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Abstract

The life cycle of parasitic organisms that are the cause of much morbidity in humans often depend on reservoirs of infection for
transmission into their hosts. Understanding the daily, monthly and yearly movement patterns of individuals between reservoirs is
therefore of great importance to implementers of control policies seeking to eliminate various parasitic diseases as a public health
problem. This is due to the fact that the underlying spatial extent of the reservoir of infection, which drives transmission, can
be strongly affected by inputs from external sources, i.e., individuals who are not spatially attributed to the region defined by the
reservoir itself can still migrate and contribute to it. In order to study the importance of these effects, we build and examine a
novel theoretical model of human movement between spatially-distributed focal points for infection clustered into regions defined
as ‘reservoirs of infection’. Using our model, we vary the spatial scale of human moment defined around focal points and explicitly
calculate how varying this definition can influence the temporal stability of the effective transmission dynamics — an effect which
should strongly influence how control measures, e.g., mass drug administration (MDA), define evaluation units (EUs). Considering
the helminth parasites as our main example, by varying the spatial scale of human movement, we demonstrate that a critical
scale exists around infectious focal points at which the migration rate into their associated reservoir can be neglected for practical
purposes. This scale varies by species and geographic region, but is generalisable as a concept to infectious reservoirs of varying
spatial extents and shapes. Our model is designed to be applicable to a very general pattern of infectious disease transmission
modified by the migration of infected individuals between clustered communities. In particular, it may be readily used to study
the spatial structure of hosts for macroparasites with temporally stationary distributions of infectious focal point locations over
the timescales of interest, which is viable for the soil-transmitted helminths and schistosomes. Additional developments will be
necessary to consider diseases with moving reservoirs, such as vector-born filarial worm diseases.
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1. Introduction and background1

Defining the spatial scales over which transmission should2

be considered is a relatively recent research area in the context3

of neglected tropical diseases (NTDs), where much of the effort4

has been focused on the development of geostatistical methods5

for each disease in turn [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. In partic-6

ular, mathematical models of helminth transmission have only7

recently begun to incorporate the dynamical effects of human8

movement between reservoirs of infection [9, 12, 13, 14].9

Helminth infections (or helminthiases) are a class of10

macroparasitic diseases which include, among others, the soil-11

transmitted helminth (STH) infections, schistosomiasis and12

lymphatic filariasis (LF). Following World Health Organisation13

(WHO) guidelines, free drugs have been donated by pharma-14

ceutical companies since 2010 [15, 16, 17, 18, 19] to countries15

significantly affected by helminth-associated morbidity. Con-16

trol initiatives have been developed specifically to investigate17
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the prospects for elimination as a public health problem in the 18

long term [20, 21]. 19

In Fig. 1 we have illustrated the essential role that infec- 20

tious focal points have on driving the transmission of human 21

helminth infections. In the case of STHs, these focal points 22

consistute eggs, or larval stages in the soil, that are either in- 23

gested or enter the body via skin penetration. Similarly, in the 24

case of schistosomiasis transmission, these focal points exist 25

in water sources where larvae, that are released by freshwater 26

snails (intermediate hosts), penetrate the skin to infect human 27

hosts. 28

It may be possible to minimise the effect human movement 29

has on evaluation units (EUs) of, e.g., mass drug administra- 30

tion (MDA) control programmes, by specifying a critical spa- 31

tial scale around the focal points within a reservoir (and corre- 32

sponding to a human community) over which one may sample 33

and treat infections. At this scale (or larger), the number of mi- 34

grants contributing to the reservoir per unit time is potentially 35

low enough such that their effect may essentially be neglected. 36

If such a scale exists it would provide a natural level of res- 37
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Figure 1: Illustration of the transmission dynamics of human helminth infec-
tions via a defined focal point.

olution for those generating spatial maps of the prevalence of38

infections in a given region. Note that for some NTDs, imple-39

mentation units (IUs) and evaluation units (EUs) differ. In this40

paper, we shall look at the spatial scale of EUs because there is41

currently no evidence-based framework for choosing an appro-42

priate spatial scale at which programme managers can evaluate43

the impact of NTD programmes. We will demonstrate the exis-44

tence of this scale, which is expected to vary between helminths45

and regions, by developing a spatial model of human movement46

between defined locations which is consistent with the current47

literature.48

The distances travelled by human movement patterns are not49

purely random, but exhibit certain known characteristics simi-50

lar to those of known random walks, e.g., the same heavy-tailed51

distributions as those of Lévy flights [22, 23]. Furthermore, in52

a variety of countries and levels of urbanisation, Ref. [24] uses53

mobile phone data in many different countries to conclude that54

there is evidence for some universality in the distribution shape55

of daily work-home commute distances, which appear to fit a56

broken power-law. Note that the distributions are similar to,57

e.g., those observed for radial distance in Refs. [25, 26], where58

these works make use of geolocated tweets and GPS data, re-59

spectively. The findings in all cases above, and other examples60

of broken power-laws for human mobility in the NTD disease61

modelling literature (see, e.g., Refs. [27, 28]), will motivate us62

to use a similar description to develop a simple model of human63

movement from households to focal points of infection in this64

work.65

In Sec. 2, we derive a broken power-law model with one66

jump per individual, which both replicates the distribution be-67

haviour and also suggests a possible mechanism for its ori-68

gin. The model we introduce, however, will remain flexible69

(by varying parameters) to other possible power-law descrip-70

tions for human mobility and so we will not be wholly reliant71

on one possible description. In Sec. 3 we briefly investigate72

a computationally-efficient extension to this model which uses73

an approximation to describe multiple jumps per individual for74

movement patterns with longer timescales — both of which75

might be important for an accurate representation of the rele-76

vant human behaviour. 77

Having developed our model and illustrated its possible ex- 78

tensions, in Sec. 4 we apply it to obtain a critical spatial scale at 79

which the migration of individuals to focal points clustered as 80

infectious reservoirs declines to a negligible level. This result 81

is shown to vary with helminth species, human movement pat- 82

terns and regional geometry of settlement patterns. The analy- 83

sis also provides insight into the most important pieces of (often 84

missing) information which are necessary to build an accurate 85

model of human migration patterns between reservoirs of in- 86

fection. Collecting such information will be key to the success 87

of future helminth control programmes in reaching their targets, 88

e.g., achieving STH elimination as a public health problem [29]. 89

Lastly, in Sec. 5, we discuss how the spatial extent of reservoirs 90

of infection considered here should influence the scale of EUs 91

for control programmes and conclude with a summary of our 92

findings and prospects for future work. 93

2. A one-jump model 94

2.1. Locations of infectious focal points and households 95

There are important ethical implications to the public avail- 96

ability of data on both the spatial locations and movement pat- 97

terns of individuals over various scales in time, especially in 98

low- and middle-income countries [30]. Among these are data 99

privacy and the potential identifiability of individuals through 100

the use of ‘big data’ by governments, companies and universi- 101

ties, and the potential use of this information for non-research 102

purposes. Therefore, access to such high-quality data for study 103

is scarce. This represents a challenge for those concerned with 104

the various consequences of such movements and their meth- 105

ods of model validation. In this paper, we present mathemat- 106

ical models that can be used in the absence of access to high- 107

quality movement data. Model dynamics are implemented on 108

the spatial patterns of, e.g., building locations, obtained from 109

real-world datasets, e.g., the high resolution settlement layer 110

dataset generated by the Facebook Connectivity Lab [31]. Our 111

methodology should allow researchers to draw useful conclu- 112

sions on the impact of human spatial movement on NTD pro- 113

grammes from readily available geospatial data (coordinates 114

of households, settlements and environmental features, such as 115

water bodies). Other data sources, e.g., call data records (from 116

mobile phones) and data from migration questionnaires in con- 117

trol studies, may be available under certain circumstances and 118

can easily be integrated in our modelling framework. The mod- 119

els we introduce here should also be able to take this specific 120

case-study information into account by appropriate parameter 121

inference. 122

Let us first consider the embedding of spatial locations of
households as points in a 2-dimensional flat space. In addi-
tion to these household points there will also exist focal points
of infectious contact that depend on the helminth species, e.g.,
near buildings, water sources, parts of farmland with large con-
centrations of infectious material and households themselves.
Choosing a particular focal point, we will use the observed
spatial distributions of buildings in the high resolution settle-
ment layer dataset [31] as a proxy for the spatial distribution

