has been observed in the gut, which was more prominent in 

patients with active CD [27, 28, 37].  

In this study, we characterize the DNA methylome of CD14+ monocytes in CD patients. We 

identify differences in methylation between female CD patients and non-CD volunteers as well as 

between active and remissive CD patients, and associate them with differences in cellular 

composition observed in monocytes.  

Materials and Methods 

CD14 cells isolation 

Peripheral blood was collected in heparin tubes (BD Vacutainer) after which peripheral blood 

mononuclear cells (PBMCs) were obtained by density gradient centrifugation using Ficoll (Invitrogen). 

CD14+ cells were positively selected from PBMCs using CD14 Microbeads according to the 

manufacturer’s instructions (Miltenyi Biotec). Resulting PBMCs were then stored in PBS (Fresenius 

Kabi) at -80°C until the cohort was fully assembled. 

DNA isolation and methylation analysis 

Genomic DNA was extracted using the QIAamp DNA Mini Kit (Qiagen) according to the 

manufacturer’s instructions and stored at 4°C. Subsequent bisulfite conversion of the DNA was 

performed using the Zymo EZ DNA Methylation™ kit according to the manufacturer’s protocol prior 

to hybridization onto the Illumina HumanMethylation 450k BeadChip array for whole-genome DNA 

methylation profiling.  

Raw methylation data was imported into the R statistical programming environment (v3.6.2) 

[38] using the Bioconductor (v3.10) package minfi (v1.30) [39] after which quality control was 

performed using MethylAid (v1.18) [40] and shinyMethyl (v1.20) [41]. For statistical analyses, M-
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) were used [42]. 

 

Differential methylation analyses were performed using limma (v3.36) [43] and DMRcate 

(v1.16) [44] to identify differentially methylated probes (DMPs) and regions (DMRs), respectively. 

DMPs were defined as probes with a Benjamini-Hochberg (BH)-adjusted p-value < 0.05. DMRs were 

defined as regions with a Stouffer statistic < 0.05. Probes were annotated using the annotation file 

provided by Illumina (v1.2). We constructed two separate linear models where we compared CD with 

non-CD and the CD-active with CD-remissive while correcting for age using the following formula: 

~
������� � ��. Comparisons included CD patients against non-CD controls, and CD patients with 

active disease against CD patients in remission. Reported chromosomal coordinates are based on the 

genome build GRCh37. Differentially methylated genes (DMGs) were identified by aggregating p-

values of the individual probes associated per gene using Brown’s method [45] as implemented in 

EmpiricalBrownsMethod (v1.14.0) [46] and identifying the genes with a BH-adjusted p-value < 0.05. 

Briefly, Brown’s method aggregates p-values and is therefore used frequently in meta-analyses [45]. 

Unlike the related Fisher's combined probability test, which assumes independence between the 

individual tests, Brown’s method accounts for the dependence between the individual tests [47]. 

Given the correlated nature of CpGs within close proximity [48], Brown’s method was deemed more 

suitable than Fisher’s method. Visualizations were generated using the ggplot (v3.2.1) [49] and ggbio 

(v1.32) [50] packages with gene features obtained from Ensembl (v95) [51]. 

Monocyte gene expression data 

Gene expression data was obtained from Gene Expression Omnibus [52] dataset GSE107011 

[53], which contained a paired-ended RNA-sequencing data from different cell types isolated from 

peripheral blood from two male and two female healthy individuals. We downloaded the raw reads 

on the classical (CD14++CD16-), non-classical (CD14+CD16++), and intermediate (CD14++CD16+) 

monocytes from the Sequence Read Archive (SRA) [54] and aligned them against the human genome 

(GRCh37) using the STAR short read mapper (v2.7.1a) [55]. Subsequent post-processing was done 

using SAMtools (v1.9) after which reads mapped per gene were counted using featureCounts (v1.6.4) 

from the Subread package [56, 57]. Raw counts were imported into the R statistical programming 

environment after which normalization and statistical analysis was performed using DESeq2 (v1.24) 

[58]. The downloaded data was used to test which genes were associated with monocyte subsets in 

general. We therefore utilized a likelihood ratio test where we defined the full model as: 

~��������� ��������� and the reduced model as represented as: ~���������, where 

individual represents the donor and monocyte subset. Subsequent comparative analyses were done 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 12, 2020. ; https://doi.org/10.1101/2020.03.09.20033043doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.09.20033043
http://creativecommons.org/licenses/by/4.0/


using the default Wald test as implemented in DESeq2 where we compared classical with non-

classical, classical with intermediate and intermediate with non-classical monocytes. 

