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ABSTRACT 

Aims: Assessing whether modifiable risk factors are causally associated with reduced stroke 

risk is important in planning public health measures, but determining causality can be difficult 

in epidemiological data. Leveraging large-scale genetic data in a technique known as 

Mendelian randomisation, we aimed to determine whether modifiable lifestyle factors 

including educational attainment, smoking, and body mass index are causal risk factors for 

ischaemic stroke and its different subtypes and haemorrhagic stroke. 

 

Methods and Results: We performed two-sample and multivariable Mendelian randomization 

to assess the causal effect of twelve lifestyle factors on risk of stroke and whether these effects 

are independent. We found genetic predisposition to increased number of years of education to 

be inversely associated with ischaemic, large-artery, and small-vessel stroke, as well as with 

intracerebral haemorrhage. Genetic predisposition to ever smoking regularly, higher body mass 

index (BMI), and higher waist-hip ratio are also associated with ischaemic and large-artery 

stroke. Additionally, we found that the effects of education, BMI, and smoking on ischaemic 

stroke to be independent of each other. 

 

Conclusion: Genetic predisposition to higher educational attainment can reduce the risk of 

ischaemic, large-artery, and small-vessel stroke, while genetic predisposition to smoking and 

higher anthropometry measures can increase the risk of these stroke subtypes.  This suggests 

that lifestyle modification addressing these risk factors will reduce stroke risk. 

 

Keywords: Mendelian randomization; education; smoking; body mass index; stroke; genetics 
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INTRODUCTION 

Reducing the burden of stroke in the population requires identification of modifiable risk 

factors, and the demonstration that reducing them reduces stroke risk.1 A large number of 

lifestyle factors have been associated with stroke risk,2 but demonstrating whether these 

associations are causal, and therefore whether modification of a particular risk factor will 

reduce stroke risk, is less clear. For some environmental factors such as smoking, convincing 

evidence suggests causality, but for many others it is uncertain whether they are indeed causal. 

Demonstrating causality is impossible from cross-sectional studies, and can even be 

challenging in longitudinal epidemiological studies in which risk factor exposure may be 

captured only over a few years rather than the entire lifespan. One way to assess causality is 

with a technique known as Mendelian randomization (MR), which uses genetic variants as 

instrumental variables in an approach analogous to a randomised controlled trial in which 

allocation to the “treatment group” is determined at conception, to assess whether risk factors 

have a causal association with an outcome of interest.3 

 

A further complicating factor is that stroke represents a syndrome rather than a specific disease, 

and can be caused by a variety of different pathologies.4 The majority (approximately 80%) of 

strokes are ischaemic, while about 20% are haemorrhagic.4 Ischaemic stroke can itself be 

further divided into aetiological subtypes, of which the main three are cardioembolic (CES), 

large artery atherosclerotic (LAS), and lacunar or small vessel disease (SVS).4 Recent genetic 

studies indicate that these have distinct genetic and pathophysiological characteristics.5 Most 

epidemiological data examining risk factor modification does not facilitate determination of 

the effect of modifiable risk factors on specific stroke subtypes. 
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In this study, we used an MR approach to investigate the aetiological role of modifiable lifestyle 

risk factors for stroke and its subtypes. We studied a range of modifiable risk factors, including 

educational attainment, sleep duration, physical activity, smoking status, alcohol consumption, 

coffee consumption, dietary components, body mass index (BMI), and waist-hip ratio (WHR). 

As well as examining associations with ischaemic and haemorrhagic stroke, we further 

investigated the association of these traits with specific ischaemic stroke subtypes (CES, LAS, 

and SVS). We performed two-sample MR, using genetic variants associated with lifestyle traits 

as instrumental variables, to determine whether these traits are causally implicated in the risk 

of stroke. We also performed mediation analysis to evaluate whether the effects of education 

on ischaemic stroke subtypes are independent to those of BMI and smoking. 
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METHODS 

Study design 

We performed a two-sample MR analysis, following guidelines for performing and reporting 

MR studies,6,7 using summary statistics from the largest publicly available genome-wide 

association studies (GWAS) on the following twelve lifestyle factors: educational attainment,8 

sleep duration,9 physical activity,10 smoking status,11 alcohol consumption,12 coffee 

consumption,13 four dietary components,14 BMI,15 and WHR.16 The sample sizes of the 

included studies ranged from 235,391 to 1.1 million individuals, all of whom were of European 

ancestry, from cohorts that included UK Biobank, the GIANT consortium, deCODE, and 

23andMe. A description of each trait is listed in Supplementary Table 1, along with details 

of the corresponding studies and genetic instruments used. 