2
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of household locations around it. Therefore, the expectation of
having n<r nearby households or buildings within a radial dis-
tance of r from the focal point, i.e., E(n<r), scales according to
the following radially-dependent power law

E(n<r) ∝ rα(r) . (1)

It is important to note that, since at first we consider only123

a single focal point from which household distances is mea-124

sured, the distribution of focal points themselves is not rele-125

vant to the calculation. The spatial distribution of focal points126

will, however, become relevant later on when we cluster them127

into reservoirs of infection and investigate their spatial extent.128

Note, however, that households themselves may be a reasonable129

tracer of the underlying distribution for infectious focal points130

of STH [32, 33], though our calculations throughout will not131

depend on this possibility.132

In the cases of STH and schistosomiasis transmission, al-133

though it is clear that the location and importance of their infec-134

tious focal points can vary over time — e.g., a chance decline in135

snail population for a particular location at the edge of a fresh136

water source leads to a drop in infectious spread — throughout137

this work, we shall assume that their spatial distribution is ef-138

fectively temporally stationary over the timescales of interest.139

Note that for some NTDs, the infectious contact event locations140

can also be mobile, e.g., in the case of lymphatic filariasis trans-141

mission, where the larval stage of microfilariae enter the body142

by bites from infected mosquitoes — hence, the contact event143

locations will migrate with the human and mosquito popula-144

tions.145

By averaging over the observed point spread patterns in the146

high resolution settlement layer dataset, we obtain the follow-147

ing cumulative neighbouring point number distributions as a148

function of radial distance. This can be compared to the ra-149

dial dependence of the power-law index α(r) we have quoted150

in Eq. (1). In order to give an indication of the effect of spatial151

heterogeneity in the distances between buildings for this aver-152

aged quantity, we have plotted some example lines (left column153

of plots) and the sample mean lines with root-mean-square de-154

viation (RMSD) shaded regions of α(r) (right column of plots)155

from individual randomly sampled initial building locations for156

different countries in Fig. 2. In Central Malawi and Northern157

Benin, up to some substantial variance, below a transitioning158

radial scale r < rtr, the index seems to have a mean of α ' 1159

and above this scale r > rtr the mean of the index begins a tran-160

sition to α → 2. In the Central Ivory Coast, we see that the161

mean trend rapidly varies between α ' 1.5 and 0.5 below the162

transition scale r < rtr, and then at radial distances much greater163

than this scale r � rtr most of the power-laws appear to begin164

a transition to α → 2. The substantial variation below the tran-165

sition scale in the Ivory Coast is likely due to a greater degree166

of clustering on particularly small scales (note the drop towards167

α ' 0 before the transition scale indicates this as very few new168

points are added to the cumulative total for this range).169

For all countries and initial locations in Fig. 2, we can con-170

firm that the majority of the power-laws begin to converge to171

a mean of α → 2 above a particular transition scale rtr which172

varies substantially between location. This convergence reflects 173

the emergence of statistical spatial homogeneity only on very 174

large spatial scales, but this is clearly not present below rtr in 175

all cases. The power-law signature of statistical homogeneity 176

being α = 2 should become clear by noting that another way to 177

generate it is to draw a Poisson point process with an intensity 178

rdr ∝ r2 (the flat Euclidean measure in 2 dimensions). Note 179

that statistical isotropy is also implicitly confirmed by choosing 180

different r = 0 locations for each line and observing the same 181

behaviour up to some noise that is captured by the RMSD in the 182

right column of plots. Deviations from this trend towards α = 2 183

(particularly in the Ivory Coast) are also present in many other 184

locations in the same countries, due to the presence of substan- 185

tial global heterogeneity, e.g., through proximity to large voids 186

in the distribution of points, which exist for geographic reasons. 187

2.2. Obtaining a model using maximum entropy arguments 188

In this section we provide a simple argument to generate the 189

broken power-law frequency distribution of work-home com- 190

mute distances (as observed and described in, e.g., Kung et 191

al. [24] and Zhao et al. [26]) using maximum entropy argu- 192

ments. The distributions of movement distances we derive will 193

be used to model the migration of individuals from their house- 194

hold locations to a focal point of infection. In the absence of 195

access high-quality site-specific data that we discussed in the 196

previous section, we are using the work-home commuter dis- 197

tance distributions as a guide for the likely patterns of move- 198

ment. Work-home commuter distances should be a reasonable 199

proxy for the overall movement of individuals in many areas. 200

However, the model that we develop in this section is adaptive 201

and flexible to modification, even in circumstances where this 202

proxy is inappropriate, we will be able to vary distribution pa- 203

rameters to quantify their impact on our conclusions. 204

For greater analytic insight in the expressions we derive in 205

this section, and throughout most of the subsequent arguments 206

made in this article, we shall now assume that Eq. (1) has a con- 207

stant index α(r) = α. When considering the heterogeneity in 208

the real power-law behaviour below rtr in Fig. 2, this assump- 209

tion will not be appropriate in all locations/situations. Note, 210

however, the results we obtain in all cases may be easily numer- 211

ically generalised to take into account complex transitions be- 212

tween different power-law behaviours, as are observed in Fig. 2. 213

In addition, choosing several key values for constant α (which 214

fit within the range of observed power law behaviours) in what 215

follows will aid with quantifying its impact on our conclusions. 216

Assuming that each individual jumps to a single new loca-
tion and then returns back to their starting position over the
course of each day, we may follow a simple argument that in-
cidentally generates a distribution over travel distances which
is consistent with those observed and described in, e.g., Kung
et al. [24] and Zhao et al. [26]. Let us take the distribution of
neighbouring points to be isotropic. Defining p(r) as the prob-
ability density function (PDF) of an individual jumping to a
given location as a function of its radial distance, one may then
transform the flat radial probability measure p(r)dr by a Jaco-

3
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Figure 2: Left column: The cumulative number of buildings (vertical axis) below a given radial distance (horizontal axis) from sample locations in Malawi, Benin
and the Ivory Coast obtained from the high resolution settlement layer dataset generated by the Facebook Connectivity Lab [31]. Lines for different constant α and
rµ values are provided only as rough indicators for comparison. Right column: The sample mean lines and root-mean-square deviation (RMSD) shaded regions of
the power law index α plotted against radial distance in each case. The RMSD was calculated by computing discrete derivatives between log-frequency bins as a
function of log-radial distance. In each country, the collection of sample locations was randomly drawn from: the central region of Malawi, including Lilongwe; the
wide northern region of Benin, spanning between Kandi and Djougou; and a wide central region of the Ivory Coast, including Yamoussoukro.
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Figure 3: Plots of the marginal probability density p(r;α, β, rµ) as a function
of radial distance (in units of km) generated using Eq. (5) for a range of α, β
and rµ values for comparison.

bian ν(r) = dE(n<r)/dr like so

p(r)dr → p(r)ν(r)dr ∝ p(r)rα−1dr , (2)

which accounts for the power-law density of points that may 217

depart from linear scaling according to Eq. (1). Another way 218

to view this rescaling is to consider the expectation of the prob- 219

ability measure for a radially-generated, statistically isotropic 220

Poisson point process. 221

Note that if we additionally assume that the PDF of the
jump distribution for each individual has a mean σ then the
maximum entropy PDF is that of an exponential distribution
p(r) = p(r;σ) = Exp(r; 1/σ), then by using Eq. (2) we can triv-
ially demonstrate that the resulting normalised PDF is a Gamma
distribution

p(r;α, σ) =
ν(r)Exp(r; 1/σ)∫ ∞

0 ν(r)Exp(r; 1/σ) dr

= Gamma(r;α, 1/σ) . (3)