Results 

CD-associated differential methylation 

A cohort of 23 female individuals was assembled, consisting 16 CD patients and 7 non-CD 

volunteers. CD patients were selected to include 8 active and 8 remissive CD patients that visited the 

outpatient clinic at the IBD department in Amsterdam UMC, the Netherlands. Active CD was 

determined by physician global assessment and/or C-reactive protein above 4 (Table 1). All 

individuals had provided written informed consent. The assembly of this cohort was approved by the 

medical ethics committee of the Academic Medical Hospital, and written informed consent was 

obtained from both the CD patients and control subjects. 

 

Table 1. Summarized patient characteristics. 

Characteristics 

non-CD (n=7) CD (n=16) 

  Active (n=8) Remissive (n=8) 

Sex, n (%) 

Female 7 (100) 8 (100) 8 (100) 

Age, years, mean (sd) 31.4 (8.34) 35.7 (12.0) 39.7 (4.25) 

C-reactive protein, mg/L, mean (sd) - 22.9 (12.0) 0.825 (0.79) 

Harvey Bradshaw Index, mean (sd) - 6.8 (2.77) 1.29 (1.8) 

Concomitant medication, n (%) - 6 (75) 8 (100) 

anti-TNF - 2 (25) 6 (75) 

Corticosteroid - 2 (25) 0 (0) 

Thiopurine - 0 (0) 3 (37.5) 

Questran - 1 (12.5) 0 (0) 

Celcoxib - 1 (12.5) 0 (0) 

Pantoprazole - 1 (12.5) 0 (0) 

Mercaptopurine - 0 (0) 1 (12.5) 

 

CD-associated differential methylation 

We first compared the CD with non-CD samples but found no probes that passed the 

threshold for statistical significance (Table S1). Notably, the 50 most differentially methylated probes 

revealed visual, albeit minor, differences between CD and non-CD patients (Fig. 1a). Systematically 

searching for differentially methylated regions (DMRs) yielded no statistically significant DMRs either. 

However, visualizing the DMR with the lowest Stouffer statistic (chr7:51,470,953-51,471,981; 

Stouffer-statistic = 0.50) displayed continuous hypermethylation among the CD samples relative to 

the non-CD samples for 8 CpGs (Fig. S1). Trying to annotate this DMR to a particular gene proved 
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inconclusive due to its large distance (>100 kb) to the nearest gene, Cordon-Blue WH2 Repeat 

Protein (COBL).  

We searched for genes that were enriched for CpGs with low p-values. To this end, we 

annotated the CpGs to their respective genes and aggregated the p-values by means of the Brown’s 

method [45]. This approach yielded 15 statistically significant differentially methylated genes (DMGs) 

(Fig. 1b). Visualization of the difference in methylation suggested visually consistent, yet minor, 

differences in methylation (Fig. 1c). MPIG6B, GSTT1, SLFN13, SPI1, ZNF572, LOC150381, and G0S2 

displayed hypomethylation in the region surrounding the transcription start site (TSS), which we 

considered the promoter region, whereas ZADH2, DRD4, MPEG1, and SLC26A4 displayed 

hypomethylation within the gene body. Conversely, PDCD1 and MPEG1 displayed promoter 

hypermethylation with SLC17A9 and LOC286002 displaying hypermethylation within the gene body. 
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Figure 1. Comparing CD (n = 7) with non-CD (n = 16). (a) Heatmap organized by hierarchical clustering of the 50 

most DMPs annotated with Illumina probe IDs. (b) Barplot depicting the –log10(p-value) obtained from Brown’s 

method for the DMGs. Significant DMGs are indicated in black, while non-significant genes are indicated in grey. 

(c) Visualization of the significant DMGs by plotting the difference in percentage methylation relative to the 

position on the chromosome and the gene features as obtained from UCSC. Dots represent probes on the 

Illumina HumanMethylation 450k BeadChip array. The blue trend line represents the loess-smoothed average 

across all methylation probes for the indicated region with surrounding grey area representing the standard 

error. 
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Differential methylation associated with disease activity in CD monocytes 

As we had more granular information on CD activity, we investigated the intra-CD differences 

by comparing CD patients with active disease against CD patients in remission. Like the previous 

comparisons, none of the individual probes or continuous regions of probes were statistically 

significant after correcting for multiple testing (Table S2). However, visualizing the top 50 most 

differentially methylated probes suggested again visible but minor differences (Fig. 2a). Utilizing the 

Brown’s method for aggregating p-values, we identified 12 DMGs that were significantly associated 

with CD activity (Fig. 2b). Hypomethylation was observed for NNAT, TRIP6, and LOC387647 in the 

promoter and for HCP5 in the gene body (Fig. 2c). By contrast, hypermethylation was observed for 

MPIG6B, KRT3CAP, FAM24B, ZNF153 and PRAP1 in the promoter (Fig. 2c).  