 

Data sources 

Outcome data 

We obtained summary statistics from GWAS of all stroke (AS) and ischaemic stroke subtypes 

from the MEGASTROKE Consortium,5 which consisted of data from 67,162 cases and 

454,450 controls. MEGASTROKE had 60,341 cases with any ischaemic stroke (AIS) 

regardless of subtype, of which 9,006 were cardioembolic stroke (CES), 6,688 were large-

artery stroke (LAS), and 11,710 were small vessel stroke (SVS). Stroke cases were defined 

based on World Health Organization criteria (i.e. sudden onset neurological changes of 

presumed vascular origin lasting at least 24 hours) with stroke subtypes classified according to 

the Trial of Org 10172 in Acute Stroke Treatment (TOAST) criteria.17 To avoid bias due to 

population stratification, we restricted our analysis to Europeans since all of the GWAS of the 

lifestyle traits were also conducted in individuals of European ancestry. From the International 
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Stroke Genetics Consortium (ISGC), we also obtained GWAS summary statistics on 

intracerebral haemorrhage (ICH),18 which consisted of 1,545 cases and 1,481 controls. 

 

Instrumental variable selection 

For each lifestyle factor included in this analysis, we selected genetic instruments significant 

at P < 1 x 10-6 based on the largest published GWAS for that trait with publicly available 

summary statistics. We also conducted a sensitivity analysis in which we only included single 

nucleotide polymorphisms (SNPs) that reached genome-wide significance (P < 5 x 10-8) for 

association with each risk factor. We then performed linkage disequilibrium (LD) clumping, 

which ensured that the instruments used for each trait were independent, by selecting only the 

SNP with the lowest P-value amongst all SNPs with an LD r2 ≥ 0.001. 

 

We obtained data on educational attainment from a GWAS of time spent in education measured 

in years, from which we selected 440 SNPs. The study included 1.1 million individuals from 

71 cohorts (including UK Biobank, 23andMe, and deCODE).8 The GWAS of sleep duration 

analysed sleep duration measured in hours in 446,118 individuals from UK Biobank, adjusted 

for age, sex, 10 principal components of ancestry, genotyping array, and genetic correlation 

matrix, with 125 SNPs selected as genetic instruments.9 The GWAS of physical activity 

analysed moderate-to-vigorous physical activity, which was measured in MET-minutes per 

week with adjustment for age, sex, genotyping chip, first 10 genomic principal components, 

centre, and season, in 377,234 individuals from UK Biobank, and we selected 7 SNPs as 

instruments from this study.10 The GWAS of smoking status used a lifetime smoking index, 

which was constructed in 462,690 individuals from UK Biobank by developing a model that 

incorporated self-reported time started smoking, duration of smoking, and cigarettes per day, 

as well as half-life and lag time constants to capture the non-linear risk of smoking on health. 
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We selected 210 SNPs as instruments for the lifetime smoking index.11 The GWAS of alcohol 

consumption was based on the number of drinks consumed per week in 941,280 individuals 

from a number of cohorts including UK Biobank, 23andMe, and deCODE, from which we 

selected 83 SNPs.12 The GWAS of coffee consumption was based on the number of cups of 

coffee consumed per day as reported by 336,448 UK Biobank participants on a touchscreen 

questionnaire at the assessment centre, with adjustment for age, sex, BMI, total energy, 

proportion of 24-hour recalls self-reported as capturing “typical intake,” and top 20 principal 

components, for which our genetic instrument had 49 SNPs.13 The GWAS of dietary 

components consisted of four traits (fat, protein, carbohydrate, and sugar) measured in up to 

268,922 participants from UK Biobank, the DietGen consortium, and several other cohorts, 

with 5, 7, 8, and 9 SNPs respectively as genetic instruments.14 The GWAS of BMI was 

performed in 681,275 individuals from UK Biobank and the Health and Retirement Study, with 

adjustment for age, sex, recruitment centre, genotyping batches, and 10 principal 

components,15 and the GWAS of WHR was performed in 694,649 individuals from UK 

Biobank and the GIANT consortium with adjustment for SNP array.16 These studies included 

623 and 380 SNPs respectively as instruments. 