One possible interpretation for σ here is a number, with phys- 222

ical units of distance, which quantifies the access of that in- 223

dividual to varying degrees of transportation methods that are 224

themselves capable of travelling varying distances. To clarify, 225

without access to any motorised transportation, an individual 226

may receive a low value for σ, and in contrast, if an indvid- 227

iual has access to a vehicle then they may receive a larger σ 228

value. Despite this simple suggested explanation, the pres- 229

ence of variable scales for human travel distance distributions 230

is not contingent on access to vehicular transportation at all. 231

Indeed, human walking patterns themselves are known to ex- 232

hibit multi-distance-scale characteristics in many contexts — 233

see, e.g., Ref. [34]. 234

Assuming that 1/σ values may vary across the population
of individuals with a distribution of known mean E(1/σ) and
expected scaling E(lnσ), the maximum entropy distribution for
values of 1/σ is another gamma distribution. Choosing specific
parameter values, we therefore have

p(1/σ) = Gamma(1/σ; β, rµ) , (4)

where the resulting marginal jump PDF is obtained by integra-
tion in the following way

p(r;α, β, rµ) =

∫ ∞

0
d(1/σ) Gamma(r;α, 1/σ) Gamma(1/σ; β, rµ)

=

∫ ∞

0
d(1/σ)

rα−1e−
r
σ

Γ(α)σα
rβµ(1/σ)β−1e−rµ(1/σ)

Γ(β)

=
Γ(α + β)
Γ(α)Γ(β)

rβµrα−1(
rµ + r

)α+β
≡ Beta′(r/rµ;α, β, 1, rµ) ,

(5)

where Beta′(·; ·, ·, ·) denotes the generalised beta prime distri- 235

bution (or beta distribution of the second kind), which takes a 236

form similar to that of a beta distribution. Note that, to avoid a 237

divergent integral, one must specify that α, β, rµ ∈ R+. 238
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The main motivations for using maximum entropy proba-239

bility distributions in the case above (and in general) include240

the beneficial properties that such distributions have when lim-241

ited a priori information is available. In the present instance,242

these properties translate into distributions which account for243

the maximum amount of potential variability in outcomes while244

still satisfying the basic pre-defined classifying properties, e.g.,245

the gamma distribution we have used above is maximally en-246

tropic under the condition that the mean and expected scaling of247

the distribution are known. Furthermore, it is often reasonable248

to expect that the steady states of many systems observed across249

the sciences are well-described by maximum entropy configu-250

rations.251

We introduced another radial spatial scale rµ (distinct from rtr252

in the previous section) in Eq. (4) whose effect, in conjunction253

with α and β, we shall explore. In Fig. 3 we have plotted the254

marginal jump PDF given by Eq. (5) for a range of parameter255

values α, β and rµ. By inspection of Eq. (5), in the limit where256

r � rµ the distribution scales as ∼ rα−1, whereas in the oppo-257

site limit r � rµ the distribution exhibits a scaling ∼ r−β−1. The258

scale of rµ therefore plays the role of separating two regimes259

in the distribution of jump lengths for a given individual. For260

radial distances below rµ, the geometric distribution of avail-261

able spatial locations to jump to (which is encoded in the α pa-262

rameter) dominates the behaviour, whereas, for radial distances263

above rµ, the predisposition of individuals to travel a given dis-264

tance combines with the geometry of points to give the distri-265

bution behaviour and this is encoded in the β parameter of the266

second gamma distribution in Eq. (4).267

So far we have not assumed that the parameter rµ in the distri-268

bution over inverse-jump scales 1/σ given by Eq. (4) is related269

to any purely geometrically-driven break in the power laws of270

Fig. 2. By comparing our observed power laws for the Ivory271

Coast with the observed work-home commuter distance distri-272

butions in Ref. [24], for instance, we see that rµ � rtr in general.273

This is perhaps unsurprising since the scale rµ may arise due to274

the availability of easy access to vehicles that allow for longer-275

distance travel for either work or school, or water sources near276

a given settlement. Despite this fact, it is intriguing to note that277

the radial scale associated to the peak in clustering (α ' 1.5278

well below rtr) for the Ivory Coast dataset in Fig. 2 occurs at279

the same rough scale that is observed for rµ in Ref. [24]. We280

leave the investigation into the potential link between these two281

scales for future work.282

Despite statistical isotropy and homogeneity on large spatial283

scales, we have observed that the variation between the power-284

laws for cumulative building numbers observed in Fig. 2, and285

hence the α index of Eq. (1), exhibits a large degree of location286

dependence between regions. In Fig. 4, we see the effect that287

this small-scale heterogeneity in the distances between build-288

ings has on the probability density for our one-jump model. We289

plot a comparison between the binned frequency of 104 indi-290

viduals (with exponential jump distributions each with a scale291

drawn from Eq. (4)) simulated to travel (solid lines) between292

two buildings on real-world map data. The data for building293

locations corresponds to the same regions of each country as in294

Fig. 2, and the marginalised jump probability densities derived295
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Figure 4: The binned frequency of 104 individuals simulated to travel a be-
tween two buildings (solid lines) whose locations correspond to data from the
same regions of each country as in Fig. 2 (where some globally-applied uniform
random point density thinning has been used to reduce computational load of
exploring the distribution tails). This corresponds to the same marginalised
jump probability density as Eq. (5) but instead of using a geometric power-
law given by Eq. (1) we have implemented our single jumps on real-world map
data (with exponential jump distributions each with a scale drawn from Eq. (4)).
For comparison, we have also plotted some jump probabilities calculated using
Eq. (5) with α = 1 (dashed lines) and α = 2 (dotted lines). In all cases we have
fixed β = 2.
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from Eq. (5) for choices of α = 1, 2. In all cases we have fixed296

β = 2 to a single value for easier comparison of different lines;297

this value is approximately the same as the tails observed in the298

distance distributions of Kung et al. [24].299

The agreement between the α = 1, 2 curves and the distances300

generated from single simulated jumps between buildings on301

the real-world map data appears to be variable between coun-302

tries. Overall, it is unsurprising that the shapes of the curves all303

seem to agree for scales r > rµ, because the asymptotic ∼ rβ−1
304

behaviour dominates in all cases, which is consistent with our305

model. In the opposing limit, however, the small-scale variabil-306

ity in power laws for each country dominates and the departure307

from our constant-α models appears more pronounced — in308

favour of more transitory distance-dependent behaviour. Note309

also that the range in variability that the region between our310

α = 1 and α = 2 lines can account for is quite substantial. Such311

a range in behaviour motivates the use of both α = 1 and α = 2312

in quoting the most important results that follow so as to cor-313

rectly assess the impact of small-scale region-specific building314

distributions.315

3. Multi-jump processes316

In the previous section, a single jump model from a house-317

hold to an infectious focal point location was developed in order318

to describe the movement of individuals between locations be-319

fore contributing infectious material. An important caveat to320

this treatment of movement patterns is that one must also con-321

sider the possibility that multiple movements are performed ei-322

ther: between buildings before making a contribution to a focal323

point, or between infectious focal points themselves, supplying324

each some portion of infectious material in turn. The latter of325

these will be very difficult to quantify without some form of326

data, but for the former, we can explore some potential modifi-327

cations to our model.328

In this section, we will briefly explore an extension to the329

basic model of human movement presented in Sec. 2 to in-330

clude successive jumps by an individual to multiple buildings331

before reaching an infectious focal point. The type of human332

movement we aim to capture is not just that of daily commut-333

ing, but also potentially longer distance travel across multiple334

days/weeks. The latter form of movement can contribute to the335

variability in migrant seasonal labour or family visits which can336

change the population numbers in a given region on a yearly337

timescale.338

3.1. Homogeneous randomly-directed jumps339

Following along similar lines to Sec. 2.2, let us now con-
sider an individual who completes multiple successive jumps
with exponentially-distributed lengths ri (where we have in-
dexed each successive jump event with an i) with a fixed mean
scale σ within a day. For a fixed jump rate J in time, consider
the following compound Poisson process for a two-dimensional
vector x(t) which encodes the 2-dimensional Euclidean coordi-

nate position of an individual over time

x(t) =

∞∑
i=1

[
ri cos(θi)
ri sin(θi)

