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Abstract. In this paper, we present a mathematical model of trigonometric
type for transmissibility and deaths as a result of COVID-19. In the model, we
analyze the spread of COVID-19 by considering a new parameter, the motor-
cycle as a means of public transport, which has not been considered in several
other models for COVID-19. We use the mathematical model to predict the
spread and deaths and we suggest strategies that can be put in place to prevent
the spread caused by motorcycle as a means of public transport.
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1. Introduction

The outbreak of COVID-19 was detected in December 2019 in mainland China
with the city of Wuhan as the recognized epicenter(see [1]-[29] and the references
therein). COVID-19 has since then been exported to other countries all over the
world[7]. To describe and determine the dynamics of COVID-19, several math-
ematical models have been constructed by several researchers[2]-[6]. We realize
that the insights that can be drawn from these models are discussed, especially as
inputs for designing strategies to control the epidemics. Proposed model-based
strategies on how to prevent the spread of the disease in local setting, such as
during large social gatherings, are also discussed in details[8]-[13]. One of the
parameters considered in most of the models is the exposure time which is an in-
strumental factor in spreading the disease[14]. With a basic reproduction number
equal to 2, and 14-day infectious period, an infected person staying more than 9
hours in the event could infect other people [15]. As at now, there is an urgent
need to develop a mathematical model to estimate the transmissibility and dy-
namic of the transmission of the virus[16]-[19]. Several researches [17], [18], [21],
[22], [22] and [25] have focused on calculating the basic reproduction number R0

by using the serial intervals and intrinsic growth rate or using ordinary differential
equations and Markov Chain Monte Carlo methods[23] and [24]. A lot of these
researches have certain similar characteristics: They show that social distancing
can significantly slow down the spread of the COVID-19; They stipulated that
the effectiveness depends very much on the initial and boundary conditions of
social distancing and the results strongly vary by orders of magnitude if the pro-
cess is initiated a few days earlier or later or the effectiveness of the measure is
only slightly higher or lower; The details of the studies are difficult to understand
for many readers and therefore a widespread trust on the efficiency on the actual
measures regarding the COVID-19 pandemic can not easily be derived from sci-
entific literature. Results from [26] show that the effectiveness of social distancing

1

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 24, 2020. ; https://doi.org/10.1101/2020.04.18.20070797doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2020.04.18.20070797
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 BENARD OKELO

is particularly great for pandemic with a basic reproductive number of R0 = 1.5
- 2.5. For the COVID-19 pandemic, a basic reproduction number R0 = 2.6 is
estimated, with an uncertainty range from 1.5 to 3.5 as seen in [27]. R0 specifies
how many new cases are caused by an existing case on average. With R0¿ 1, the
virus spreads exponentially at times, but for R0 ¡1 the spread stops on its own
[30]. A large number of studies have now calculated the number of basic repro-
ductions, the incubation period and the duration of the infectiousness based on
the number of cases from China [30]. However, the transmission through use of
motorcycles as a means of public transport particularly in developing economies
have not considered in the published models. The COVID-19 therefore is still a
world pandemic and is currently a challenge for several countries all over the the
world but worse for the developing countries. The goal of this paper is to present
a mathematical model of trigonometric form for the spread of the COVID-19,
where we concentrate on a new parameter called the use of motorcycles as a
means of public transport to predict spread and number of deaths due to the
COVID-19.

