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Abstract

Effectively designing and evaluating public health responses to the ongoing COVID-19 pan-

demic requires accurate estimation of the prevalence of COVID-19 across the United States

(US). Equipment shortages and varying testing capabilities have however hindered the useful-

ness of the official reported positive COVID-19 case counts. We introduce four complementary

approaches to estimate the cumulative incidence of symptomatic COVID-19 in each state in

the US as well as Puerto Rico and the District of Columbia, using a combination of excess

influenza-like illness reports, COVID-19 test statistics, COVID-19 mortality reports, and a spa-

tially structured epidemic model. Instead of relying on the estimate from a single data source

or method that may be biased, we provide multiple estimates, each relying on different assump-

tions and data sources. Across our four approaches emerges the consistent conclusion that on

April 4, 2020, the estimated case count was 5 to 50 times higher than the official positive test

counts across the different states. Nationally, our estimates of COVID-19 symptomatic cases as

of April 4 have a likely range of 2.2 to 4.9 million, with possibly as many as 8.1 million cases,

up to 26 times greater than the cumulative confirmed cases of about 311,000. Extending our

method to May 16, 2020, we estimate that cumulative symptomatic incidence ranges from 6.0

to 10.3 million, as opposed to 1.5 million positive test counts. The proposed combination of
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approaches may prove useful in assessing the burden of COVID-19 during resurgences in the

US and other countries with comparable surveillance systems.

1 Introduction

COVID-19 (SARS-CoV-2), is a coronavirus that was first identified in Hubei, China, in December

of 2019. On March 11, due to its extensive spread, the World Health Organization (WHO) declared

it a pandemic [1]. As of July 24, 2020, COVID-19 had infected people in nearly every country glob-

ally with an official case count surpassing 15 million cases worldwide and 4 million in the United

States (US) [2]. It is however accepted that the official case count is capturing only a fraction

of the actual infections, and reliable estimates of COVID-19 infections are critical for appropriate

resource allocation, effective public health responses, and improved forecasting of disease burden [3].

A lack of widespread testing due to equipment shortages, varying levels of testing by region over

time, and uncertainty around test sensitivity make estimating the point prevalence of COVID-19

difficult [4, 5]. In addition, it has been estimated that 18% [6] to 50% [7, 8] of people infected

with COVID-19 are asymptomatic or paucisymptomatic. Even in symptomatic infections, under-

reporting can further complicate the accurate characterization of the COVID-19 burden. For ex-

ample, one study estimated that in China, 86% of cases had not been captured by lab-confirmed

tests [9], and it is possible that this percentage is even higher in the US [5]. Finally, it has been

suggested that the available information on confirmed COVID-19 cases across geographies may be

an indicator of the local testing capacity over time, as opposed to an indicator of the epidemic

trajectory. Thus, solely relying on positive test counts to infer the COVID-19 epidemic trajectory

may not be sensible [10].

The aim of this study is to show how alternative methodologies, each with different sets of

inputs and assumptions, can provide a consensus estimate of weekly cumulative symptomatic inci-

dence of COVID-19 in each state in the US. One such approach is to analyze region-specific changes

in the number of individuals seeking medical attention with influenza-like illness (ILI), defined as

having a fever in addition to a cough or sore throat. The significant overlap in symptoms common

to both ILI and COVID-19 suggests that leveraging existing disease monitoring systems, such as

ILINet, a sentinel system created and maintained by the United States Centers of Disease Control

and Prevention (CDC) [11, 12], may offer a way to estimate the ILI-symptomatic incidence of

COVID-19 without needing to rely on COVID-19 testing results. Importantly, regional increases

in ILI observed from February to April 2020 in conjunction with stable or decreasing influenza case

numbers present a discrepancy (i.e., an increase in ILI not explained by an increase in influenza)

that can be used to impute COVID-19 ILI-symptomatic cases.
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A second and related approach uses ILI data to deconfound COVID-19 testing results from

state-level testing capabilities. These two approaches show that existing ILI surveillance systems

are a useful signal for measuring COVID-19 ILI-symptomatic incidence in the US, especially dur-

ing the early stages of the outbreak. However, they are dependent on reporting from the ILINet

system, and thus become less reliable outside of peak flu season and when COVID-19 precautions

disrupt routine health care use.

Our third approach uses reported COVID-19-attributed deaths to estimate COVID-19 symp-

tomatic incidence (broader than the ILI-symptomatic incidence of the first two methods) and

improves upon previously introduced methodologies [13, 14, 15, 16, 17]. COVID-19 deaths may

represent a lower-noise estimate of cases than surveillance testing given that patients who have

died are sicker, more likely to be hospitalized, and thus more likely to be tested than the general

infected population.