]
1[ti,∞)(t) (6)

ti − ti−1 = ∆ti ∼ Exp(∆ti;J) = Je−J∆ti (7)

θi − θi−1 = ∆θi ∼ U(∆θi;−π, π) =
1

2π
Θ(π − θi)Θ(π + θi) , (8)

where U(∆θi;−π, π) is the uniform distribution PDF (assum- 340

ing statistical isotropy) over the change in angle and Θ(·) is a 341

Heaviside function. In Eq. (6) above, note that we are using an 342

indicator function 1A(t) which takes value unity if t ∈ A, else 343

zero. 344

The process specified by Eq. (6) assumes isotropy of both
the geometric distribution of the points and a uniform-random
direction choice of the individual. The distribution p[x(t)] is
not known as a closed-form expression, however, it clearly has
both a vanishing first moment

E[x(t)] =∫ π

−π

dθi

∫ ∞

0
dri

∞∑
j=1

Pois[ j;J(t − t0)]
j∑

i=1

[
ri cos(θi)
ri sin(θi)

]
p(ri;α, σ)

=

[
J(t − t0)E(ri)E[cos(θi)]
J(t − t0)E(ri)E[sin(θi)]

]
=

[
0
0

]
, (9)

and a second moment which scales according to σ2

E[x(t) · x(t)] = 2πJ(t − t0)E(r2
i )

= 2πJ(t − t0)(α + α2)σ2 . (10)

Furthermore, with a scale distribution over jump lengths ap-
plied — as in Eq. (5) — the second moment given in Eq. (10)
becomes

E[x(t) · x(t)] = 2πJ(t − t0)
(α + α2)r2

µ

(β − 1)(β − 2)
. (11)

In the left panel of Fig. 5 we have plotted the binned fre- 345

quency of total daily distances travelled by a population of 346

5×104 individuals following the process defined by Eq. (6) and 347

drawing each individual’s inverse-jump scale 1/σ from Eq. (4). 348

We have also fixedJ = 1, 20 per day (in red and black lines, re- 349

spectively), α = 1 and β = 1, 2, 3 as indicated by the increasing 350

opacity within each triplet of lines. Contrasting these distribu- 351

tions, it is immediately clear that by increasing the jump rate 352

J , the effect on the distribution of daily distances travelled is 353

similar to increasing the value of α — see the middle panel of 354

Fig. 3 for comparison. 355

3.2. Homogeneous unidirectional jumps 356

Human movement patterns are not truly random, and instead,
one might anticipate a strong directional dependence, e.g., to
long distance travel of individuals over the course of multiple
days to an intended destination. Due to this fact, let us try to
quantify the effect of this behaviour by assuming the logical
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Figure 5: Numerical plots of the distance distributions generated by the multi-jump processes introduced in Sec. 3.1 with randomly-directed (left panel) and in
Sec. 3.2 with unidirectional jumps (right panel). In the left panel, a population of 5 × 104 individuals following the process defined by Eq. (6) have been drawn
(drawing from Eq. (4) for their jump scale predispositions) and the binned frequency of the total distance evaluated at the end of the day with jump rates ofJ = 1, 20
per day (in red and black lines, respectively), α = 1 and β = 1, 2, 3 as indicated by the increasing opacity within each triplet of lines. In the right panel, the marginal
probability density given by Eq. (15) is depicted with jump rates of J = 1, 10 per day (in red and black lines, respectively), α = 1 and β = 1, 2, 3 as indicated by the
increasing opacity within each triplet of lines.

extreme, i.e., that the angular direction of an individual’s long-
distance travel is fixed to a particular value. Following multiple
successive jumps while assuming no variation in angle, Eq. (6)
then becomes a compound Poisson process for the total jump
distance x(t) ≡ |x(t)| in a single dimension. This process has a
known characteristic function

ϕx(s) = exp
{
J(t − t0)

[
ϕr(s) − 1

]}
, (12)

where ϕr(s) denotes the characteristic function of the stationary
increments given by Eq. (3). Hence, we may write

ϕx(s) = exp
{
J(t − t0)

[
(1 − σis)−α − 1

]}
. (13)

which has no closed-form inverse transformation, but is useful
as an expression to calculate the moments. Alternatively, in
order to find the distribution over x(t), we may marginalise over
the number of jumps performed (which is Poisson-distributed
by construction), which are themselves drawn from the jump
distance distribution in the following way

p[r = x(t) | θi = θi−1] =

∞∑
j=0

Pois[ j;J(t − t0)] Gamma[r; jα, 1/σ] . (14)

Therefore, if α = 1, Eq. (14) yields

p[r = x(t) | θi = θi−1, α = 1] =√
J(t − t0)

σr
e−J(t−t0)− r

σI1

2
√
J(t − t0)r

σ

 , (15)

where In(·) is the modified Bessel function of the first kind.357

In the right panel of Fig. 5 we have plotted the marginal prob-358

ability density given by integrating Eqs. (15) and (4) over 1/σ359

for direct comparison with the one-jump model of Eq. (5). We 360

have used values of J = 1, 10 per day (in red and black lines, 361

respectively), α = 1 and β = 1, 2, 3 as indicated by the in- 362

creasing opacity within each triplet of lines. Comparing this 363

distribution with the one observed for randomly-directed multi- 364

ple jumps (see Sec. 3.1), a similar, but even more pronounced, 365

effect by varyingJ is observed — since only a value ofJ = 10 366

is required to achieve roughly the same change. This is to be ex- 367

pected, as the unidirectional jumpers will always travel at least 368

the same (or more often) a greater distance in total in compari- 369

son with the randomly-directed ones, which will likely induce a 370

more severe deformation of the overall distribution when using 371

the former. 372

The parameter degeneracy between α of the one-jump model 373

and J in the multi-jump processes described above suggests 374

a test can be performed, to either validate a model, or discard 375

it in favour of a modified version for a given situation with real 376

data. By combining collected data on the total distance travelled 377

per day and the local geometry of distances between buildings 378

travelled to in a given region, the jump rate for each individual 379

(if the same) could be statistically inferred. Comparing this 380

inferred value to real data would provide a test of the movement 381

models we have suggested in this work or potentially provide 382

insight into where they may be improved to better reflect real 383

human daily movement in a given setting. 384

The simple multi-jump models we have considered in this 385

section have assumed that the distribution for the cumulative 386

number of nearby buildings is homogeneous for each new jump. 387

This approximation is not likely to work well on real-world map 388

data as we have shown there is substantial small-scale hetero- 389

geneity in the distances between buildings exhibited in, e.g., 390

Fig. 2. Furthermore, if the multi-jump movement model is 391

purely diffusive over the building locations themselves (itself 392
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an assumption which must be investigated further), then there393

