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Abstract

Estimating the percentages of undiagnosed and asymptomatic patients is essential for
controlling the outbreak of SARS-CoV-2, and for assessing any strategy for controlling
the disease. In this paper, we propose a novel analysis based on the birth-death
process with recursive full tracing. We estimated the numbers of undiagnosed
symptomatic patients and total infected individuals per diagnosed patient before and
after the declaration of the state of emergency in Hokkaido, Japan. The median of the
estimated number of undiagnosed symptomatic patients per diagnosed patient
decreased from 1.9 to 0.77 after the declaration, and the median of the estimated
number of total infected individuals per diagnosed patient decreased from 4.7 to 2.4.
We will discuss the limitations and possible expansions of the model.

Introduction 1

The novel coronavirus (SARS-CoV-2) spread to the most populated areas of the world 2

in the first few months of 2020. In Japan, the first case was reported on January 16th, 3

2020; on March 31st, the number of cases increased to 2122 [1]. In Hokkaido, the 4

largest prefecture of Japan, the first case was reported on January 28th, 2020 (Fig 1). 5

The Hokkaido government declared a state of emergency on February 28th and lifted 6

it on March 19th. The state of emergency was not legally binding, and the government 7

asked the residents to stay home on the weekends. Until the state of emergency was 8

lifted, a total of 157 cases were reported. Although the number of diagnosed cases is 9

declining towards the end of March, the situation remains uncertain. 10

Fig 1. Epidemic curves of COVID-19 in Hokkaido, early 2020. The
histograms of the date of onset (above) and the date of diagnosis (below) are shown.

To effectively control the spread of the infection, we need to know several 11

parameter values characterizing the infection, such as the basic reproduction number, 12

R0, the percentage of asymptomatic patients, and the fatality rate. One of the factors 13
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that complicate the decision making in disease control is the uncertainty in the 14

percentage of asymptomatic patients. Several lines of evidence indicate that the virus 15

can be transmitted by asymptomatic patients [2, 3], who may have facilitated the 16

spread of SARS-CoV-2. To make the disease control strategy successful and less 17

harmful to the society, the transmissibility of asymptomatic patients and the 18

percentage of asymptomatic patients should be measured. Another complicating 19

factor is the uncertainty in the percentages of diagnosed and undiagnosed patients. 20

Most individuals infected with SARS-CoV-2 suffer from mild cold-like symptoms and 21

recover without any medical intervention. They remain undiagnosed, disturbing how 22

we monitor the number of total infected individuals. Thus, estimating the percentages 23

of asymptomatic and undiagnosed patients is a challenging problem to be answered in 24

epidemiology. 25

It would be useful if these values could be estimated by the information available in 26

the early phase of the outbreak. Contact tracing is considered to be one of the 27

effective measures, and health officials have conducted contact tracing of infected 28

patients to prevent the spread of the virus infection for outbreaks of new or 29

reemerging infections [4–9]. If an infected patient is found, health officials try to find 30

other infected people among those who have come into contact with the infected 31

patient. If any other infected patients are found, officials will repeat tracing from the 32

newly found patients; and if not, tracing is stopped. Thus, a “cluster” of infected 33

patients connected by the route of infection is constructed through the process of 34

contact tracing. Simultaneously, the dates of onset and diagnosis are obtained for each 35

diagnosed patient. As a result, contact tracing can provide detailed qualitative and 36

quantitative information about diagnosed patients from the infectious disease 37

transmission network of diagnosed and undiagnosed patients. Analyzing this network 38

with an appropriate model may enable us to estimate the parameter values of the 39

infection. 40

One promising model for contact tracing is a stochastic model based on the 41

birth-death process, which is a formulation of branching processes [10–17], because the 42

number of cases in the early phase stochastically fluctuates and the widely used 43

differential-equation-based models are inapplicable. In birth-death processes, a 44

sequence of infectious events generates a tree whose nodes are infected patients and 45

edges are infection routes (Fig 2). When a patient recovers (Fig 2, dotted circle), the 46

corresponding node and its edges are removed from the tree, which is split into two. 47