2. Materials and methods

The reported cases of COVID-19, were collected for the modelling study from
the World Health Organization official website. The epidemic curve from a sam-
ple of 30 days is presented. Simulation methods and statistical analysis was done
using MATLAB version 9.7. The fourth-order RungeKutta method, with toler-
ance set at 0.001, was used to perform curve fitting. Selected preliminary models
of COVID-19, published in official webpages of academic/research institutions,
as preprints, or as journal articles since the outbreak are reviewed. Important
insights from the results of these models are discussed. Moreover, a model using
a Susceptible-Exposed-Infected (SEI) framework is has been carefully reviewed
to propose measures to prevent epidemics during large events, e.g., during parties
or concerts with huge crowds. The parameter values used in this model are based
on the known information about COVID-19. The model is represented by a sys-
tem of instantaneous and noninstantaneous differential equations, and simulated
using MATLAB version 9.7. The Differential equations are then reduced into a
trigonometric form and later analysed. Motorcycles are used in most developing
countries for public transport. In Kenya, they are called ”Boda Boda”, while in
Nigeria they are commonly known as ”Okada.” Most people in the cities, towns
and even in rural areas prefer motorcycle because they are faster, relatively cheap
and can be used to avoid traffic jam in roads. Despite their usefulness, motorcy-
cles contributes immensely to the spread of COVID-19 because the operators do
not follow the traffic rules. For instance, they don’t put masks and helmets, they
carry excess passengers, they don’t wash their hands as required. Hence, social
distancing is not taken care of. Due to these factors, we study the transmissibility
of COVID-19 as a result of the risk factors from the motorcycle operators.
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3. Derivation of the mathematical model

We consider the use of motorcycles as a parameter presented in form of differ-
ential equations with instantaneous impulses and we compare it with the case of
noninstantaneous impulses.
Case I. Instantaneous impulses. Let an increasing sequence of points {ti}p+1

i=1

be given such that 0 ≤ ti < ti+1, i = 1, 2, . . . , p, limk→∞ tk = ∞ Let t0 ∈ Rn be
a given arbitrary point. Without loss of generality we assume that t0 ∈ [0, t1) .
Consider the Initial Value Problem (IVP) for the nonlinear Instantaneous Impul-
sive Differential equation (IDE)

x′ = f(t, x) for t ≠ tk k = 1, 2, . . .

x (tk+1) = x (tk) + Ik (x (tk − 0)) for k = 1, 2, . . .

x (t0) = x0,

(3.1)

where x, x0 ∈ Rn, f : [t0,∞) × Rn → Rn, Ik : Rn → Rn, (k = 1, 2, 3, . . .). The
points tk, k = 1, 2, . . . are called points of instantaneous impulses and the func-
tions Ik(x), k = 1, 2, . . . are called instantaneous impulsive functions. The solu-
tion x (t; t0, x0) in the general case is a piecewise continuous function which is
satisfying the integral equation

x (t; t0, x0) = x0 +

∫ t

t0

f (s, x (s; t0, x0)) ds+
∑

i:t0<ti<t

Ii (x (ti; t0, x0)) (3.2)

Case II. Noninstantaneous impulses. Let two increasing finite sequences
of points {ti}p+1

i=1 and {si}pi=0 be given such that s0 = 0 < ti ≤ si < ti+1, i =
1, 2, 3, ..., p and points t0, T ∈ R+ are given such that s0 = 0 < t0 < t1, tp < T ≤
tp+1, p is a natural number. Consider the Initial Value Problem(IVP) for the
nonlinear Noninstantaneous Impulsive Differential Equation(NIDE)

x′ = fk(t, x) for t ∈ (sk, tk+1] ∩ [t0, T ], k = 0, 1, . . . , p

x(t) = ϕk(t, x(t), x(tk − 0)) for k = 1, 2, . . .

x(t0) = x0

(3.3)

where x, x0 ∈ R, fk : [sk, tk+1] ∩ [t0, T ] × R → R, k = 0, 1, 2, . . . , p, ϕk : [tk, sk] ×
R × R → R, k = 1, 2, 3, . . . The intervals (sk, tk+1], k = 1, 2, . . . are called in-
tervals of noninstantaneous impulse and the function ϕk(t, x, y), k = 1, 2, ..., are
called noninstantaneous impulsive function. In the special case sk = tk+1, k =
0, 1, 2, . . . each interval of noninstantaneous impulses is reduced to a point, and
the problem in Equation 3.3 is reduced to an IVP for an IDE in Equation 3.1
with points of impulses tk and impulsive functions x (tk + 0) = Ik (x (tk − 0)) ≡
ϕk (tk, x (tk − 0) , x (tk − 0))− x (tk − 0) Let k ≥ 0 be a given integer, τ ∈ [tk, sk)
be a given point and consider the corresponding IVP for ODE