The fourth approach is based on the use of the Global Epidemic and Mobility model (GLEAM ),

a fully stochastic epidemic modeling platform that uses real-world data to perform in silico simu-

lations of the spatial spread of COVID-19 in the US [18]. The mechanistic modeling stage explores

the parameter space defined by the basic reproduction number, generation time, seasonality scal-

ing factor, social distancing policies, and generates a corpus of simulated epidemic profiles. The

simulation results can be aggregated at the level of each US state and the entire country. The

model selection stage is performed by measuring the information loss with respect to the ground

truth surveillance data of the weekly death incidence in each state.

While previous work has attempted to quantify COVID-19 incidence in the United States

using discrepancies in ILI trends [19, 20], to the best of our knowledge this study is the first to

offer a range of estimates at the state level, leveraging a suite of complementary methods based on

different assumptions. We believe that this provides a more balanced picture of the uncertainty over

COVID-19 (ILI-)symptomatic incidence in each state. While our results are approximations and

depend on a variety of (likely time-dependent) estimated factors, we believe that our presented case

counts better represent (ILI-)symptomatic incidence than simply relying on laboratory-confirmed

COVID-19 tests. Providing such estimates for each state enables the design and implementation of

more effective and efficient public health measures to mitigate the effects of the ongoing COVID-19

epidemic outbreak. While the scope of this paper is focused on the United States, the methods

introduced here are general enough that they may prove useful to estimate COVID-19 burden in

other locations with comparable disease (and death) monitoring systems.
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2 Results

We implement five methods based on four approaches to estimate the symptomatic incidence of

COVID-19 within the US from March 1 to May 16, 2020. These dates correspond to the early

stages of the outbreak (with fewer than 50 confirmed cases in the US), up to the date of the the

CDC reports as of May 28th, 2020. The first two methods, labeled div-IDEA and div-Vir, fall

under the Divergence approach, which first estimates what the level of ILI activity across the US

would have been if the COVID-19 outbreak had not occurred. Each method develops a control

time series and uses the unexpected increase in the ILI rate over the control to infer the burden

of COVID-19. div-IDEA is based on a parametric epidemiological model, the IDEA model [21],

fitted to the observed 2019-2020 ILI (prior to the introduction of COVID-19 to the US), while div-

Vir is based on the time-evolution of empirical observations of positive virological influenza test

statistics. The third method, using the COVID Scaling approach, leverages healthcare ILI visits

and COVID-19 test statistics to directly infer the proportion of ILI due to COVID-19 in the full

population. These three methods estimate ILI symptomatic incidence and may miss symptomatic

patients not matching the ILI symptoms (for the remainder of the paper, we use ’ILI-symptomatic’

to denote COVID-19 patients with ILI symptoms and ’symptomatic’ to denote COVID-19 patients

with any symptoms). In addition, these methods are accurate only while ILI surveillance systems

are operating normally (usually only during the flu season) and only while the outbreak has not yet

overwhelmed hospitals. We use the ILI based methods to estimate ILI-symptomatic case counts

until April 4th, 2020.

The fourth method, using the mortality MAP (mMAP) approach, uses the time series of

reported COVID-19-attributed deaths in combination with the observed epidemiological charac-

teristics of COVID-19 in hospitalized individuals to infer the latent disease onset time series. This

is then scaled up to yield estimates of symptomatic case counts using previously reported fatality

ratios and asymptomatic rates. The Methods section provides extensive details on the assumptions

and data sources for each of these approaches. Finally we use a fifth method based on the explicit

modeling of the epidemic using the GLEAM model, calibrated on reported deaths. The model

provides the number of individuals that have been infected, the number of individuals that are

currently infectious, and the number of daily new infections in US states and at the national level.

GLEAM estimates the cumulative number of both symptomatic and asymptomatic infections, so

it is scaled down by 40%, the current best point estimate for the number of infections that are

asymptomatic [22, 23], to produce estimates of symptomatic cases.

2.1 Adjusted Assumptions Represent Most Likely Scenarios

Each method from the first three approaches has an adjusted version, which represents our best

guess taking into account all information available to us, and an unadjusted version, which uses
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pre-COVID-19 baseline information. Specifically, the adjusted divergences (div-IDEA and div-

Vir) and COVID Scaling methods incorporate an increased probability that an individual with

ILI symptoms will seek medical attention after the start of the COVID-19 outbreak based on

recent survey data [24, 25]. The adjusted mMAP incorporates newer information from serological

testing, indicating a lower fatality ratio (and thus higher estimated symptomatic case count) than

expected. In addition, it supplements the confirmed COVID-19 deaths with unusual increases in

pneumonia-related deaths across the country that may represent untested COVID-19 cases. Since

there is no unadjusted version for GLEAM and because its infection fatality ratio is more similar

to the adjusted mMAP, we group GLEAM in with the adjusted methods. In most states, as seen in

Fig. 1, the adjusted estimates from each method are more closely clustered than their unadjusted

counterparts, increasing our confidence in the adjusted range estimates of COVID-19 cumulative

symptomatic incidence (ILI-symptomatic specifically for the ILI based methods).