While all CD-remissive samples were obtained from patients on some kind of medication 

(anti-TNF, corticosteroid, thiopurine, mercaptopurine, celecoxib, or questran), two CD-active samples 

were obtained from patients that were not on any medical treatment at time of sampling. We 

therefore investigated whether a medication effect was observable for aforementioned DMGs by 

means of principal component analysis. We observed no separate clustering of the samples on 

medication relative to the other samples, suggesting that any effect of the medication did not 

manifest visibly in the methylome of the DMGs (Fig. 2d). 
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Figure 2. Comparing CD-active (n = 8) with CD-remissive (n = 8). (a) Heatmap organized by hierarchical 

clustering of the 50 most DMPs annotated with Illumina probe IDs. (b) Barplot depicting the –log10(p-value) 

obtained from Brown’s method for the DMGs. Significant DMGs are indicated in black, while non-significant 

genes are indicated in grey. (c) Visualization of the significant DMGs by plotting the difference in percentage 

methylation relative to the position on the chromosome and the gene features as obtained from UCSC. Dots 

represent probes on the Illumina HumanMethylation 450k BeadChip array. The blue trend line represents the 

loess-smoothed average across all methylation probes for the indicated region with surrounding grey area 

representing the standard error. (d) Principal component analysis performed on the probes associated to the 

DMGs for the CD patients only. 

 

Taken together, we have identified in total 26 genes that were differentially methylated 

between CD and non-CD or between CD-active and CD-remissive (Table 2). When comparing the 

DMGs from the CD with non-CD comparison with the DMGs obtained from the active with remissive 

comparison, we identified one gene that was present in both comparisons, namely MPIG6B (Fig. 3a). 

Somewhat surprisingly, visualizing the methylation pattern of MPIG6B for all three groups, indicated 

that CD patients with active disease displayed a methylome more similar to non-CD patients as 

compared to CD patients in remission (Fig. 3b).  

 

Table 2. Overview of all the DMGs found in this study alongside the relevant statistics. In short, p-values were 

obtained using Brown’s method and adjusted for multiple testing using the Benjamini-Hochberg method 

against all genes. 

 CD vs non-CD CD-active vs CD-remissive 

Differentially 

methylated gene 
p-value 

BH-adjusted p-

value 
p-value 

BH-adjusted p-

value 

MPIG6B (C6orf25) 4.63E-15 9.19E-11 1.08E-09 2.15E-05 

PDCD1 4.05E-10 8.04E-06 0.905923 1 

GSTT1 3.60E-09 7.16E-05 0.317294 1 

ZADH2 4.54E-09 9.02E-05 0.028386 1 

MS4A3 6.90E-09 0.000136924 0.873469 1 

DRD4 3.15E-08 0.000625727 0.283934 1 

SLFN13 3.27E-08 0.000649811 0.010163 1 

SLC17A9 1.67E-07 0.003305914 0.14758 1 

MPEG1 2.00E-07 0.003965532 0.498594 1 

SLC26A4 2.66E-07 0.005275024 0.612185 1 

SPI1 5.95E-07 0.011817048 0.007133 1 

LOC286002 8.54E-07 0.016951922 0.578701 1 

ZNF572 1.09E-06 0.02165659 0.3022 1 
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LOC150381 1.72E-06 0.034101222 0.935613 1 

G0S2 1.74E-06 0.03460972 0.560081 1 

NNAT 1.88E-05 0.372484 2.98E-12 5.91E-08 

SERPINF1 0.204451 1 1.13E-10 2.24E-06 

TRIOBP 0.634584 1 9.00E-09 1.79E-04 

KRTCAP3 0.992178 1 1.31E-08 2.61E-04 

TRIP6 0.036528 1 3.64E-08 7.22E-04 

LOC387647 0.998103 1 5.43E-08 1.08E-03 

HCP5 0.809063 1 7.04E-08 1.40E-03 

SSTR4 0.873458 1 2.34E-07 4.64E-03 

FAM24B 0.071767 1 9.33E-07 0.018513 

ZNF154 0.003772 1 2.16E-06 0.042834 

PRAP1 0.901922 1 2.24E-06 0.044415 

 