will be correlations in the location distributions between suc-394

cessive jumps that can lead to the distribution of jump distances395

exhibiting localising effects akin to those exhibited by power-396

law random banded matrices [35]. In other words, when an397

individual jumps from a cluster of points to, e.g., a point on the398

edge of their cluster, then they may experience a stronger ‘pull’399

back towards the centre of this cluster on the next jump due to400

the anisotropy in their apparent local point density. This effect401

should be investigated in future work to evaluate its relevance402

to movement patterns.403

A more sophisticated method to modify the model and deal404

with (uncorrelated) small-scale heterogeneity could be to sam-405

ple from the numerically-obtained power laws from Fig. 2 to406

emulate the spatial heterogeneity in building distances on the407

real-world map data directly in the processes of Sec. 3. This408

method would have significant advantages, in terms of compu-409

tational complexity, to direct simulation methods over the real410

world map data.411

4. The effect on reservoirs of infection412

4.1. A coarse-grained stochastic reservoir network413

Up until this point, the movement patterns we have dis-414

cussed have not been contextualised in an NTD disease model.415

Since our current (static focal point) framework is best-suited to416

schistosomiasis and STH transmission, we shall use their well-417

studied transmission models as a reference throughout this sec-418

tion [36].419

Let us now consider a group of focal points that are clus-420

tered into a ‘reservoir of infection’. Such a cluster is a source421

of infectious material from which disease-free individuals are422

exposed to new infections and, for those already with infec-423

tions, to potentially increase them in intensity. With each of424

these clusters, let us now also associate a population of indi-425

viduals with household locations that are sufficiently close such426

that the majority of their infectious inputs must be into one of427

their associated reservoir’s focal points. Note that the vague-428

ness in definition of ‘sufficiently close’ above immediately ex-429

poses some of the difficulties associated to defining an EU for430

the purpose of assessing local prevalence or intensity. Our work431

in the previous sections of this paper will allow us to proceed432

with a new approach to quantifying the spatial scales associ-433

ated with the proximity of households to these focal points of434

infection. We will then use this approach to understand how435

spatial scales may be incoporated into the effective dynamical436

description of STH and schistosomiasis transmission.437

Let us now denote the set of indicies which indentify all in-
dividuals who live in households that are less than a radial dis-
tance r

Λ
away from a focal point that is included in the reservoir

cluster as S Λ. Additionally, to make a reservoir cluster, let us
use r

Λ
as a radial separation distance threshold below which any

two focal points are clustered together to be part of the same
infectious reservoir. For reservoirs of infection of either schis-
tosomiasis or STH, assuming that the associated human pop-
ulation number NΛ (the number of elements in S Λ) does not

change, the force of infection (FOI) Λ(t) at time t is updated
according to

dΛ(t) = −dresΛ(t)dt +
dres(d + dw)R0

NΛ

∑
i∈S Λ

d`i(t) , (16)

where dres is the death rate of the infectious material, dw is the 438

worm death rate, d is the human death rate, R0 is the basic re- 439

production number and `i(t) is a compound Poisson process as- 440

sociated to the time-dependent infectious material input of the 441

i-th individual. Since helminths are dioecious, the definition 442

for R0, differs from its standard interpretation in standard mi- 443

croparasite diseases since the life cycle of these macroparasites 444

depends on fertilisation of female worms (and hence the pres- 445

ence of both sexes) within a host [36]. Note also that in the 446

equation above, and throughout, we shall neglect age structure 447

in our description — though our formalism can be adapted to 448

include this. This choice is for simplicity in presentation and 449

will not affect our main conclusions. 450

By clustering focal points into a reservoir of infection by us- 451

ing a radial distance threshold, one might reasonably question 452

the scaling in the spatial extent of the infectious focal points 453

themselves. As was discussed in Sec. 3, the distribution of fo- 454

cal points of infection is likely to be both helminth species- 455

dependent and variable according to local geographic consid- 456

erations. Due to this variability, the spatial scales associated 457

with clusters of focal points themselves will likely vary across a 458

map. However, this fact will not directly affect the conclusions 459

of the present work since we will consider distances between 460

each individual focal point and its neighbouring households in 461

turn. For specific case studies, the implementation of our algo- 462

rithm for binding focal points together should be well-defined 463

in most cases for STH and schistosomiasis transmission set- 464

tings, as long as the distribution of focal points can be inferred. 465

Recall also our previously stated point that, for STH, our house- 466

hold distribution itself could potentially be a tracer for many of 467

the focal points of infection [32, 33]. 468

A more important effect, which is indirectly related to the 469

variability in spatial scale of focal point clusters, is how variable 470

cluster sizes might induce internal variability in the exposure of 471

each individual to new infections. In models of helminth trans- 472

mission [37], it is most common to account for this variabil- 473

ity in exposure through assigning each individual an additional 474

predisposition factor λi which is drawn from a gamma distri- 475

bution, Gamma(λi; k, k), where k is the ‘aggregation parameter’ 476

which modifies the variance-to-mean ratio of the distribution 477

of worms within hosts. Due to the epidemiological processes 478

that it aims to capture — and assuming that the basic reproduc- 479

tion number R0, which accounts for the transmission intensity, 480

remains unchanged — this aggregation parameter will likely 481

vary to capture a change in exposure according to the spatial 482

scale r
Λ

chosen for the reservoir of infection. One simple model 483

to capture this variability in exposure might be to consider the 484

value of k itself to be drawn from a gamma distribution, i.e., 485

p(k) = Gamma(k; ak, bk) from which samples are drawn across 486

the map for the individuals closest to each focal point of infec- 487

tion. When binding such focal points together to get the global 488
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Coarse-grained reservoir network Migration to infectious focal points

Figure 6: A diagram of real map data (based on buildings in central Malawi) and a zoomed illustration which indicate the coarse-graining procedure of Eq. (21)
— in which the black arrows are ‘removed’. Arrows depict individual movements from households (grey hollow dots on the right hand side zoomed illustration) to
focal points of infection (black hollow dots on the right hand side zoomed illustration) where black arrows on both the map and its zoomed counterpart correspond
to jumps over a radial distance r < r

Λ
(where r

Λ
is the spatial coarse-graining scale) and red arrows correspond to jumps over a radial distance r ≥ r

Λ
. On

the left hand side zoomed illustration we see the emergence of the spatially coarse-grained reservoir network ‘nodes’ (nodes are neither drawn to scale nor have
geometrically-accurate reservoir spatial shapes) connected by red migratory ‘links’ in time.

behaviour of the reservoir of infection, one would then have a489

mixture model of separate behaviours to consider in the distri-490

bution of worms within hosts, affecting the summation term of491

Eq. (16). Since variability of exposure with spatial scaling is492

not the main focus of the present work, we shall not investigate493

this any further here. However, due to its obvious importance to494

the dynamical behaviour of the reservoir by association, it will495

be an important component to be cognisent of in future work.496

In Ref. [14] it was shown that, to good approximation for
moderate-to-large population numbers, the worm burden distri-
butions of individuals p(wi, t) evolve according to the following
reservoir birth-death process master equation

d
dt

p(wi, t) = − [λiΛ(t) + (d + dw)wi]p(wi, t)

+ (d + dw)(wi + 1)p(wi + 1, t)
+ λiΛ(t)p(wi − 1, t) . (17)

The solution to this equation is a Poisson distribution p(wi, t) =

Pois[wi;Ii(t)] with time-dependent intensity

Ii(t) = Ii(t0)e−(d+dw)(t−t0) +

∫ t

t0
λiΛ(t′)e−(d+dw)(t−t′)dt′ , (18)

in which we have inserted the solution to Eq. (16). Summing497

over an ensemble of these individuals to get an overall distribu-498

tion of worms within hosts, many epidemiogical variables, e.g.,499

the prevalence of infection or mean parasite burden of hosts as-500

sociated to the reservoir can be calculated (up to specifying the501

additional gamma-distributed predisposition to infection λi for502

each individual) while maintaining the finite population vari-503

ance neglected by deterministic disease models. Therefore, in504

order to understand how these variables which are associated505

with each reservoir of infection are affected by spatial move-506

ments of human hosts, it is essential to correctly assess how507

Λ(t) is modified by inward migration.508

Due to the movement patterns we have discussed, there may
be individuals who contribute to one of the focal points of the

reservoir but come from a region further away such that they are
not counted in S Λ. There may be individuals who are counted
in S Λ but instead contribute to a focal point outside of their own
associated cluster, e.g., on a particular day. Eq. (16) will hence
be perturbed by these movements in the following way

dΛ(t) = −dresΛ(t)dt

+
dres(d + dw)R0

NΛ

[ ∑
i∈S Λ

d`i(t) + d`+
mig(t) − d`−mig(t)