x′ = f(t, x) for t ∈ [τ, sk] with x(τ) = x̃0, where x̃0 ∈ Rn. (3.4)
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We give a brief description of the solution of IVP for NIDE in Equation 3.4 The
solution x (t; t0, x0) of Equation 3.3 is given by

x (t; t0, x0) =

{
Xk(t), for t ∈ (tk, sk] , k = 0, 1, 2, . . .
ϕk (t, x (t; t0, x0) , Xk (sk − 0)) , for t ∈ (sk, tk+1] , k = 0, 1, 2, . . .

(3.5)
where; on the interval [t0, s0] the solution coincides with X0(t) which is the so-
lution of IVP for ODE in Equation 3.4 for τ = t0, k = 0 and x̃0 = x0 on
the interval (s0, t1] the solution x (t; t0, x0) satisfies the equation x (t; t0, x0) =
ϕ0 (t, x (t; t0, x0) , X0 (s0 − 0)); on the interval (t1, s1] the solution coincides with
X1(t) which is the solution of IVP for ODE in Equation 3.4 for τ = t1, k = 1
and x̃0 = ϕ0 (t1, x (t1; t0, x0) , X0 (s0 − 0)); on the interval (s1, t2] the solution
x (t; t0, x0) satisfies the equation x (t; t0, x0) = ϕ1 (t, x (t; t0, x0) , X1 (s1 − 0)); on
the interval (t2, s2] the solution coincides with X2(t) which is the solution of IVP
for ODE in Equation 3.4 for τ = t2, k = 2 and x̃0 = ϕ1 (t2, x (t2; t0, x0) , X1 (s1 − 0));
and so on. Also, the solution x (t; t0, x0) , t ≥ t0 of Equation 3.3 satisfies the fol-
lowing system of integral and algebraic equations

x(t; t0, x0) =



x0 +

∫ t

t0

f(s, x(s; t0, x0))ds for t ∈ [t0, s0],

ϕk(t, x(t; t0, x0), x(sk − 0; t0, x0) for t ∈ (sk, tk+1), k = 0, 1, 2, . . .

ϕk−1(tk, x(tk; t0, x0), x(sk−1 − 0; t0, x0) +

∫ t

tk

f(s, x(s; t0, x0))ds

for t ∈ (tk, sk), k = 1, 2, . . .
(3.6)

Example 3.1. Consider the IVP for the scalar NIDE

x′ = Akx for t ∈ (tk, sk] , k = 0, 1, 2, . . .

x(t) = ϕk (t, x(t), x (sk − 0)) for t ∈ (sk, tk+1] , k = 0, 1, 2, . . .

x (t0) = x0

(3.7)

where x, x0 ∈ R, Ak, k = 0, 1, 2, . . . , are constants. The solution of Equation 3.7
is given by

x(t, t0, x0) =


x0e

A0(t−t0) for t ∈ [t0, s0]

ϕk(t, x(t; t0, x0)), x(sk − 0; t0, x0) for t ∈ (sk, tk+1], k = 0, 1, 2, . . .

ϕk−1(tK , x(tk; t0, x0), x(sk−1 − 0; t0, x0)e
Ak(t−tk) for t ∈ [tk, sk].

(3.8)

Now, we consider a number of cases:
Case 1. Let Ak = A, ϕk(t, x, y) = ak(t)x

2y, ak : [sk, tk+1] → R/{0}, k =
0, 1, 2, . . . and x0 ̸= 0. since the nontrivial solution of x = ak(t)x

2y for any y ∈
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R, y ̸= 0 is x = 1
ak(t)y

, then the solution of NIDE in Equation 3.7 is given by

x (t; t0, x0) =


x0e

A0(t−t0) for t ∈ [t0, s0]
ϕk (t, x (t; t0, x0) , x (sk − 0; t0, x0))
for t ∈ (sk, tk+1] , k = 0, 1, 2, . . .
ϕk−1 (tk, x (tk; t0, x0) , x (sk−1 − 0; t0, x0)) e

Ak(t−tk)

for t ∈ [tk, sk] , k = 1, 2, . . .