The infectious disease transmission network is composed of trees. A connected 48

component of the network is referred to as “cluster” in this paper. Contact tracing 49

corresponds to finding a node in the tree and removing nodes connected to the first 50

node found (Fig 2, gray filled circle). There are various types of contact tracing based 51

on how to choose nodes to be removed, including backward, forward, or full tracing, 52

and recursive or one-step tracing [17]. We consider only recursive full tracing, that is, 53

all nodes directly and indirectly connected to the first found node are removed (Fig 2, 54

dashed rounded rectangle). We propose an analysis based on the birth-death process 55

with recursive full tracing that takes advantage of information obtained by contact 56

tracing to estimate epidemiological parameter values with a small set of data. We 57

focus on the contact tracing of infected individuals in Hokkaido. The present analysis 58

uses the distributions of the cluster size and patients’ time from onset to diagnosis, 59

which are released by the health officials, to estimate the model parameters. Our 60

approach directly models the stochastic dynamics, which is an inherent property of the 61

early phase of the outbreak. 62

This paper is organized as follows. In the Methods section, we summarize the 63

SARS-CoV-2 infection in Hokkaido and divide it into those before and after the 64

declaration of the state of emergency. We classify patients into symptomatic and 65
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Fig 2. Infection, recovery, and diagnosis in the birth-death process with
recursive full tracing. A network with two clusters is shown on the left side, and
the network after the progression of events is shown on the right side. The nodes
represent symptomatic patients, and two nodes are connected by an edge if one has
infected the other. The nodes can recover and be removed from the network (dotted
circle/lines), or infect and connect to a new node (green circle). A new node without
edges can be generated in the network (blue circle). A node can be diagnosed (gray
filled circle), and the nodes in the same connected component (gray open circles) are
removed from the network and counted among diagnosed symptomatic clusters
(dashed rounded rectangle). Nodes and edges removed from the network are indicated
in gray, and those newly generated in the network are indicated by bold lines.

asymptomatic, and diagnosed and undiagnosed. We explain what corresponds to 66

diagnosed and undiagnosed patients in the present model. We describe the 67

formulation of the model and the details of the simulations. In the Results section, we 68

estimate the parameter values and the number of asymptomatic and undiagnosed 69

patients. In the Discussion section, we relate our results with previous studies and 70

discuss the limitations and possible expansions of the model. 71

Methods 72

This paper reports the analysis of the SARS-CoV-2 infection in Hokkaido, Japan [18]. 73

In Hokkaido, all cases had not traveled abroad recently except for three cases, which 74

include a tourist from Wuhan, China. We concentrate our analysis on the cases whose 75

onset was prior to the lifting of the state of emergency. We excluded the cases with an 76

unknown onset and asymptomatic patients from the analysis. If the date of the 77

diagnosis of a case was not reported, it was assumed to coincide with the date of the 78

announcement. S1 Table summarizes the case reports released by the Novel 79

Coronavirus Response Headquarters of the Hokkaido government until April 2nd, 2020. 80

We represent the patients with nodes and their contacts with edges in a network. If 81

two patients were in close contact with each other, the corresponding nodes are 82

connected by an edge. The network consists of distinct connected components, which 83

we refer to as clusters. Sporadic patients are regarded as size-1 clusters. Fig 3 shows 84

the clusters with sizes larger than 2 in Hokkaido. There are 76 size-1 clusters and 20 85

size-2 clusters along with the clusters shown in Fig 3 (S1 Table). 86

Fig 3. Contact network between patients in Hokkaido. The white and gray
circles represent the patients in dataset 1 and 2, respectively. The numbers in the
circles are the case IDs. Two circles are connected by an edge if these two patients
were in close contact with each other.