]
, (19)

where `±mig(t) are also compound Poisson processes which sum 509

over the amount of infectious material generated by these mi- 510

grating individuals that is either net entering (+) or leaving (−) 511

the reservoir focal points. 512

Note here that Eqs. (16) and (19) currently assume that NΛ 513

is static over the time period of interest, which may not be the 514

case if one considers changes that take place over the course 515

of, e.g., a year. This is because long-term effects can cause 516

the population number to vary, including periodic seasonal mi- 517

grant labour or family visits at particular times of year. Such 518

long-term changes are likely to not have too great a dynami- 519

cal significance on the terms of Eqs. (16) and (19), however, 520

since these terms are associated to variations in the reservoir 521

of infection which typically occur on much shorter timescales 522

(1/dres is typically on the order of weeks or months depending 523

on helminth species). 524

Eq. (19) implicitly describes a network of spatially coarse- 525

grained reservoirs of infection, each of which varying in spatial 526

extent according to a combination of the distribution of their in- 527

fectious foci, as well as the spatial coarse-graining scale choice 528

r
Λ
. This network of coarse-grained reservoir ‘nodes’ is con- 529

nected by migratory ‘pulses’, continually affecting each reser- 530

voir’s temporal stability (which we shall discuss later on) as 531

well as potentially non-negligible statistical cross-correlations 532

in local epidemiological indicators (e.g., prevalence or inten- 533

sity of infection) with respect to other reservoirs. Note also 534

that the choice of r
Λ

can therefore control the strength of these 535
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migratory interactions between reservoirs in the network. In536

Fig. 6 we have ilustrated this point explicitly on a digram with537

real map data based on buildings in central Malawi. The black538

(red) arrows on the map and zoomed illustrations show migra-539

tory movements of a radial distance below (above or equal to)540

r
Λ
, which has been arbitrarily chosen for clear visual effect.541

Let us now define TΛ as the average rate of individuals travel-
ling greater than a distance of r

Λ
to a focal point of the reservoir

of infection and contributing material to it. Following Ref. [14],
this translates into the following decomposition of the positive
migratory process in Eq. (19)

`+
mig(t) =

∞∑
j=0

y+
j 1[t+j ,∞)(t) ,

p(t+j − t+j−1) = Exp(t+j − t+j−1; 1/TΛ) , (20)

where y+
j is the contribution to the infectious material quan-542

tity of a focal point by an individual: a random variable with543

a distribution which varies between disease, but likely follows544

a negative binomial character in some cases. This distribution545

may be specifically derived by transforming the travelling in-546

dividual’s worm burden wi (e.g., drawn from a Poisson distri-547

bution and Eq. (18) or an individual-based simulation) into an548

expected count of fertilised eggs or larvae using a helminth-549

specific mating function [36]. Note that this compound Pois-550

son process is exact since it tracks the contribution entering the551

reservoir directly. If one wishes to temporally coarse-grain over552

the timescale 1/dres and see the effect on the mean worm burden553

deterministic ODE model (as is done in Ref. [13]), an additional554

non-Markovian component arises to account for the reservoir555

pulse decay.556

When an individual contributes to an infectious focal point557

which is further than r
Λ

away from their household, they do not558

just make an additional contribution to the latter’s reservoir of559

infection, but they also remove their contribution from one of560

the focal points which is within r
Λ

of their household (their local561

reservoir). In this sense, each random pulse within the `+
mig(t)562

process of one reservoir is exactly correlated to a pulse within563

the `−mig(t) process of another’s. So, for model completeness, it564

is sufficient to define only the `+
mig(t) process (attributing an in-565

tended location of travel) for each reservoir of infection defined566

over a map. This is tantamount to defining ‘links’ between the567

coarse-grained nodes of the network illustrated by Fig. 6.568

Let us now consider the influence that the coarse-graining
procedure has on Eq. (20). By analogy to physical theories in
nature, note that the fundamental dynamical theory should not
change — e.g., individual contributions to each reservoir should
not ‘disappear’ — simply because of an arbitrary choice for r

Λ
,

and so one must define a procedure whereby the effective dy-
namics in Eq. (20) are always describing the same fundamental
phenomenon, for any choice of r

Λ
. An obvious way to do this is

to consider the variation in probability mass associated to indi-
vidual movement rates as r

Λ
is varied. Based on the arguments

of Sec. 2, we hence point out that the following scaling should
exist for TΛ which accounts for this difference in probability
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Figure 7: The spatially coarse-grained average daily pulse rate TΛ into a fo-
cal point of infection as a fraction of its value Tµ from individuals arriving a
distance of rµ or greater away. This value is plotted as a function of the radial
coarse-graining scale ratio r

Λ
/rµ used. The relationship is given by Eq. (22) for

a range of α and β power-law parameters.

mass arising from a rescaling of distances

TΛ

Tµ
=

∫ ∞
r
Λ

dr p(r;α, β, rµ)∫ ∞
rµ

dr p(r;α, β, rµ)
=

1 −
∫ r

Λ

0 dr Γ(α+β)
Γ(α)Γ(β)

rβµrα−1

(rµ+r)α+β

1 −
∫ rµ

0 dr Γ(α+β)
Γ(α)Γ(β)

rβµrα−1

(rµ+r)α+β

, (21)

where we have defined Tµ as the average rate of individuals 569

travelling greater than a distance of r
µ

to a focal point of the 570

reservoir of infection and contributing material to it. 571

In order to derive Eq. (21) we have assumed that all indi-
viduals jump once per day, so that the marginalised jump PDF
p(r;α, β, rµ) of Sec. 2 may be used directly. By integration of
Eq. (21), one generally obtains

TΛ

Tµ
=

1 − Γ(α+β)
Γ(α+1)Γ(β)

(
r
Λ

rµ

)α
2F1

(
α, α + β;α + 1;−

r
Λ

rµ

)
1 − Γ(α+β)

Γ(α+1)Γ(β) 2F1 (α, α + β;α + 1;−1)
, (22)

where 2F1(·, ·; ·; ·) is the (Gauss) hypergeometric function. In 572

Fig. 7 we use the solution given by Eq. (22) to compute the 573

quantity TΛ/Tµ as a function of r
Λ
/rµ for a range of parameter 574

choices. 575

The variation of TΛ/Tµ as a function of r
Λ

provides a map- 576

ping between the average pulse rate for Eq. (20) that is as- 577

sociated to each focal point within the reservoir of infection 578

(whose pulse amplitudes can be easily summed over to get a 579

total contribution to and from the reservoir) and the distribution 580

of households at different spatial coarse-graining scales. The 581

value of r
Λ

may hence be fixed to identify movement of individ- 582

uals between structures at different scales, e.g., buildings, vil- 583

lages, towns, cities, etc. We may visualise this coarse-graining 584

of movement distances by referring back to Fig. 6 — there is an 585

emergence of black clusters of connected locations which are 586

connected by red arrows at longer distances. By then clustering 587
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the focal points on this map (note this is a mock illustration and588

these are not real focal points) according to whether or not they589

are within a radial distance r
Λ

of one another, we can then build590

coarse-grained reservoirs of infection associated to the scale r
Λ
.591

It is important to note that infectious reservoir clusters may592

themselves have a significant spatial extent due to the particular593

geometry of the nearby focal points, and so TΛ should be con-594

sidered to apply to each and every focal point (or small clus-595

ters of focal points) within the reservoir individually. Hence,596

for reservoirs of infection which correspond to clusters of focal597

points which, when bound together, have a radial spatial extent598

that is much smaller than r
Λ

then the results of this section may599

be used directly for the entire reservoir. In situations where this600

is not the case — e.g., long and thin geometric relationships601

binding focal points around the edge of a lake — then our re-602

sults may still be applied to each focal point (or small cluster603

of focal points) in turn. The application of our more general604

formalism is then subject to change depending on the specific605

relationships between focal points and hence, indirectly, on the606

species of helminth.607

4.2. Reservoir Wiener process approximation608

Reconsidering Eq. (16), note that the following Gaussian
sample mean approximation applies for the terms summing
over all (non-migratory) infectious material input into the reser-
voir

dres(d + dw)R0

NΛ

∑
i∈S Λ

d`i(t) ' Mres(t)dt +
[
Vres(t)

