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 2 

Abstract 22 

As SARS-CoV-2 emerged as a global threat in early 2020, China enacted rapid and strict 23 

lock-down orders to prevent introductions and suppress transmission. In contrast, the United 24 

States federal government did not enact national orders. State and local authorities were left to 25 

make rapid decisions based on limited case data and scientific information to protect their 26 

communities. To support local decision making in early 2020, we developed a model for 27 

estimating the probability of an unseen COVID-19 epidemic in each US county based on the 28 

number of confirmed cases. We found that counties with only a single reported case by April 29 

13th had a 50% chance that SARS-CoV-2 was already spreading widely. By that date, 85% of 30 

US counties covering 96% of the population had reported at least one case. Given the low rates 31 

of testing and reporting early in the pandemic, taking action upon the detection of just one or a 32 

few cases may be prudent.  33 

 34 

Author Summary 35 

By March 28, 2020, only 3 months after the first US case of COVID-19 was detected, 36 

COVID-19 emerged in all 50 US states. Officials were forced to weigh the economic and 37 

societal costs of strict social distancing measures against the future risks of COVID-19 38 

hospitalizations and mortality in their communities. To support local decision makers throughout 39 

the US, we developed a simple model to determine the chance that COVID-19 was spreading 40 

unseen based on scant reported case counts. In mid-April, 85% of US counties containing 96% 41 

of the population had reported at least one confirmed case. Our model predicted that each of 42 

those counties thus faced at least a 50% chance that the virus was already spreading widely. 43 
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Aggressive pandemic mitigation measures, even before a threat is fully apparent, are particularly 44 

critical when testing resources are limited.  45 

 46 

Introduction 47 

The pandemic caused by the 2019 novel coronavirus (COVID-19) has claimed over 48 

242,000 American lives as of early November 2020 and may kill tens of thousands more by the 49 

end of the year [1-3]. Early in the pandemic, when confirmed case counts were still relatively 50 

low across the US, the federal government left decision making largely to state and local public 51 

authorities. Amidst great uncertainty, they faced the unprecedented challenge of balancing the 52 

threat of a mostly unseen but deadly virus against the economic and societal costs of shelter-in-53 

place and travel restrictions.  At the time, most SARS-CoV-2 (the virus responsible for COVID-54 

19) cases were not reported due to the high proportion of mild and asymptomatic infections, 55 

limited laboratory testing capacity and strict requirements for receiving tests (e.g. travel or 56 

contact with someone from Wuhan, China) [4,5]. The CDC estimated that only one in ten 57 

COVID-19 infections were reported during the early phase of the pandemic [6].  58 

As the first cases of COVID-19 were reported, decision makers urgently needed to 59 

determine whether these cases reflected sporadic clusters stemming from recent introductions or 60 

sustained community transmission that might evolve into a large epidemic. In the southern US, 61 

the 2016 expansion of Zika Virus (ZIKV) across the Americas posed a similar challenge. Cryptic 62 

transmission meant that by the time a few cases were reported, a large epidemic could already be 63 

underway [7]. Here, we describe a stochastic susceptible-exposed-infected-recovered 64 

compartmental model framework for estimating the magnitude of an epidemic threat from scarce 65 

case data. The approach was originally developed to support situational awareness for ZIKV then 66 
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adapted for COVID-19. We apply it to estimating the risk of unseen COVID-19 waves in 67 

counties across the US during the emergence phase of the pandemic in 2020.  68 

  69 

Results 70 

We modeled the stochastic emergence of COVID-19 accounting for potential 71 

superspreading events, asymptomatic infections, and epidemiological characteristics. We 72 

assumed all US counties had roughly similar transmission rates. The chance that a county had 73 

emerging COVID-19 waves ranged from 9% for zero detected cases to 100% for 25 or more (Fig 74 

1). By March 16, 2020, counties cumulatively reported between 0 and 489 cases totaling 4,009 75 

nationally. Epidemic risk exceeded 50% in roughly 15% of the 3,142 counties covering 63% of 76 

the US population. By April 13, 2020, total reported cases in the US climbed to 467,158. 77 

Consequently, we estimated that over 85% of US counties comprising 96% of the national 78 

population had at least a 50% chance of having an epidemic already underway (Fig 1).  79 