All cases were divided into datasets 1 and 2 according to which cluster they belong 87

to. If the earliest onset of the cases in a cluster was prior to the declaration of the 88

state of emergency, this cluster was included in dataset 1; if the earliest onset was 89

between the declaration and the lifting thereof, it was included in dataset 2. Datasets 90

1 and 2 contain 78 and 30 clusters, respectively. Because the declaration of the state of 91

emergency might have changed the behavior of residents and health officials in 92

Hokkaido, we compared the data before the declaration, dataset 1, and the data 93

between the declaration and the lifting thereof, dataset 2. 94
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The patients included in datasets 1 and 2 were all diagnosed and mostly 95

symptomatic. However, not all of the individuals infected with SARS-CoV-2 were 96

diagnosed and symptomatic; they can be classified into diagnosed symptomatic, 97

diagnosed asymptomatic, undiagnosed symptomatic, and undiagnosed asymptomatic 98

groups. The diagnosed symptomatic group consists of those who developed symptoms 99

and were diagnosed, or those who were found in contact tracing. All individuals 100

belonging to this group were covered by our datasets. Although the diagnosed 101

asymptomatic group was also included in the datasets, we ignored this group because 102

this group included only two individuals. The undiagnosed symptomatic group is 103

comprised of individuals who were infected and developed symptoms, but recovered or 104

died without being diagnosed. This group is not directly observable, and thus its 105

percentage is one of the parameters we tried to estimate with the model, which takes 106

this group into account. The undiagnosed asymptomatic group is not directly 107

observable either. It has been suggested that a percentage of SARS-CoV-2 carriers do 108

not develop symptoms but can infect others [2, 19]. We did not explicitly incorporate 109

the asymptomatic group into the model but estimated its percentage. 110

We modeled the spread of SARS-CoV-2 with a variant of the continuous-time 111

birth-death process, referred to as the birth-death process with recursive full 112

tracing [17]. Birth-death processes have been used to model infectious diseases and 113

population dynamics [10,11,16,17]. Continuous-time birth-death processes consist of a 114

network whose nodes and edges are continually generated and removed (Fig 2). The 115

lifetime of a node is a random variable drawn from the exponential distribution with 116

the scale parameter 1/γ. During its lifetime, a node gives birth to nodes according to 117

a Poisson point process with the stationary rate β′ and is connected to these offspring 118

nodes (Fig 2, green circle). When the lifetime of a node ends, the node and its edges 119

are removed from the network (Fig 2, dotted circle). For the infection dynamics of 120

SARS-CoV-2, the nodes and their birth and death can be regarded as symptomatic 121

patients and their onset of symptoms or infection and recovery from the disease. In 122

the limit of an infinite number of nodes, the dynamics of the number of nodes of 123

birth-death processes are approximated by the SIR model. Asymptomatic infected 124

individuals are not included in this model, and the incubation period is ignored. 125

The birth-death process with recursive full tracing incorporates the diagnosis and 126

quarantine of patients in addition to the features of continuous-time birth-death 127

processes. The time from infection to diagnosis of a node is a random variable drawn 128

from the exponential distribution with the scale parameter 1/κ. If the diagnosis occurs 129

earlier than the recovery, the node is removed from the network at the diagnosis, 130

representing the quarantine of the diagnosed patient (Fig 2, gray filled circle). At the 131

same time, the nodes in the connected component containing the diagnosed node are 132

also removed from the network, which corresponds to the contact tracing of the 133

infected individuals (Fig 2, gray open circles). Infections that are to be caused by 134

these removed nodes later than the removal are abolished because the diagnosed 135

individuals are quarantined. The connected component of the diagnosed individuals 136

corresponds to the clusters in the datasets (Fig 2, dashed rounded rectangle). The 137

nodes in the connected component are counted among diagnosed symptomatic groups. 138

