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Abstract
We compare two approaches for simulating events in the illness-death model  in a test  example
about type 2 diabetes in Germany. The first approach is a discrete event simulation, where relevant
events,  i.e.,  onset of  disease and death,  are simulated for  each subject  individually.  The second
approach is the Doob-Gillespie algorithm, which simulates the number of people in each state of the
illness-death model at each point in time. The algorithms are compared in terms of bias, variance and
speed.  Based  on the  results  of  the comparison  in  the test  example,  we  assess  coverage of  the
corresponding Wald confidence intervals.

Introduction
For the past decades the world has been experiencing a pandemia of chronic diseases [1-3]. The
World  Health  Organisation WHO has estimated that  71.3% percent  of  the 56 million worldwide
deaths in 2016 were due to non-communicable (chronic) diseases (NCDs). For comparison, in 2000
this percentage has been 60.5% [4]. This has led the United Nations' General Assembly to set forth
the target of reducing the burden of chronic diseases by increase physical activity, reducing salt-
intake, and lowering tobacco and alcohol consumption [5]. Possible ways of projecting the impact of
such and related health policies usually comprise involvement of mathematical models [6].

Mathematical models about disease development and progression are often expressed as multi-state
models. The famous SIR model of Kermack & McKendrick consists of the states Susceptible, Infected
and  Recovered (which led to the acronym  SIR)  and is a simple but valuable and frequently used
example [7]. For chronic conditions, the illness-death model also consists of three states:  Healthy
(with respect to the condition under consideration),  Ill and Dead [8]. In case there is no remission,
the  illness-death  model  of  chronic  diseases  looks  like  depicted  in  Figure  1.  The  transition  rates
between the states are the incidence rate (i), the mortality rates with (m1) and without the disease
(m0). The rates i,  m0, and m1 may depend on a time scale , e.g. calendar time or the age in a birth
cohort.



Figure 1: Illness-death model for chronic diseases without remission.

For a given point in time , let H() and I() denote the (absolute) number of people in the Healthy
and Ill state, respectively. Then, we have shown recently that the percentage p() = I()/[H()+I()] of
people alive in the Ill state at time  is governed by an ordinary differential equation (ODE) [9]:

dp/d  = (1 – p) {i – p(m1 - m0)}. (1)

The percentage p is also known as prevalence. Equation (1) follows from the Kolmogorow forward
equations for time-inhomogeneous Markov processes [10]. Analytical properties of the ODE (1) are
studied in [11].

For a single subject, the point in time when a transition from one state in Figure 1 into another takes
place, is stochastic. However, by its nature, the ODE (1) is deterministic. The question in which way
deterministic models are the limiting cases of stochastic models is more than 50 years old [12]. For
certain  types of  ODEs it  could  be shown that  these ODEs are  limits  of  counting processes  [13].
However, ODE (1) is a quotient of counting processes (in H and H+I) and limit theorems for quotients
of  random variables  ("ratio distributions")  are  difficult  to  treat  [14,15].  Thus,  we  chose  a  more
pragmatic approach to investigate how large a group of individuals must be such that the ODE (1)
describes the empirical prevalence p "appropriately". To answer this question, we simulate groups of
individuals transiting through the stages of the illness-death model shown in Figure 1.

Two  research  questions  are  addressed:  First,  we  compare  the  commonly  used  discrete  event
simulation  [16]  with  the  Doob-Gillespie  algorithm  [17,  18]  in  terms  of  bias,  variance  and
computational speed. The comparison is accomplished in a test example motivated from diabetes in
the  German  population  [11].  Second,  we  use  the  better  of  the  two  algorithms  to  explore  the
coverage probability of the 95% Wald confidence intervals of the binomial distribution for different
population sizes and success probabilities. The success probabilities correspond to the prevalences of
the chronic disease in the illness-death model. We chose the Wald confidence interval, because it is
easy to calculate and "has acquired a nearly universal acceptance in practice" [19].



Methods
To decide if the discrete event simulation is faster than the Doob-Gillespie algorithm, we set up a test
example. The following transition rates i, m0, and m1 are chosen for the illness-death model: 

i() = max(0,  – 30)/2000 (2a)

m0() = exp(–10.7 + /10) (2b)

m1() = exp(–10 + /10). (2c)

These rates are motivated from the epidemiology of type 2 diabetes in Germany [11, 20]. In order to
study groups of individuals transiting through the stages of the illness-death model in Figure 1, two
algorithms are compared. The first method is the discrete event simulation, where for each subject
the sojourn times in the states Healthy and eventually Ill are drawn from an appropriate distribution
[16].  The second method is  the Doob-Gillespie  algorithm,  where for  each (small)  time step,  the
number of transitions between the states are drawn from a Poisson distribution [17,18]. A total of N
= 500 simulation runs of populations with initial size  n0 = 1000 are computed with discrete event
simulation and the Doob-Gillespie algorithm. The resulting bias, variance and computing times are
compared.