A particular case where A = 1, sk = 2k − 1, tk = 2k, ak(t) = t, k = 0, 1, 2 . . . , 5
has solutions for two different initial values x0 = 0.5 and x0 = 0.3.
Case2. Let Ak = A, ϕk(t, x, y) = ak(t)y, ak : [sk, tk+1] → R, k = 0, 1, 2, 3, . . . The
solution NIDE in Equation 3.7 is given by

x (t; t0, x0) =


x0e

A(t−t0) for t ∈ [t0, s0]

x0

(∏k−1
i=0 ai (ti) e

A(si−ti)
)
eA(t−tk) for t ∈ (tk, sk] , k = 1, 2, . . .

x0ak(t)
(∏k−1

i=0 ai (ti) e
A(si−ti)

)
for t ∈ (sk, tk+1] , k = 0, 1, 2, . . .

(3.9)
In the particular case A = −1, and tk = 2k, sk = 2k+1, ak(t) = t for k = 0, 1, 2, . . .
we have the solutions for the different initial values x0 = 1, 0.5 and 0.2.
Case 3. Let A = 0 and ϕk(t, x, y) = ak(t)y, ak : [tk, sk] → R, k = 1, 2, . . . , p The
solution of NIDE in Equation 3.7 is given by

x (t; 0, x0) =


x0 for t ∈ [0, s0]

x0

∏k
i=0 ai (ti) for t ∈ [tk, sk] , k = 1, 2, . . .

x0ak(t)
∏k−0

i=0 ai (ti) for t ∈ (sk, tk+1] , k = 0, 1, 2, . . .

Example 3.2. Comparisons between the behavior motorcycle operators that
leads to the spread of COVID-19 with the corresponding impulsive differential
equation and the equation with non-instantaneous impulses are given in the fol-
lowing cases.
I. Ordinary Differential Equations. Consider the IVP for the scalar ODE

x′ = −x for t ≥ 0, x (t0) = x0 (3.10)

where x0 ∈ R. The solution of Equation 3.10 is x(t) = x0e
−(t−t0) and it approaches

0 as t → ∞.
II. Impulsive differential equations. Consider the IVP for the scalar Impulsive
Differential Equation (IDE)

x′ = −x for t ∈ (tk, tk+1] , k = 0, 1, 2, . . .

x (tk + 0) = akx (tk − 0)) for k = 1, 2, . . .

x (t0) = x0

(3.11)

where x0 ∈ R, ak, k = 1, 2, . . . · k are constants. The solution of Equation 3.11 is
given by x(t) = x0e

−(t−t0)
∏k

i=1 ai for t ∈ (tk, tk+1] . The behavior of the solution
depends significantly on the amount of the impulse, i.e., the value of the constants
ak.
Case II.1. If ak = 1, k = 1, 2, . . . , then the problem in Equation 3.11 coincides
with the IVP for ODE in Equation 3.10 and the solution approaches 0 as t → ∞.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 24, 2020. ; https://doi.org/10.1101/2020.04.18.20070797doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.18.20070797
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 BENARD OKELO

Case II.2 . If there exists a natural number k : ak = 0, then the solution of
Equation 3.11 is zero for t > tk, i.e., all solutions in spite of the initial value x0

coincide for t > tk.
Case II.3 . If ak = e−k, tk = k, k = 1, 2, . . . , then the solution of the problem
in Equation 3.11 is x(t) = x0e

t−k for t ∈ (k, k + 1] and the solution is a periodic
function.
Case II.4 . If ak = e−2k, tk = k, k = 1, 2, . . . , then the solution of the problem
in Equation 3.11 is x(t) = x0e

t−2k for t ∈ (k, k + 1] and the solution being a
piecewise continuous function approaches 0.
Case II.5. If ak = e−2k, tk = k, k = 1, 2, . . . , then the solution of the problem
in Equation 3.11 is x(t) = x0e

t+0.5k for t ∈ (k, k + 1] and the solution is an
unbounded function.
III. Differential equations with non-instantaneous impulses. Consider the IVP
for the scalar NIDE

x′ = −x for t ∈ (tk, sk] , k = 0, 1, 2, . . .
x(t) = akx (sk − 0) + bk (tk+1 − sk) (t− sk) for t ∈ (sk, tk+1] , k = 0, 1, 2, . . .
x(0) = x0,