The recovery of a node disconnects its neighboring nodes. For example, if the green 139

node in Fig 2 is diagnosed, the cluster of size 2 but not of size 4 is reported. A node is 140

not diagnosed if it has been already removed. If a node recovers before it is diagnosed, 141

this node is counted among undiagnosed symptomatic groups. 142

The simulation of the model is implemented as follows. Nodes without edges are
generated in the network according to a Poisson point process with the stationary rate
λ = 10−5 (Fig 2, blue circle). The value of λ is inconsequential if it is small enough to
allow for observing the cluster size and time from onset to diagnosis distribution at
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the steady state. On the generation of node i at time t0i , its time of recovery tri and
time of diagnosis tdi are assigned as

tri − t0i ∼ Exponential(γ), (1)

tdi − t0i ∼ Exponential(κ), (2)

where the recovery rate γ and the diagnosis rate κ are positive constants. During 143

t0i ≤ t ≤ min(tri , t
d
i ), node i generates new nodes and connects to them according to a 144

Poission point process with the stationary rate β′ > 0. At t = tri , if node i is present in 145

the network, node i and its edges are removed from the network. At t = tdi , if node i is 146

present in the network, the nodes in the same connected component containing node i 147

and their edges are removed from the network. 148

Let us note that β′ is the rate of infection giving rise to symptomatic patients, not
the rate of infection giving rise to symptomatic and asymptomatic patients. This is
because all nodes in the model are capable of being diagnosed, which is not the case
with asymptomatic individuals. Hence, β, the rate of infection giving rise to any type
of patient is greater than β′. For κ = 0, the probability that a node directly infects n
nodes, that is, the probability that a symptomatic patient directly infects n
symptomatic patients, follows

p(n) =

∫ ∞

0

(β′T )n

n!
exp(−β′T )γ exp(−γT )dT

=
γ

β′ + γ

(
β′

β′ + γ

)n

, (3)

whose expected value is β′/γ. Similarly, the basic reproduction number R0 is given by 149

β/γ. Thus, β must be greater than γ because the number of reported cases is steadily 150

increasing, that is, 151

R0 = β/γ > 1. (4)

Throughout the simulations reported in this paper, γ was fixed to 1/14 [20–22]. 152

We performed the approximate Bayesian computation of the posterior distribution 153

of κ and β′ given the average cluster size and the average time from onset to diagnosis. 154

We drew β′ from U(0.001, 0.2) and κ from U(0.001, 0.12) and accepted the parameter 155

sets with which the average cluster size was identical to 126/78 for dataset 1 and 156

43/30 for dataset 2, and the average time from onset to diagnosis lied within ±1 days 157

of 9.3 for dataset 1 and 6.6 for dataset 2. The cluster size is defined as the number of 158

nodes of the cluster. The average time from onset to diagnosis is defined as the 159

average of tdi − t0i where i runs over the nodes that are diagnosed first in the cluster. 160

In each run of the simulation, we removed C0 + C clusters of diagnosed 161

symptomatic patients, of which the first C0 = 100 clusters were discarded to eliminate 162

the dependence of the results on the initial condition and used the following C = 78 163

(dataset 1) and C = 30 (dataset 2) clusters as the simulated clusters of patients in 164

Hokkaido. This procedure is justified by the fact that the average cluster size of 165

birth-death processes converges to its steady-state value on a timescale of 1/β and 166

1/γ [11]. This fact also suggests that the properties of clusters in the early phase of 167

the spreading of SARS-CoV-2 can be described by the steady-state of the model. 168

The ratio of undiagnosed symptomatic patients to diagnosed symptomatic patients 169

can be estimated by the number of nodes that recover without being diagnosed in a 170

period divided by the number of diagnosed nodes that recover in the same period. We 171

used the period between the removal of the C0-th cluster and the removal of the 172

C0 + C-th cluster to calculate the ratio. This period is referred to as the target period 173

in the following. The ratio of the number of symptomatic and asymptomatic patients 174
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to the number of symptomatic patients is β/β′. Because β > γ, which follows from 175

Eq 4, and β > β′, the lower bound of the number of all infected individuals that 176

recover in the target period is estimated by the number of diagnosed and undiagnosed 177

symptomatic patients that recover in the period multiplied by max(γ, β′)/β′. The 178

estimates presented in this paper are rounded to two significant digits. 179

Results 180

We performed simulations with randomly generated 100 000 parameter sets and 181

accepted the parameter sets that replicated the average cluster size and the average 182

time from onset to diagnosis. We chose these two indices as those that are used to fit 183

the model parameters for two reasons. First, these can be obtained without using 184

sophisticated techniques. Second, these two indices enable us to determine the 185

parameter values of β′ and κ. Before applying the parameter estimation to datasets 1 186

and 2, we tested it for the indices obtained from a simulation run with β′ = 0.1 and 187