 

Statistical analyses 

We used the inverse-variance weighted (IVW) method as the primary MR analyses, which uses 

inverse-variance-weighted meta-analysis under a random-effects model to combine the ratio 

estimates from each genetic variant into a single estimate of the causal effect of the lifestyle 

trait on the outcome.3 We also conducted sensitivity analyses using a variety of robust MR 

methods, which employ different sets of assumptions to make reliable causal inferences. These 

approaches included MR-Egger regression, the weighted median estimator, and the simple and 

weighted mode-based estimators.3 
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For each trait, we harmonised all SNPs associated with the trait with the outcome data to ensure 

that the effect estimates of each SNP on the exposure and on the outcome corresponded to the 

same effect allele. We then performed MR using the IVW method and sensitivity analyses 

using additional MR approaches. We accounted for multiple testing using a false discovery rate 

(FDR) cut-off of q < 0.05. Analyses were performed in R version 3.6.1 (R Core Team, 2019) 

using the TwoSampleMR package version 0.4.25.19 Two-sided P-values and 95% confidence 

intervals are presented. 

 

We also performed MR-based network mediation analysis20 to examine the extent to which 

increases in BMI and increased levels of smoking mediate the protective effective of education 

on ischaemic stroke subtypes. We calculated the total effect of education on stroke using two-

sample univariable random-effects MR using the IVW approach. To calculate the direct effects, 

we combined the instruments for education, BMI, and smoking, and performed multivariable 

MR analyses to estimate their associations with the stroke subtypes. We calculated the indirect 

effect of education on stroke that acts through either BMI or smoking as the difference between 

the direct and total effect estimates. Finally, we calculated the proportion of the total effect of 

education on stroke that was mediated by BMI and smoking by dividing the indirect effect by 

the total effect. We also used the delta method21 to derive standard errors for each of the effects. 
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RESULTS 

We analysed twelve lifestyle traits for association with AS, AIS, ICH, and the three subtypes 

of ischaemic stroke (CES, LAS, and SVS). Figure 1 summarises the direction and magnitude 

of the association estimates for each lifestyle trait with each outcome, with stronger 

associations indicated by darker colours (red in the positive direction and blue in the negative 

direction) and asterisks to indicate the level of statistical significance. Figure 2 shows 

scatterplots of the associations of each genetic variant plotted against their association with 

corresponding outcomes for all traits that had significant (FDR q < 0.05) associations. Forest 

plots of associations between lifestyle traits and each stroke subtype using the random-effects 

inverse-variance weighted method are shown in Figure 3. The full results for the association 

of each of the twelve traits with all six outcomes, using each MR method, are provided in 

Supplementary Table 2. 

 

We found significant inverse associations of genetically determined number of years of 

education with ischaemic stroke (OR: 0.68, 95% CI: 0.63-0.75) and intracerebral haemorrhage 

(OR: 0.34, 0.20-0.58), as well as with large-artery (OR: 0.53, 0.42-0.67) and small-vessel 

stroke (OR: 0.65, 0.53-0.80). There was also suggestive (but not statistically significant) 

evidence of an inverse association of education with cardioembolic stroke (OR: 0.83, 0.70-

0.99). 

 

Genetic predisposition to lifetime smoking was significantly associated with ischaemic stroke 

(OR: 1.23, 1.10-1.39), large-artery (OR: 1.72, 1.26-2.36) and small-vessel stroke (OR: 1.69, 

1.27-2.25), but not with cardioembolic stroke (OR: 0.83, 0.70-0.99). The association with 

intracerebral haemorrhage was of similar magnitude but did not reach statistical significance 

(OR: 1.70, 0.73-3.94). 
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Genetically determined higher BMI was significantly associated with increased risk of 

ischaemic (OR: 1.14, 1.06-1.22) and large-artery stroke (OR: 1.32, 1.12-1.57), and there was a 

suggestive association with cardioembolic stroke but it was not statistically significant (OR: 

1.16, 1.03-1.31). Genetically higher WHR was significantly associated with increased risk of 

ischaemic stroke (OR: 1.19, 1.10-1.29), large-artery (OR: 1.45, 1.21-1.75) and small-vessel 

stroke (OR: 1.38, 1.16-1.66), but showed no association with cardioembolic stroke (OR: 1.00, 

0.87-1.16). There were no material differences in the results when the instruments were 

restricted to SNPs that reached genome-wide significance for association with each trait 

(Supplementary Table 3). 

 

There were no significant associations between sleep duration, physical activity, dietary 

components, coffee intake, or alcohol consumption with ischaemic stroke, intracerebral 

haemorrhage, or any ischaemic stroke subtype. 