 

Figure 3. Comparison of the DMGs across the two comparisons. (a) Visualization of the Fisher’s combined 

probability test p-values from CD vs non-CD on the x-axis and CD-active vs CD-remissive on the y-axis. Colors 

represent the genes found to be significant in the different comparisons. (b) Visualization of the percentage 

MPIG6B methylation for non-CD, CD-active and CD-remissive separately with an enlarged visualization below. 
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Differences in methylation may be associated with disease dynamics in monocyte 

populations 

From previous studies we know that CD patients compared with non-CD individuals, as well 

as CD patients with active disease compared with CD patients in remission, present an increased 

classical and intermediate monocyte population and a reduced non-classical monocyte population in 

peripheral blood [28, 31]. We therefore sought to identify which DMGs were potentially due to 

differences in monocyte populations. To investigate this, we analyzed the expression of the DMGs for 

all the three monocyte subsets using an external RNA-sequencing dataset (GSE107011 [53]).   

Monocyte gene expression data was available for 9 CD-associated DMGs, namely MPEG1, 

G0S2, ZNF572, ZADH2, SLFN13, PDCD1, SPI1, SLC17A9, and MS4A3, and 7 CD-activity associated 

DMGs, namely SERPINF1, HCP5, TRIOBP, KRTCAP3, ZNF154, TRIP6, and FAM24B. By performing a 

likelihood ratio test we identified that the CD-associated DMGs MPEG1, G0S2, ZNF572 and ZADH2 

(Fig. 4a) and the CD-activity associated DMGs SERPINF1 and HCP5 (Fig. 4b) were significantly 

differentially expressed among the monocyte populations. Classical monocytes were characterized 

by high MPEG1 and ZNF572 expression, intermediate monocytes were characterized by high ZADH2 

expression, and non-classical monocytes were characterized by low G0S2 and HCP5. Notably, all 

three subsets expressed SERPINF1 in a different fashion. By contrast, CD-associated DMGs SLFN13, 

PDCD1, SPI1, SLC17A9, and MS4A3 and CD-activity associated DMGs TRIOBP, KRTCAP3, ZNF154, 

TRIP6, and FAM24B were not significantly differentially expressed.  
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Figure 4. Gene expression of the DMGs across the different monocyte subsets. Visualization of the log2(counts) 

for classical, intermediate and non-classical annotated with the p-value as obtained from the likelihood ratio 

test. 

Discussion 

In this study, we investigated the DNA methylome of CD14
+

 monocytes and its relation to CD 

activity. To this end, we performed two analyses. First, we compared CD14
+

 monocytes from CD 

patients with non-CD volunteers and second, we compared CD patients with active disease against 

those in remission. At a genome-wide level, we identified no statistically significant DMPs and DMRs 

for both comparisons, suggesting minor differences methylation across the three groups. Despite the 

lack of genome-wide statistical significance, our search for genes that were enriched for low nominal 

p-values yielded 15 and 12 genes for the CD vs non-CD and CD-active vs CD-remissive comparisons, 

respectively. Cross-referencing our observations with differences in gene expression among 

monocyte subpopulations suggested that while 4 out of 9 CD-associated and 2 out of 7 CD-activity 

associated were potentially associated to changes in the underlying monocyte populations, 5 CD-

associated and 5 CD-activity are not.  
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Functionally, the DMGs were not found to be overrepresented for gene sets using the 

STRING database [59] (data not shown), indicating that the DMGs do not represent clear functional 

modules or cellular pathways. Nonetheless, CD-associated DMGs PDCD1, SPI1, SLC26A4, and MPIG6B 

as well as CD-activity associated DMGs TRIP6, SSTR4, and SLC17A9 have been implicated in 

immunological functions. PDCD1 is involved in the programmed cell death pathway [60], whose 

inhibition benefits sepsis-associated microbial clearing in murine macrophages [61, 62]. SPI1 (also 

known as PU.1) is a known regulator of myeloid and B-lymphoid cell development [63] but has also 

been described as pro-inflammatory as it is capable of upregulating IL6 in the presence of 

lipopolysaccharides (LPS) [64]. SLC26A4 encodes pendrin, an anion exchange protein whose clinical 