]1/2dWt , (23)

where Wt is a Wiener process,Mres(t) is a time-dependent mean
andVres(t) is a time-dependent variance for the reservoir inputs.
Such an approximation is motivated by the central limit theo-
rem and will be most accurate in the limit of large population
number NΛ. By inserting Eq. (23) into Eq. (19), one finds a
drift-diffusion which satisfies the following Gaussian distribu-
tion for Λ(t)

p[Λ(t) = z] = N[z;Mres(t),Vres(t)] . (24)

Calculating an exact analytic form for Vres(t) in the case of
each helminth species is still an open research question since
this is very likely to be quite complex to model. For some an-
alytic insight, however, in Ref. [13] it was shown that, with a
negative binomial distribution of worms within hosts, the dis-
tribution over typical egg outputs from hosts for hookworm is
well-approximated by another negative binomial (with differ-
ent mean and variance). Under these conditions, one may infer,
from the sum of negative binomial variances, that

Vres(t) = NΛMres(t)
[
1 +
Mres(t)
kres(t)

]
, (25)

where kres(t) is the aggregation parameter for the reservoir in-609

put negative binomial, which can be time-dependent before the610

system relaxes to the endemic steady state configuration.611

Eq. (24) provides a significant improvement in computa-612

tional efficiency over a full stochastic simulation. In particu-613

lar, for endemic steady-state regions where the constant values614

of Vres(t) and Mres(t) can be computed quickly for each pa- 615

rameter configuration, it could be used to generate a simulation 616

likelihood for statistical inference over an entire map affected 617

by helminth transmission and migrating infected individuals. 618

Due to migratory inputs from (and outputs to) other reser- 619

voirs, applying Eq. (24) consistently to each node of our reser- 620

voir network will require the inclusion of spatial covariances 621

(or higher-order statistics) between samples. The strength of 622

these spatial covariances can, in principle, be computed by in- 623

cluding the migratory terms of Eq. (19) into the approximation 624

above. We can see this by recalling that the rate of these migra- 625

tory compound Poisson processes (see Eq. (20)) is fundamen- 626

tally connected to the spatial distance scales via Eq. (22). This 627

‘fundamentals-based’ method of spatial epidemiological infer- 628

ence for helminth transmission would be distinct from other 629

methods since it would not only include important effects which 630

are inherent to a simulation, such as finite population variance 631

of the underlying stochastic process, but also a theoretical un- 632

derstanding of how the effective dynamical description itself 633

changes with spatial coarse-graining into separate EUs. Note 634

that the ‘scale-invariance’ of the theoretical model we have sug- 635

gested here can therefore, in principle, be inferred with data 636

collected at one EU scale and then interpolated/extrapolated for 637

model predictions at another. 638

Although it is beyond the scope of this paper, in future 639

work, it will be of interest to compare the results obtained 640

from other NTD spatial epidemiological models — which typ- 641

ically employ deterministic models a particular spatial scale, 642

e.g., Refs. [9, 10] — with the spatial correlations induced in the 643

diagnostic output from our suggested approach. Such a com- 644

parison would help quantify the importance of finite population 645

variance and EU choice on reservoir temporal stability. Other 646

NTD spatial modelling approaches one might consider a com- 647

parison to are spatial GRF-based models [6] — these are to be 648

constrasted with the temporally Gaussian, but spatially com- 649

plex, power-law-like, reservoir network we have proposed in 650

this section. In addition, it would be interesting to explore how 651

the approximate temporal Gaussianity of the model we have 652

proposed in Eq. (24) changes when considering: dynamics fur- 653

ther from endemic steady states; configurations closer to trans- 654

mission breakpoints; or systems with significantly smaller pop- 655

ulation sizes [14]. 656

4.3. The critical spatial scale 657

In order to evaluate the success of control measures through 658

the calculation of epidemiological observables, such as the 659

prevalence or intensity of infection, it is common for an EU 660

to correspond to a particular spatial scale for the reservoir of in- 661

fection — see, e.g., [4, 38, 39]. In Sec. 1 we discussed the pos- 662

sibility of defining EUs such that the effect that human move- 663

ment has on their implied reservoirs of infection was minimal. 664

Note that this is not just of importance to the temporal stabil- 665

ity of the reservoirs, but also advantageous because it nullifies 666

any statistical inference bias that may arise through strong mi- 667

gration effects. Such biases may occur when there is a large 668

migration pulse rate of infectious material into a given region 669

where the local intensity and prevalence are increased, but the 670
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Figure 8: The critical spatial scale as a ratio r∗
Λ

at which T ∗
Λ

= dres, for hook-
worm — where dres ' 0.071 [40] — plotted as a ratio of rµ. The value of
this scale is shown against the value of the average daily pulse rate Tµ at or
above rµ. We have used Eq. (22) to generate this relationship with a (bisection)
root-finding algorithm.