 

We calculated that the proportion of the total effect of education on stroke mediated through 

BMI and smoking was 1% for ischaemic stroke and nearly 14% for cardioembolic and large-

artery stroke. However, the indirect effects of education on each of the five stroke subtypes 

were not statistically significant (q < 0.05), and for all stroke and small-vessel stroke there was 

inconsistent mediation because the indirect effects and total effects were in opposing directions, 

which may be due to insufficient power. Our mediation analysis therefore lacked sufficient 

evidence to state that the effects of education on ischaemic stroke and its subtypes are mediated 

through either BMI or smoking. This suggests that education, BMI, and smoking each have 

independent effects on stroke. 
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DISCUSSION 

In this study, we conducted MR analyses using large-scale GWAS summary statistics to 

investigate causal associations of modifiable lifestyle traits with risk of stroke subtypes. We 

found genetic predisposition to number of years of education to be inversely associated with 

ischaemic stroke, large-artery and small-vessel stroke, and intracerebral haemorrhage. Genetic 

predisposition to ever smoking regularly and having higher BMI and WHR were associated 

with ischaemic and large-artery stroke. We also found that the associations of education, BMI, 

and smoking on risk of ischaemic stroke and its subtypes were independent of each other. 

 

Out analysis did not identify any evidence of a causal association of lifestyle factors with 

cardioembolic stroke. This may reflect the fact that the majority of cases of CES are due to 

atrial fibrillation,22 which has a different genetic and other risk factor profile to other stroke 

subtypes. While further research into the underlying mechanisms is needed, this could help 

explain why we found that lifestyle factors are implicated in the onset of large-artery and small-

vessel stroke but not CES. 

 

Our MR results provide genetic evidence for an inverse causal effect of educational attainment 

on ischaemic stroke and intracerebral haemorrhage. Our analysis validates previously reported 

associations of the effect of education on ischaemic stroke from observational studies23 and 

MR analyses,24 as well as a recent MR analysis showing associations of education with large-

artery stroke, small-vessel stroke, and intracerebral haemorrhage.25 Our findings for the 

association of the lifetime smoking index with increased risk of ischaemic, large-artery, and 

small-vessel stroke is in concordance with previous observational studies26 and MR analyses.27 

While earlier MR analyses of BMI with smaller sample sizes did not show clear evidence of a 

causal association with any ischaemic stroke subtype,28 our analysis in a larger sample confirms 
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the associations reported in a recent MR analysis of BMI with large-artery stroke and WHR 

with large-artery and small-vessel stroke.29 

 

We did not identify any associations of stroke or its subtypes with genetic predisposition to 

longer sleep duration, increased physical activity, or increased consumption of fat, protein, 

carbohydrates, sugar, coffee, or alcohol. The number of genetic instruments was very small for 

physical activity and the dietary components (fewer than 10 SNPs each), which may have 

resulted in weak instrument bias. Additionally, analysing each dietary component in isolation 

may be less effective than considering the total effect of a healthy or unhealthy diet on stroke 

and its subtypes. Nevertheless, our research shows that sleep, physical activity, and several 

diet-related factors do not exhibit evidence of a causal association with ischaemic stroke and 

its subtypes or intracerebral haemorrhage. In contrast, genetic liability to insomnia has been 

shown to be associated with ischaemic stroke in a recent MR analysis,30 so it is possible that 

overall sleep duration is not specific enough  as a phenotype. 

 

Our findings lend support to a number of potential policy recommendations. While some 

individuals may have a genetic predisposition to lower educational attainment, higher 

frequency of smoking, or higher BMI or WHR, genetic heritability only explains a fraction of 

the total variation in these traits (11% for education, 2% for smoking, 6% for BMI, and 3.9% 

for WHR).8,11,15,16 Therefore, regardless of their level of genetic risk, individuals can make 

various lifestyle changes to reduce their risk of stroke, such as smoking cessation.2,31,32 This 

study also highlights the importance of promoting universal education, which would benefit 

everyone regardless of genetic makeup.25 Interestingly, although BMI and WHR were 

significantly associated with increased risk of stroke, we did not identify significant 

associations for related lifestyle changes that could be adopted to help reduce adiposity 
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measures, such as increased physical activity and reduced fat and sugar consumption. This may 

be due to the small number of genetic variants that were available to use as instrumental 

variables for physical activity and dietary components. 