relevance is mostly described within the context of hearing impairment [65]. Nonetheless, whole 

genome bisulfite sequencing and RNA-sequencing analysis of mucosal biopsies of UC patients with 

non-UC patients indicated promoter hypomethylation and upregulated expression [66], which is in 

agreement with the observations made in this study. MPIG6B expression in platelets has been 

associated with a decreased aggregative capability in vitro [67]. Platelet count is typically positively 

correlated with CD activity [68] or colonic inflammation [69]. Notably, our results show 

hypomethylation of the MPIG6B promoter when comparing CD with non-CD, yet hypermethylation 

when comparing CD-active with CD-remissive. This observation would require further mechanistic 

studies to investigate the role of MPIG6B methylation on the inflammatory phenotype in monocytes. 

TRIP6 encodes a member of the RIP kinase family involved in inflammation through the NOD-like 

receptor signaling [70]. NOD-like receptors remain an interesting target for auto-inflammatory 

diseases due to their role in the assembly of the inflammasome [71]. SSTR4 has been implicated in 

inflammation and nociception in the gastrointestinal tract [72]. SLC17A9 encodes a vesicular 

nucleotide transporter whose primary function is the export of ATP [73]. Knockdown of SLC17A9 was 

found to suppress IL6 protein expression THP-1 cells even after LPS stimulation suggesting an 

amelioration of the pro-inflammatory phenotype [74]. Notably, SLC17A9 has been found to be 

associated with bone marrow monopoiesis [75].  

By comparing our observations with gene expression data generated by Monaco et al. [53], 

we found that several DMGs were differentially expressed among the three monocyte subsets. By 

contrast, CD-associated DMGs SLFN13, PDCD1, SPI1, SLC17A9, and MS4A3 and CD-activity associated 

DMGs TRIOBP, KRTCAP3, ZNF154, TRIP6, and FAM24B were not statistically different in expression 

across the three monocyte subsets. However, the correlation between gene expression and 

promoter methylation is not unequivocally true, nor is the effect size of the correlation known. A 

more direct approach would therefore be to compare the DNA methylome of the DMGs between 

non-CD, CD-active and CD-remissive for the three monocyte populations separately. While the 

dataset GSE73788 [76] does contain such methylation profiles, we found the results incompatible 
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due to the availability of only a single profile per monocyte subtype, coupled with the different DNA 

methylation platform used. Taken together, future confirmatory and mechanistic studies would be 

necessary to validate the population-independence of the aforementioned DMGs as well as 

investigate where the observed difference in methylation comes from as well as its association with 

CD. 

To conclude, we have provided evidence that the DNA methylome of CD14+ monocytes are 

different between non-CD patients and CD patients, as well as well as between CD patients with 

active disease and those in remission. While the differences in DNA methylation among CD activity 

states are minute and the current sample size is too small to properly identify DMPs and DMRs, we 

observe concordant differences in methylation particular gene promoters. Future studies on the DNA 

methylome in circulating monocytes would have to take this into consideration when estimating the 

sample size necessary for a properly powered study. Our observations can to that end serve as a 

stepping stone in subsequent research on monocyte characteristics in CD. 

Supplementary Information 

Figure S1. Visible DMR found at chr7:51,538,650-51,539,678. Visualization of the DMR with colors 

representing CD and non-CD samples. 

Table S1. Differential methylation probe analysis comparing CD with non-CD. Columns represent the 

Illumina CpG ID, the difference in M-values, the difference in Beta-values, t-statistic, p-values, BH-

adjusted p-values, and chromosomal coordinates (hg19). 

Table S2. Differential methylation probe analysis comparing CD-active with CD-remissive. Columns 

represent the Illumina CpG ID, the difference in M-values, the difference in Beta-values, t-statistic, p-

values, BH-adjusted p-values, and chromosomal coordinates (hg19). 

Table S3. Differential expression analysis of the DMGs. Tabs represent the three comparisons: 

Likelihood Ratio Test, Classical vs Non-classical, Classical vs Intermediate, and Intermediate vs Non-

classical. Columns in each tab represent the p-values and the BH-adjusted p-values obtained through 

differential expression analysis. 

Data availability 

The DNA methylation generated in this study has been published under controlled access for 

research purposes at the European Genome-phenome Archive at EGAD00010001846. All bash and R 

scripts have been made available on GitHub and can be found at 

https://github.com/ND91/PRJ0000002_CDMON. 
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