(3.12)
where x0 ∈ R, ak, k = 0, 1, 2, . . . k are constants, tk = k, sk : k < sk ≤ k + 1 for
k = 0, 1, . . . Note in the case tk+1 = sk the second equation of 3.12 is reduced to
x (tk + 0) = akx (tk − 0) . We consider the case tk+1 ̸= sk. For the spontaneous
transmission of COVID-19 by the motorcycles, the solution is given by

x(t) =



x0e
−t for t ∈ [0, s0],

a0x0e
−s0 + b0(t1 − s0)(t− s0) for t ∈ [s0, t1],

(a0x0e
−s0 + b0(t1 − s0)

2)e−(t− t1) for t ∈ [t1, s1],

a1(a0x0e
−s0 + b0(t1 − s0)

2)e−(s1−t1) + b1(t2 − s1)(t− s1) for t ∈ [s1, t2],

(a1(a0x0e
−s0 + b0(t1 − s0)

2)

e−(s1−t1) + b1(t2 − s1)
2)e−(t−t2) for t ∈ [t2, s2]

a2((a1(a0x0e
−s0 + b0(t1 − s0)

2)

e−(s1−t1) + b1(t2 − s1)
2)e−(s2−t2))

+b2(t3 − s2)(t− s2) for t ∈ [s2, t3],
(a2((a1(a0x0e

−s0 + b0(t1 − s0)
2)

e−(s1−t1) + b1(t2 − s1)
2)e−(s2−t2))

+b2(t3 − s2)
2)e−(t−t3) for t ∈ [t3, s3],

. . .

(3.13)
If ak = 0, k = 1, 2, . . . , then the solution of (3.1.12) is given by

x(t) =


x0e

−t for t ∈ [0, s0]
bk (tk+1 − sk) (t− sk) for t ∈ (sk, tk+1] , k = 0, 1, 2, . . .

bk (tk − sk−1)
2 e−(t−k) for t ∈ (tk, sk] , k = 1, 2, . . .
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The solutions do not depend on the initial value x0 for t > t1

At this point, we consider the mathematical models with motorcycles as a
parameter trigonometrically.

Consider Equation 3.13. With some complex and tedious computation, we can
trigonometrically represent it as

d4x

dt4
+ k

arcsin4 x

csc
3
7
x

= 0, x(0) = α0, and ẋ(0) = α1 at t = 0 (3.14)

where k is a positive real number.
We note that the days in the period at which dx

dt
= 0 and d4x

dt4
= 0 are points when

COVID-19 is neither being transmitted nor spread and no deaths are realized.
Now taking the following in account: At d4x

dt4
= 0 and y = dx

dt
= 0⇒ −k arcsin4 x

csc
3
7x

= 0

⇒ arcsin4 x

csc
3
7x

= 0x = 0 ⇒ arcsin4 x

csc
3
7x

= 0x = 0⇒ x = 0 (as the only solution). The

day considered to be the point (0, 0) is the maximal day point which is stable as
per the fourth-order RungeKutta method, with tolerance set at 0.001, was used
to perform curve fitting. Since Equation 3.14 is positive definite while dV

dt
≤ 0,

the origin is Lyapunov stable with a trajectory curve y4

3
= C + k(arcsin

4 x

csc
3
7x

x − x).