Based on COVID-19 case detection rates [6] for the week of April 13, 2020, we 80 

estimated that sustained community transmission was probable as soon as even one case was 81 

confirmed (Fig 2). At a moderate transmission rate (i.e. Re=1.5), the first case in a county signals 82 

a 50% chance that an epidemic was underway. For a high transmission rate (i.e. Re=3.0), as may 83 

be expected before COVID-19 lockdowns, the estimated risk increased to 83%. The projected 84 

risks are generally higher for both larger transmission rates and lowercase detection rates. For 85 

example, when Re is 1.5, the expected epidemic risk associated with a single case is 50% and 86 

increases to 63% when the case detection rate drops from one in ten (10%) to one in twenty 87 

(5%). For outbreaks that eventually spread widely, the expected time between the first COVID-88 

19 case report and the epidemic reaching 1,000 cumulative infections was 7.5 (95% CI 3.9-16.3) 89 
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weeks. The expected time between the tenth reported case and 1,000 cumulative infections 90 

shrank by 41% to 4.4 (95% CI 2.1-11.4) weeks (Fig 3).  91 

As a retrospective validation of our model, we compared our estimates to reported case 92 

counts. We cannot know, with certainty, if and when epidemics began spreading in most US 93 

counties. As a proxy, we assess whether case counts increased by at least five in the week 94 

following our estimate on March 16 (Fig 4, middle line). We find that our estimates for the 95 

probability of an ongoing epidemic (epidemic risk) are highly consistent with the fraction of 96 

counties that exhibited jumps in reported cases. The cumulative number of reported cases in a 97 

county by March 16 was a significant predictor of whether the number of new reported cases in 98 

the following week (March 16-23) was at least one, five, or ten cases (logistic regression, 99 

p<0.001). A one unit increase in cumulative reported cases increased the odds of a county 100 

detecting at least one, five, or ten new cases by March 23 by 7.92 (95% CI 5.98-10.80), 4.90 101 

(95% CI 4.14-5.99), and 3.16 (95% CI 2.80-3.63), respectively. 102 
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 103 

Fig 1. Risk of ongoing COVID-19 epidemics in the 3,142 US counties as of March 16 (top) 104 

and April 13, 2020 (bottom). The chance of an unseen epidemic (epidemic risk) in a county 105 

reporting only a single reported case is 50%; for a county reporting zero cases, the chance is 9%. 106 

The model used in both maps assumes Re=1.5, a 10% case detection rate, and a generation time 107 

of six days. 108 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 13, 2020. ; https://doi.org/10.1101/2020.04.06.20053561doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.06.20053561
http://creativecommons.org/licenses/by-nc-nd/4.0/


 7 

 109 

Fig 2. Sensitivity analysis with respect to the effective reproduction number (Re). For a 110 

given number of reported cases, the estimated risk of an epidemic increased with Re. By the time 111 

a single case is reported, there is a 13%, 50% or 83% chance of an ongoing epidemic for Re of 112 

1.1, 1.5 or 3.0, respectively.  113 
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 114 

Fig 3. Expected time until the local epidemic exceeds 1,000 cumulative cases. For a given 115 

number of cumulative reported cases (x-axis), we assume an epidemic is underway then estimate 116 

the median and 95% CI (error bars) number of weeks until the cumulative total cases exceed 117 

1,000. When the first case is reported, we would expect cumulative cases to surpass 1,000 in 7.5 118 

(95% CI 3.9-16.3) weeks; when the 10th case is reported, the expected lead time shrinks to 4.4 119 

(95% CI 2.1-11.4) weeks. The estimates are based on 100,000 stochastic simulations assuming 120 

Re=1.5, a 10% case detection rate, and generation time of six days. 121 
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 122 

Fig 4. Proportion of all US counties in which COVID-19 case counts increased from March 123 