κ = 0.05. The orange crosses, blue triangles, and filled circles in Fig 4A indicate the 188

parameter sets that replicated the average cluster size, the average time from onset to 189

diagnosis, and both together, respectively. This figure shows that the filled circles are 190

concentrated on the intersection of the bands of crosses and triangles. The 95% 191

credible intervals for β′ and κ were [0.081, 0.14] and [0.033, 0.081], respectively, which 192

successfully contain the parameter set that was used in the original simulation. 193

Figs 4B and 4C present the parameter sets that replicated the average cluster size 194

and the average time from onset to diagnosis of datasets 1 and 2, respectively. The 195

95% credible intervals for β′ and κ were [0.035, 0.062] and [0.012, 0.041] for dataset 1, 196

and [0.027, 0.092] and [0.028, 0.11] for dataset 2. In dataset 1, the median of the 197

estimated value of κ, 0.024, was far less than γ, suggesting that most of the 198

symptomatic patients were not diagnosed before their recovery. The median of the 199

estimated value of κ in dataset 2, 0.063, implies that a larger percentage of 200

symptomatic patients were diagnosed in dataset 2. 201

Fig 4. The estimated parameter sets for the simulated data and datasets 1
and 2. The parameter sets that replicated both of the average cluster size and the
average time from onset to diagnosis of a simulation run with β′ = 0.1 and κ = 0.05
(A), dataset 1 (B), and dataset 2 (C) are indicated by the filled circles. Panel A also
shows the parameter sets that replicated the average cluster size (orange crosses) and
the average time from onset to diagnosis (blue triangles).

To examine the number of undiagnosed symptomatic patients, we calculated the 202

number of nodes that recovered without being diagnosed in the target period. Fig 5A 203

and C show the number of undiagnosed symptomatic patients per diagnosed 204

symptomatic patient for dataset 1 and 2, respectively. The 95% credible intervals were 205

[1.0, 3.6] (median 1.9) for dataset 1 and [0.34, 2.0] (median 0.77) for dataset 2. The 206

lower bound of the number of all infected individuals is estimated by the number of 207

diagnosed and undiagnosed symptomatic patients multiplied by max(γ, β′)/β′
208

(Fig 5B, D). The 95% credible intervals of the total number of infected individuals per 209

diagnosed patient were [2.6, 8.6] (median 3.7) for dataset 1 and [1.4, 5.8] (median 2.4) 210

for dataset 2, the former of which is consistent with a previous estimate, 1/0.14 [23]. 211

These estimates suggest that around half of infected individuals remain asymptomatic, 212

which is consistent with a previous estimate [19]. The 95% credible intervals of the 213

total numbers of infected individuals who recovered before the declaration of the state 214

of emergency and those who recover between the declaration and lifting were 215

[330, 1100] (median 600) and [61, 250] (median 100), respectively. 216
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Fig 5. The estimated numbers of undiagnosed symptomatic patients (A, C)
and asymptomatic patients (B, D) per diagnosed symptomatic patient.
Panels A and B are for dataset 1, and panels C and D are for dataset 2.

Discussion 217

In this paper, we have formulated a model to describe the spreading of infection and 218

the quarantine of infected individuals, and estimated the number of undiagnosed 219

symptomatic and asymptomatic COVID-19 patients in Hokkaido. The estimated 220

percentages of undiagnosed symptomatic and asymptomatic patients coincided with 221

previous studies [23,24]. The estimated total number of patients that recovered before 222

the declaration of a state of emergency was also consistent with a previous study, 223

which estimated that there were 940 patients in Hokkaido on February 25th [25]. One 224

of the previous studies approximated the time evolution of the number of infected 225

individuals with differential equations [23], while another estimated the number of 226