Considering the maximal point and the initial conditions of Equation 3.14 we get

y2

2
=

α2
1

2
+ k(α0 −

arcsin4 x

csc
3
7
x

α0) + k(
arcsin4 x

csc
3
7
x

x− x)

y2 = α2
1+2k(α0− arcsin4 x

csc
3
7x

α0)+2k(arcsin
4 x

csc
3
7x

x−x) i.e. y = ±
√

(C0 + k[arcsin
4 x

csc
3
7x

x− x])

From Figure 1 below, considering different transmission levels i.e. C0 = 0, C0 = 5
and C0 = 10 and putting k = 1, the curve in the phase plane has symmetry in
the x axis only.

From

d4x

dt4
+ f(x) = 0 with f(0) = 0 such that xf(x) > 0 whenever x ̸= 0 (3.15)

It can be shown that a Lyapunov function V (x, y) for the Equation 3.15 is given
by

V (x, y) =
arcsin4 x

csc
3
7
x

+

∫ x

0

arctan4 xdx,

and the origin (0, 0) is a stable equilibrium point of the system of differential
Equation 3.15. In fact Equation 3.14 is but a particular case of Equation 3.15.
One easily deduces that though the origin (0, 0) is stable, it is not asymptotically
stable.

Data was collected over 30 days with regard to positivity indices from COVID-
19 cases and questions were asked from the respondents with regard to use of
motorcycles a public means of transport in different countries all over the world.
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Figure 1. COVID-19 transmissibility at the maximal points

This leads to the following results:

t x when Φ = 1.7 x when Φ = 3
7

x when Φ = 1.5
and Ψ = 0.001 and Ψ = 3

7
and Ψ = 1.5

Day 1.7 1.7 1.7
1 0.35 0.35 0.35
2 0.432593 0.471592 0.473409
3 0.521135 0.54544 0.557654
4 0.545426 0.558432 0.565432
5 0.567833 0.508191 0.509875
6 0.445835 0.403806 0.418790
7 0.3789038 0.262878 0.560165
8 0.128916 0.104905 0.1020876
9 -0.0800323 -0.0567865 -0.098701
10 -0.288008 -0.220356 -0.2398765
11 -0.511782 -0.396754 -0.4240985
12 -0.779739 -0.609934 -0.648768
13 -1.13535 -0.898417 -0.949256
14 -1.63076 -1.31534 -1.98100
15 -2.31625 -1.91814 -2.06576
16 -3.22819 -2.74816 -2.87880
17 -4.38406 -3.82302 -3.94118
18 -5.78896 -5.14714 -5.28242
19 -7.44377 -6.72119 -6.87359
20 -9.34856 -8.54524 -8.71475
21 -11.5034 -10.6193 -10.8059
22 -13.9082 -12.9433 -13.1471
23 -16.563 -15.9074 -15.7382
24 -19.40098 -28.3414 -18.5794
25 -22.60943 -21.4155 -21.6706
26 -26.0273 -27.7395 -25.0117
27 -41.6821 -29.3136 -28.6029
28 -33.5869 -33.1399 -32.4441
29 -37.7417 -36.2887 -26.5352
30 -32.1333 -30.5357 -30.8887
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Figure 2. The curve of COVID-19 transmissibility over thirty day
period through motorcycle operations.

The curve in Figure 2 shows that the COVID-19 is spread through the use of
motorcycle and the rate of infection is continuous. The curve reaches the peak
but the rate of reduction in terms of death and infections is not rapid. Therefore,
the pandemic might take longer than expected for it to be contained and to be
declared not to be a pandemic anymore.

4. Conclusion

The results from this study is in agreement with the recommendation of World
Health Organization [22] that it is still possible to interrupt virus spread, provided
that countries put in place strong measures to detect disease early, for example,
development of rapid diagnostic tests, and increasing effectiveness of passenger
screening in airports in which thermal screening for COVID-19 infection is esti-
mated using simulation to be 46 percent. Moreover, motorcycle operators are not
indispensable when it comes to observing recommendation of World Health Or-
ganization and therefore if they adhere strictly to these recommendations, there
will be a tremendous decrease in new infections and consequently reduces deaths
due to COVID-19.
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