16 to 23. The light, medium and dark gray lines correspond to increases of at least one, five, or 124 

ten new cases within one week, respectively. The red ribbon indicates the model estimates for 125 

the probability that an epidemic is underway, given the cumulative reported cases indicated on 126 

the x-axis. The bottom and top of the ribbon correspond to scenarios in which Re=1.5 and Re=3.0, 127 

respectively. These estimates are calculated based on 100,000 simulations for each reproduction 128 

number, assuming a 10% case detection rate and a generation time of six days. The odds of a 129 

county detecting at least five new cases increased by 4.90 (95% CI 4.14-5.99) for every one unit 130 

increase in cases on March 16. For example, a county with one case on March 16 was roughly 131 

five times more likely to have at least six cases a week later than a county with no reported cases.  132 
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Discussion 133 

The timing and rate of COVID-19 emergence varied widely across the US. The earliest 134 

of the 3,142 US counties to report a case was Snohomish, Washington on January 21, 2020. By 135 

the first of March, April and May, 1%, 70% and 90% of all counties had reported at least one 136 

case, respectively. We estimate that, by the time a county reported its first case, it had at least a 137 

50% chance of harboring an unseen but growing epidemic. As of April 13, 2020, the risk 138 

exceeded 90% in 54% of counties containing 91% of the US population. The New York Times 139 

published real-time projections of our model in a national risk map on April 3, 2020, which 140 

spread awareness of the growing COVID-19 threat to the nation [8].  141 

Proactive responses to COVID-19 have been estimated to shorten the duration of costly 142 

measures [9,10], whereas delays have likely cost lives [11]. If the goal of COVID-19 143 

interventions is to fully contain an emerging outbreak as quickly as possible, our study suggests 144 

that the first reported case should trigger action. The risk of an ongoing epidemic may already 145 

exceed 50% and delaying until ten cases have been reported, for example, may substantially 146 

reduce the window for corrective action and amassing adequate healthcare and other mitigation 147 

resources. 148 

Our analyses make several key assumptions. Case detection rates may vary 149 

geographically and change through time depending on testing availability and regulations. Our 150 

assumption of 10% is based on a CDC seroprevalence study, which reported rates ranging from 151 

4% to 16% across ten sites [6]. We modeled superspreading events based on estimates for 152 

SARS-CoV in Singapore in 2003 [12], which are consistent with more recent reports for SARS-153 

CoV-2 [13–15]. Our estimates do not account for repeated importations given the stay at home 154 

orders and travel restrictions at the time. Multiple introductions would reduce our estimated 155 
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levels of epidemic risk since detected cases could reflect independent clusters rather than 156 

continuous chains of transmission. Finally, our estimates depend on the effective reproduction 157 

number of the pandemic which can vary spatiotemporally depending on local policies, testing 158 

efforts, behavior, and population density [16,17]. Our estimates for mid-April, when much of the 159 

US was under shelter-in-place orders, assume a relatively low Re of 1.5. Our retrospective 160 

validation using data from mid-March, when intervention efforts varied geographically, 161 

considers reproduction numbers ranging from 1.5 to 3.0.  162 

This analysis, while simple, provided useful insight during a highly uncertain period of 163 

the COVID-19 pandemic and can be easily adapted to provide early situational awareness for 164 

future emerging infectious outbreaks. Our results suggest that proactive control measures may be 165 

prudent, even before the threat becomes apparent [18].  166 

  167 

Methods 168 

We obtained county-level estimates for confirmed and suspected COVID-19 cases from a 169 

data repository curated by the New York Times [19] and 2019 estimates of each county’s 170 

population from the US Census Bureau [20]. We adapted the framework of another silent 171 

spreader–Zika Virus (ZIKV)–which threatened to emerge in southern US states in 2016 [7] to 172 

model COVID-19 in US counties. The discrete-time SEIR model assumes a branching process 173 

for early transmission in which the number of secondary infections per infected case is 174 

distributed according to a negative binomial distribution to capture occasional superspreading 175 

events, as estimated for SARS-CoV outbreaks in 2003 [12]. The exposure and infectious periods 176 

consist of “boxcars” to enforce the minimum number of days simulated individuals spent in each 177 

compartment. We account for imperfect detection and COVID-19 specific epidemiological 178 
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characteristics (details in Table 1). Our baseline scenario assumes the Re of COVID-19 is 1.5, 179 

accounting for ongoing social distancing measures across the US by mid-April, 2020 [21], and 180 