In a second analysis, the faster of the two methods is chosen to explore the coverage probability of
the 95% Wald confidence intervals of the binomial distribution for different population sizes (n) and
success probabilities  (p).  For this,  we use initial  population sizes  n0 =  50,  500, 5000, 50000, and
500000. These populations transit through the stages of the illness-death model until a maximal age
(here 86 years) is reached. Then, we mimic cross-sectional studies at different points in time k = 35,
40,  45,  50,  60,  70,  75,  80,  85  (years).  The  success  probabilities  p of  the  binomial  distribution
correspond to the prevalences  p of the chronic disease in the cross-sections at times  k. Note that
people decease by entering the absorbing state Dead in Figure 1, such that the number n of people
still alive at k differs from the initial population size n0. To estimate coverage, N = 10000 simulation
runs for each n0 are accomplished. 95% Wald confidence intervals are calculated by 

p  1,96  {p (1 – p)/n}-1/2, (3)

where p = p() is the solution of the ODE (1) at time . The prevalences p are obtained from solving
ODE (1) with rates (2) and initial condition p(30) = 0. Then, the Wald 95% confidence intervals are
calculated by Eq (3) at the points k = 35, 40, 45, 50, 60, 70, 75, 80, 85. The proportion of trajectories
calculated by the Doob-Gillespie algorithm that are included in the Wald confidence interval at k is
the coverage. Figure 2 shows the flow diagram of the simulation.



Figure 2: Flow diagram of the simulation.

Results
Figure 3 shows the slope field for the ODE (1) with rates as in Eq. (2) [11]. In addition, we plotted the
solution of the ODE with the initial condition p(30) = 0 as a red line.

Figure 3: Slope field of the ODE (1) with transition rates i, m0, and m1 as in Equations (2). The red line is the
solution of the ODE with the initial condition p(30) = 0 [Brinks Hindawi].

Figure 4 shows the results of  N = 500 simulation runs with initial population sizes  n0 = 1000. Each
black  line  corresponds  to  one  of  the  N =  500  simulations  of  p()  versus  .  We call  these  lines
prevalence trajectories p(j)(), j = 1, ..., N. The left and right panel of Figure 4 has been computed by
the  discrete  event  simulation and  the  Doob-Gillespie  algorithm,  respectively.  In  both  panels,  all
simulated prevalence trajectories  start  at   =  30  with  p(30)  =  0.  As   increases,  the prevalence
increases until about  = 80 and decreases thereafter. It can be seen that the width of the black area
increases as  increases ("inverted saxophone"). Computing times on a standard personal computer
(Intel i3-3220 with 3.3 GHz and 8 GB RAM) have been 65.4 and 0.932 seconds for discrete event
simulation and Doob-Gillespie  algorithm, respectively. Hence, the Doob-Gillespie  algorithm is 70x
faster than the discrete event simulation.



Figure 4: Trajectories of N = 500 simulations with discrete event simulation (left) and the Doob-Gillespie
algorithm (right).

Figure 5: Boxplots of the difference between N = 500 trajectories and the true prevalences p at different ages
k (abscissa). The panels show the differences for the discrete event simulation (left) and the Doob-Gillespie

algorithm (right).

Figure 5 shows the box plots of the differences between the true prevalence p (obtained from solving
ODE (1) with rates (2) and initial condition p(30) = 0) and the trajectories p(j) , j = 1, ..., N, at different
ages  k.  The left and right part of  Figure 5 refers to the discrete event simulation and the Doob-
Gillespie algorithm, respectively. The empirical mean of the difference (solid lines in the boxes) is
close to zero in all ages and both simulations algorithms. Variance of the differences increases as age
increases. Thus, in terms of bias and variance, both algorithms yield very similar results.

After  the  Doob-Gillespie  algorithm  outperformed  the  discrete  event  simulation  in  terms  of
computational speed while both algorithms are similar in bias and variance, we continued with the
Doob-Gillespie algorithm to examine coverage of the 95% Wald confidence intervals. The results are
shown in  Table 1. The first row shows the points in time  k, where the coverage is assessed. The
second row presents the true prevalence p(k) calculated by solving ODE (1) with rates (2) and initial
condition p(30) = 0. The third row in  Table 1 shows the proportion of people who are still alive at



time k (S means survival function). For instance, at k = 75 we find that S(k) = 60.3%, which means
that about 40% of the initial  n0 people have died. Thus, the number  n of people alive at  k can be
calculated by n = n0  S.

Table 1: Coverage of the 95% Wald confidence interval as in Eq. (3) in N = 10,000 simulations of the Doob-
Gillespie algorithm.

Irrespective of the tested simulation settings, the coverage probability of the 95% Wald confidence
intervals is at least 94.49% and reaches up to 96.58%. Thus, in the tested settings the 95% Wald
confidence interval calculated by Eq. (3) with  p being the solution of the ODE (1) is a practical and
reasonable approximation to the 95% confidence interval.

Conclusion
Simulations about a test example shows that the 95% Wald confidence bounds calculated by Eq (3)
using the ODE (1) for calculating the prevalence p have a satisfactory coverage - irrespective of the
tested population sizes n and the tested magnitudes of p. In this sense, the ODE and the associated
Wald confidence bounds describes populations appropriately on a wide variety of epidemiological
scales. 
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