 

Our study has several strengths. The large sample size of each study (ranging from 235,000 to 

1.1 million participants) provided substantial power to detect differences in the effects of 

lifestyle factors on aetiological stroke subtypes and to perform multiple sensitivity analyses to 

test the validity of the MR assumptions, which reduced the likelihood of obtaining biased 

estimates. In addition, our investigation of a wide range of lifestyle factors provides a relatively 

comprehensive overview of the associations with subtypes of ischaemic stroke and 

intracerebral haemorrhage. Moreover, several of the pitfalls common to observational studies, 

such as reverse causation bias and potential confounding, were reduced or avoided altogether 

by using an MR approach since genetic variants are allocated at conception. Our estimates 

therefore represent the impact of a lifelong intervention in the lifestyle factors rather than 

lifestyle changes of a shorter duration as reported in observational studies. 

 

Our study also has several limitations. Under the MR analysis framework, we used genetic 

variants as instrumental variables to evaluate whether modifiable lifestyle factors have a causal 

association with risk of stroke and its subtypes; however, as we only had access to summary-

level data rather than individual participant data, we were not able to calculate polygenic risk 

scores to determine whether individuals with specific genetic variants were at increased risk of 

stroke. A related point is that while we did capture the impact of a lifelong intervention in each 

lifestyle factor, our analyses only considered the genetic predisposition to adopt a certain 

lifestyle habit rather than determining whether individuals who actually implement a given 

change to their lifestyle have a measurable impact on their risk of stroke, which may also be 
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influenced by various environmental factors. Additionally, our analyses were based on datasets 

involving individuals of European ancestry and thus might not be applicable to other 

ethnicities. Furthermore, although the association of BMI with stroke is J-shaped,33 our 

analyses did not account for non-linear associations for continuous traits. 

 

In conclusion, our results suggest causal associations of lower educational attainment and 

higher levels of smoking, BMI, and WHR with increased risk of ischaemic stroke, particularly 

large-artery and small-vessel stroke. The effects of modifiable lifestyle factors on large-artery 

and small-vessel stroke observed here may have important policy implications that support the 

implementation of strategies to encourage improved lifestyle habits. 
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Figures 

Figure 1. Mendelian randomization results showing causal estimates for association of 

lifestyle traits with stroke and its subtypes 

Figure 2. Genetic associations of lifestyle traits and stroke subtypes for significant causal 

estimates 

Figure 3. Mendelian randomization associations between genetic predisposition to 

lifestyle factors and stroke subtypes 
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Figure 1. Mendelian randomization results showing causal estimates for association of 

lifestyle traits with stroke and its subtypes 

 

 
 
Colours show magnitude and direction of P-value of association for estimate of causal effect using inverse-

variance weighted MR approach. P-values less than 1 x 10-8 have been truncated in the figure. Asterisks indicate 

significant associations for the causal effect estimates (FDR q < 0.05). AS = All stroke; AIS = Any ischaemic 

stroke; CES = Cardioembolic stroke; ICH = Intracerebral haemorrhage; LAS = Large-artery stroke; SVS = Small 

vessel stroke. Please refer to Supplementary Table 1 for a description of each trait.  
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Figure 2. Genetic associations of lifestyle traits and stroke subtypes for significant causal 

estimates 

 

 
 
The associations of each genetic variant associated with lifestyle traits with significant (FDR q < 0.05) causal 

estimates are plotted against their association with the corresponding outcome. Circles represent the associated 

change in levels of the trait and corresponding increased risk for each variant. The horizontal and vertical lines 

through each circle represent the corresponding 95% confidence intervals for the genetic associations. 

Associations were oriented to the effect allele of each trait. Coloured lines show the slope (causal estimate) of the 

trait on the outcome obtained using a variety of different MR approaches. Trait / Outcome: (a) Education / AS; 

(b) Education / AIS; (c) Education / LAS; (d) Education / SVS; (e) Education / ICH; (f) Smoking / AS; (g) 

Smoking / AIS; (h) Smoking / LAS; (i) Smoking / SVS; (j) BMI / AS; (k) BMI / AIS; (l) BMI / LAS; (m) WHR 

/ AS; (n) WHR / AIS; (o) WHR / LAS; (p) WHR / SVS. Please refer to Supplementary Table 1 for a description 

of each trait. 
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Figure 3. Mendelian randomization associations between genetic predisposition to lifestyle factors and stroke subtypes 

 

 
Results derived from random-effects inverse-variance weighted MR analyses. Asterisks indicate significant associations for the causal effect estimates (FDR q < 0.05). 

Results are shown for (a) all stroke, (b) any ischaemic stroke, (c) intracerebral haemorrhage, and ischaemic stroke subtypes: (d) cardioembolic stroke, (e) large-artery stroke, 

and (f) small vessel stroke. Please refer to Supplementary Table 1 for a description of each trait. 
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