statistical models using these diagnostics for inference do not671

include migration rates in their description.672

It was shown in Refs. [13, 14] that if the average rate at which673

reservoir pulses occur exceeds the average death rate of the in-674

fectious material in the reservoir, dres, then the effect of infected675

human migration on the transmission dynamics becomes partic-676

ularly strong. In particular, the authors of Ref. [14] demonstrate677

that, for a range of finite population sizes, migration rates at or678

above this critical rate into a reservoir of infection can restart679

transmission in regions where a mass treatment programme has680

already achieved transmission elimination. In addition, it was681

shown that this rate of migration can stabilise the stronger ‘fade-682

out’ effects exhibited near transmission breakpoints. By com-683

bining the concept of a critical rate with our proposed spatial684

model for migration between reservoirs, one may derive a new685

and important critical spatial scale r∗
Λ

around the focal points of686

infectious reservoirs which depends on: the type of helminth,687

the small-scale geometry of locations and the specific patterns688

of human movement. This spatial scale can be used to define689

the geographical size of EUs.690

If the spatial scale of an EU is chosen which corresponds to a691

region smaller than the critical scale r∗
Λ

around each of its focal692

points of infection, the average daily rate of pulses will always693

be larger in magnitude than the value T ∗
Λ

, calculated using the694

critical scale. This is because the curves shown in Fig. 7 are695

always decreasing with increasing radial scale. This implies696

that when regions around focal points are defined at this critical697

scale or smaller for an EU, pulses of the form given by Eq. (19)698

cannot be safely neglected and should become important to take699

into account when modelling the transmission dynamics to cor-700

rectly assess reservoir stability and possible observation biases.701

This means that if EUs are at this critical scale of smaller NTD702

programmes need to have measures in place to mitigate the im-703

pact of human movement on programme targets. For example,704

individuals who regularly move beyond the boundaries of EUs 705

should be specifically targeted for treatment. When defining an 706

EU in the opposite case, however, effects from migration be- 707

tween reservoirs of infection may be safely neglected. 708

Using Eq. (22) the critical spatial scale r∗
Λ

at which T ∗
Λ

be- 709

comes equal to the death rate of the infectious material in the 710

reservoir per day, i.e., T ∗
Λ

= dres, has been plotted for hookworm 711

(which has dres ' 0.071 [40]) in Fig. 8 as a function of the av- 712

erage daily pulse rate Tµ from individuals travelling distances 713

at or above rµ. In this plot we note that nearly all parameter 714

combinations indicate a sharp decline in the critical scale ratio 715

if Tµ is found to be below dres — where, in particular, for values 716

of α = 2 the scale ratio appears to fall extremely sharply and 717

hence one can no longer find a finite critical scale below which 718

migration becomes important. 719

In contrast, for values Tµ > dres of increasing orders of mag- 720

nitude, one infers from Fig. 8 that the value of α is nearly ir- 721

relevant (which follows from the construction of Tµ) and, par- 722

ticularly for β = 2, 3, the increase in the critical scale ratio is 723

very gradual. Such a relationship is also consistent with our 724

expectation as the decline in the average pulse rate from peo- 725

ple travelling from distances r
Λ
� rµ is particularly sharp for 726

β = 2, 3 — see, e.g., Fig. 7 — and so one requires a significant 727

increase in the amplitude of Tµ to achieve a significant change 728

in the critical scale. 729

We acknowledge that there are important caveats to the rela- 730

tionship above (and the one shown in Fig. 7) which arise from 731

the assumptions made in obtaining Eq. (21), i.e., the statistical 732

homogeneity and isotropy of people living in the surrounding 733

households who all jump only once per movement event/day di- 734

rectly to an infectious focal point. By relaxing the assumptions 735

made in obtaining Eq. (21), the rate of pulses will vary between 736

different reservoirs of infection. In addition to these modifying 737

effects, the inclusion of multiple unidirectional jumps with dif- 738

ferent initial preferred directions may no longer be isotropically 739

configured when viewed collectively over the course of the day 740

— which would be the case when multiple individuals all con- 741

verge to a globally preferred location such as a place of work or 742

a school. We propose to consider such modifications in future 743

work on specific case studies. 744

Perhaps an even more important model extension to consider 745

was noted in Sec. 4.1, where the potential for the aggregation 746

parameter k (for the distribution of worms within hosts) was 747

hypothesised to also vary with spatial scale due to differences 748

in infectious exposure. Although including this potential effect 749

will not directly influence our conclusions with regard to migra- 750

tion, it is possible that another critical spatial scale exists which 751

may be found by considering the value of k required to make 752

endemic steady state stability possible. We leave the investiga- 753

tion into the possibility of this additional critical scale to future 754

work. 755

5. Discussion and conclusions 756

In this work we have developed and studied spatial models 757

of human movement to infectious focal points — the impor- 758

tant drivers of new infections for many parasitic organisms in 759
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humans. Our movement models have been motivated by the760

observed patterns of human mobility in, e.g., Refs. [24, 26], but761

remain robust to setting-specific parametric variations should762

these observations prove unsuitable for all settings.763

At its most basic, our model of human mobility assigns a sin-764

gle daily journey (or ‘jump’) for each individual, however, we765

have discussed many extensions to this description, which in-766

clude: multiple Poisson-distributed jumps, each of which may767

either be in random directions or unidirectional; and substan-768

tial local heterogeneity in the distribution of distances between769

available travel locations. By combining these extensions into770

a generalised framework, one can generate a wide variety of771

possible daily human movement behaviours to/between focal772

points of infection under a unifying description which offers773

a model-focused explanation for the observed patterns that is774

also computationally efficient. In future work, it will be inter-775

esting to extend our approach to include time dependence in776

the location of infectious contact events. Such a model will be777

necessary for diseases such as lymphatic filariasis or onchocer-778

ciasis, where bites from mosquito or black fly vectors infected779

by filarial larvae can vary spatially over time, and may not be780

Markovian (i.e. memoryless). An investigation into the longer-781

term temporal changes in population number, e.g., due to sea-782

sonal migrant labour patterns or population displacement due783

to conflict or climate change, may also be interesting.784

We note here that the human movement models we have785

studied are comparable to those developed in Refs. [27, 28]786

for vector-bourne diseases, which label the single daily journey787

models as so-called ‘Lagrangian’ mobility models and the mul-788

tiple successive movement models as ‘Eulerian’. We consider789

our stochastic approach to generating frequency-distance distri-790

butions useful and informative in understanding the underlying791

probability distributions for these works, especially in relation792

to demonstrating the regimes in radial spatial scales which are793

relevant to location-specific geometric effects and human move-794

ment distance predispositions.795

By clustering focal points into reservoirs of infection, our796

human movement models have also highlighted the most im-797

portant information necessary to efficiently (by which we mean798

low numbers of parameters) describe the effect of migration799

patterns on these reservoirs. Our model defines a stochastic net-800

work of dynamical reservoirs linked by migratory ‘pulses’ (see801

Eq. (19)) which accounts for these migratory movements at any802

defined spatial evaluation scale around each focal point using803

the movement models that we have developed. The necessary804

data to infer such a ‘reservoir network’ can, in principle, be col-805

lected by well-designed field studies. Based on our work here,806

the information to obtain for a particular study may include:807

1. Obtaining the appropriate (likely radially-dependent)808

power-law α(r) for the expected cumulative number of lo-809

cations available to travel to by an individual — see, e.g.,810

Fig. 2. These data can be obtained from geographic maps.811

2. Evaluating the amplitude of the effect of small-scale het-812

erogeneity (and perhaps anisotropy) on the power-law cu-813

mulative distribution of locations available to travel to by814

an individual. One can obtain this information from high815

resolution maps of households. 816

3. Obtaining the average number of journeys performed 817

within a single day per individual. In this case some met- 818

ric for having ‘completed’ a journey associated to the time 819

spent at each location will likely need to be determined. In 820

principle, this information can be obtained from question- 821

naires on human movement that can be integrated into a 822

regular field survey. 823

4. Evaluating the average number of people entering or leav- 824

ing the relevant focal points for a given reservoir of infec- 825

tion at some particular spatial scale, e.g., this can be Tµ or 826

evaluated at some other spatial scale since the reasoning 827

of Eq. (21) can be easily adapted. Note that the true spa- 828

tial scale of the reservoir does not need to be known for 829

collecting these data. This information might be obtained 830

through questionnaires. 831

5. Potentially obtaining an appropriate scaling value β for 832

the distribution of predispositions to jump a certain dis- 833

tance (see Eq. (4)). This may either be consistent with 834

the observed work-home commute patterns in Ref. [24], 835

or deviate to a different power-law relationship entirely, 836

depending on local access to vehicles and other forms of 837

transportation. This information might also be obtained 838

through questionnaires. 839

While developing our stochastic reservoir network model, 840

we also discussed a computationally-efficient approximate de- 841

scription for its dynamical behaviour near or at endemic steady 842

states. In particular, a Gaussian sample mean approximation 843

was made for the sum of infectious material in each reservoir 844

over a coarse-grained temporal scale, rendering its dynamical 845

behaviour the same as a drift-diffusion process with migratory 846

‘jumps’ — see Eq. (24). The drastic improvement in compu- 847

tational efficiency that such an approximation offers makes it 848

an attractive option to explore when statistically inferring fully- 849

stochastic infectious reservoirs from diagnostic data. We leave 850

the implementation of this approach, and the analysis of its ro- 851

bustness for reservoir network states far from endemicity, to 852

future work. 853

The last, and perhaps most significant of our findings in this 854

work concerns the spatial scales associated to EUs. An EU is 855

commonly used to define epidemiological observables such as 856

prevalence or intensity of infection for a given region, often in 857

the context of assessing the perfomance of mass drug admin- 858

istration programmes [21, 20]. By combining our stochastic 859

reservoir network model with a known critical rate for migra- 860

tion into/out of reservoirs of infection, we have been able to 861

demonstrate that a critical radial spatial scale r∗
Λ

exists around 862

the focal points of infection inside a defined EU. When an EU 863

is spatially defined such that the spatial region of considera- 864

tion around each of its included focal points is larger than this 865

critical scale, the effects of migration may be safely neglected 866

and our reservoir network may effectively remove its ‘links’. In 867

the opposing limit at scales smaller than r∗
Λ
, however, we have 868

described how: the temporal stability of the dynamics of in- 869

fectious reservoirs defined at this scale may be affected through 870

migratory jumps; statistical inference biases may occur through 871
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the use of models without migratory effects; and mass drug ad-872

ministration applied only to the population within an EU with-873

out considering individuals moving between EUs may experi-874

ence strong bounce-back effects.875

The critical spatial scale we have found in this work is876

of biological and practical importance to many helminth dis-877

ease transmission processes. We have also discussed how this878

model may need further modifications when the relative infec-879

tious exposure of individuals is varied according to spatial scale880

(through the worms-within-hosts aggregation parameter k) in881

addition to many other extensions we have proposed through-882

out. We therefore consider the model we have presented here883

to be a useful starting point for many interesting directions for884

future research.885
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