asymptomatic patients by using RT-PCR (reverse transcription polymerase chain 227

reaction) test results of evacuees from Wuhan, China on chartered flights [24]. The 228

present analysis focuses on the stochastic dynamics of a discrete number of infected 229

individuals. Thus, the size distribution of clusters, which is a piece of information 230

available in the early phase of the pandemic but difficult to use in 231

differential-equation-based models, can be utilized by the model. Although the 232

methods of the previous reports and ours are completely different, quantitative 233

agreement between them suggests the effectiveness of these approaches. 234

There are several reasons we have chosen the cases in Hokkaido as the subject of 235

this paper. Hokkaido is an island isolated from the other regions of Japan. In other 236

words, we can assume that a relatively small percentage of the population commutes 237

between Hokkaido and other parts of the world. This makes Hokkaido an ideal subject 238

of the investigation. Until March 20th, one day after the lifting of the state of 239

emergency, 1549 out of 1707 individuals tested with RT-PCR turned out to be 240

negative for SARS-CoV-2 [26], indicating that extensive contact tracing was 241

performed. On the other hand, among the 158 cases diagnosed until March 19th in 242

Hokkaido, only two were asymptomatic. This suggests that in most contact tracing in 243

Hokkaido, RT-PCR tests for SARS-CoV-2 were conducted only on symptomatic 244

patients because of restricted resources. The claim by the local government that test 245

capability was strengthened after the declaration of the state of emergency [27] is 246

supported by a larger value of κ in dataset 2 than in dataset 1. 247

One of the features of the present model is its simplicity. The model has only three 248

essential parameters. The simplicity of the model allowed us to estimate the number 249

of asymptomatic and undiagnosed patients without using a large number of parameter 250

values estimated by previous studies. In the early phase of the spreading of infectious 251

diseases, this simple model can enable the estimation of the asymptomatic and 252

undiagnosed patients despite limited data. Our approach can estimate the number of 253

patients without using costly and time-consuming techniques such as RT-PCR. 254

Also, its simplicity might allow for an analytical solution. The model is an 255

extension of the birth-death processes, which has been studied intensively. The 256

birth-death processes with contact tracing is analytically tractable [10,11,16,17]. 257

Because the model is simple enough, we may be able to obtain the analytical solution 258

of the cluster size distribution and the expected time from onset to diagnosis. The 259

analytical solution would enable us to efficiently estimate the parameter values. 260

The simplicity of the present model allows expansions in several ways. First, we 261

assumed that β′ is a fixed value in this paper. This is justified by Fig 3, which shows 262
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that the largest number of individuals infected by an individual, that is, the largest 263

degree of nodes, is eight, which is rather small. However, β′ may be heterogeneous. 264

Heterogeneity in β′, which has been suggested for the coronavirus genus [28,29], may 265

explain the superspreader phenomenon. Also, the spread of SARS-CoV-2 might be 266

more accurately modeled with the contact process on scale-free networks [30,31]. The 267

value of β′ might depend on the severity of the patient [23]. Second, the recovery rate 268

γ may depend on the severity of the patient. Heterogeneity in γ can affect the 269

estimated number of total infected individuals. Third, the incubation period, which is 270

ignored in the present paper, might affect the size and structure of clusters [32]. 271

Infectiousness in the incubation period should be included in the model [32]. Fourth, 272

the stage of symptoms should be introduced into the model. Fig 6 suggests that the 273

time from onset to diagnosis obeys a unimodal distribution with a peak at around 10 274

days, although the peak must be at 0 in the present model. Assuming that a mildly 275

infected state stochastically develops into a severely infected state would explain this 276

time course. Fifth, recursive full tracing might be unrealistic because some of the 277

symptomatic patients can be missed in contact tracing. Introducing stochasticity into 278

contact tracing can enable a more precise modeling of clusters. These extensions 279

would be useful in monitoring and controlling the spread of SARS-CoV-2. 280

Fig 6. Distribution of the time from onset to diagnosis in dataset 1 and 2.
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