10% detection of all cases. We do not explicitly model asymptomatic or pre-symptomatic 181 

transmission and thus maintain a low detection probability for all infectious cases. To assess the 182 

impact of these assumptions on our estimates, we conducted a sensitivity analysis that varied Re 183 

(1.1 and 3.0) and detection rates (5%-40%). 184 

 185 

Table 1. Model parameters used for simulating COVID-19 outbreaks. 186 

Parameter Description Estimate Source 

Re Effective reproduction number: Average number of new 

cases from one infected individual in a susceptible and 

non-susceptible population 

1.5 

1.1, 3.0  

[22] 

[17] 

TG Generation time (days): Average length of time between 

consecutive exposures  

𝑇! =
𝑒
𝜈 	+	'

1
2*
𝑛
𝛿 	= 	𝑇" 	+ '

1
2* 𝑇# 	 

6 [23,24] 

TE Latent period (days)  1.25 Fit to TG 

TI Infectious period (days) 9.5 [23] 

e Number of exposed compartments in boxcar 

implementation (min days of exposure) 

1 Fit to TG 
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n Number of infectious compartments in boxcar 

implementation (min days of infectiousness) 

7 [23] 

𝜈  

  

Incubation rate: Daily probability of progressing from 

one exposed compartment to the next 

0.80 Fit to TG 

𝛿 Recovery rate: Daily probability of progressing from 

one infectious compartment to the next 

0.73 Fit to TI 

𝜂 Daily detecting rate: The daily probability of an 

infectious individual being detected,  $.&
'!

 

0.01 [25] 

k Total dispersion parameter of negative binomial 

distribution 

0.16 [12] 

 R code for number of new infectious individuals drawn 

daily: 

 𝑟𝑏𝑖𝑛𝑜𝑚(𝑛 = 1, 𝑝𝑟𝑜𝑏 = (
)"	*	(

, 𝑠𝑖𝑧𝑒 = (
'!
)  

  

  187 
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We ran 100,000 stochastic outbreak simulations per scenario beginning with a single 188 

undetected case and ending when cumulative infections reached 2,000 or the outbreak died out 189 

(whichever came first). Because we model transmission as a branching process, the susceptible 190 

population does not deplete as in other compartmental SEIR models. Following the methodology 191 

of [7], simulated outbreaks that reached 2,000 cumulative cases and had a minimum prevalence 192 

of 50 cases per day were classified as epidemics. We calculated the probability of an epidemic 193 

for a given number of detected cases, x, by looking at all outbreaks that had x reported cases and 194 

calculating the proportion of those outbreaks that progressed to epidemics. We then matched 195 

county case numbers with the detected case number to obtain epidemic probabilities for each US 196 

county based on their reported cumulative number of cases. We use our baseline scenario to 197 

compare US maps of epidemic risk from March 16 and April 13, although Re closer to 3.0 may 198 

be appropriate for mid-March. For simulations that became epidemics, we also calculated the 199 

distribution of lags (in weeks) between the day the xth case was reported and the day the 200 

epidemic surpassed 1,000 cumulative cases. Confidence intervals were calculated with the 201 

quantile function in R version 3.6.1 [26].  202 

To validate epidemic risk, we fit three logistic regressions to if US counties reported at 203 

least one, five, or ten new cases over the week of March 16 to 23, 2020 (y-axis) and how many 204 

cumulative cases there were on March 16 (x-axis). First, counties were grouped by the number of 205 

reported cases on March 16. Counties with ten or more cases were put into one group due to the 206 

low number of counties with more than ten cases on March 16. Second, March 23rd case counts 207 

were subtracted from those on March 16 and the difference was classified as an increase of at 208 

least one, five, or ten cases (three separate binary classifications). Finally, a logistic regression 209 

was fit to each classification to determine if the number of cases on March 16 was a significant 210 
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predictor of new cases one week later. This week in mid-March was before lockdowns took 211 

place in the US and saw only a moderate increase in daily tests nationally (from 20,000 to 212 

60,000) [27]. We compare case counts from Monday to Monday to avoid weekend reporting 213 

bias. To readily compare with epidemic risk estimates, we plot the percent of counties with an 214 

increase in new cases with our epidemic risk estimates from Re=1.5 to Re=3.0.  215 
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