2.2 Estimated Case Counts Far Surpass Reported Positive Cases

We first computed estimates for the national and state levels (including the District of Columbia

and Puerto Rico) using these four approaches for the time period between March 1, 2020 and

April 4, 2020. The adjusted methods estimate that there had been 2.2 to 4.9 million symptomatic

or ILI-symptomatic COVID-19 cases in the US; including unadjusted estimates raises the upper

limit to 8.1 million cases. In comparison, around 311,000 positive cases had been officially recorded

during that time period. Fig. 1(a) displays the COVID-19 symptomatic case count estimates from

our methods (ILI-symptomatic in particular for the ILI based methods) at the national and state

levels compared with the reported case numbers. The results suggest that the estimated true num-

bers of infected cases are nearly uniformly much higher than those reported. Next, we extended

our methods to produce estimates through May 16, 2020 using recent data, displayed in Fig. 1(b).

Because of a strong decline in ILINet statistics due to the end of the flu season and unusually low

numbers of reporting providers, our Divergence and COVID Scaling approaches report few or no

cases after April 4, 2020. Therefore, our recent estimates are computed using the mMAP method

and the GLEAM model, which estimate between 6.0 and 10.3 million symptomatic cases had oc-

curred as of May 16. In contrast, 1.5 million positive test counts had been reported. This highlights

that models using only confirmed test cases may significantly underestimate the actual COVID-19

cumulative incidence in the United States, which is consistent with what previous studies have

shown [9, 20].

As a naive baseline, if one only adjusts the number of reported cases by the (likely) percentage

of asymptomatic cases (18% [6] to 50% [7, 8]) and symptomatic cases not seeking medical attention

(up to 73% [26]), one would conclude that the actual number of cases were about four to eight

times the number of reported cases; this ratio would also be constant across states. In contrast, our
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methods frequently estimate 5-fold to 50-fold more symptomatic (for mMAP) or ILI-symptomatic

(for Divergence and COVID Scaling) cases than those reported and show significant state-level

variability (see Fig 2). The median estimates for the ratios of estimated cases to reported cases

from March 1 to April 4, 2020 for the adjusted div-IDEA method is 18 (with a 90% interval from

1 to 101), for adjusted div-Vir is 21 (2, 67), for adjusted COVID-Scaling is 17 (3, 76), for adjusted

mMAP is 11 (4, 20), and for GLEAM is 10 (2, 29).

Using our methods, we also compute cumulative case estimates for each week within the studied

period. Fig. 3 highlights the rapid increase in estimated COVID-19 cases over the United States as

well as in New York, Washington, and Louisiana, three locations which experienced early outbreaks.

These methods suggest that states under-reported COVID-19 case counts even early in March,

likely due to limited testing availability. In New York and Louisiana, the estimates were more

similar across methods than in Washington. Since Washington had already experienced an outbreak

by February 28 [27], testing shortages may have been more pronounced than in the other states.

Our divergence analysis approach does not rely on any COVID-19 test-dependent data (including

deaths) and therefore may provide more accurate estimates in Washington.

2.3 State-level Comparisons

Over the period of March 1, 2020 to April 4, 2020, the adjusted div-IDEA, div-Vir, COVID Scaling,

mMAP, and GLEAM approaches estimated that between 24 and 35 (24, 24, 35, 33, and 25, re-

spectively) locations had actual (ILI-)symptomatic case counts above 10 times the reported counts

(Figs. 1 and 2). Up to 12 locations had at least one adjusted estimate above 50 times the reported

counts, with three of them above 100 times the reported counts (Nebraska, Oregon, Missouri).

Places with low official case counts, such as Alaska and North Dakota, may have experienced sig-

nificantly more COVID-19 cases than reported. Even places with high official case counts, such

as Georgia, Pennsylvania, and Texas, appeared to be significantly under-reporting. As expected,

our methods computed high estimates in New York and New Jersey, locations with especially high

numbers of confirmed cases. Over the period leading up to May 16, 2020, mMAP and GLEAM

estimates indicate that up to 30 locations have estimated case counts above five times the reported

counts, with two locations over 10 times (Connecticut and Michigan).

Using the unadjusted methods, the ILI-based methods yield significantly higher estimates than

mMAP (median estimates of 84k, 155k, 62k, 11k for div-IDEA, div-Vir, COVID Scaling, and

mMAP, respectively, for the locations that have estimates for all methods). However, the adjusted

versions of the methods (including GLEAM ) are more similar (median estimates of 35k, 73k, 85k,

23k, and 17k for div-IDEA, div-Vir, COVID Scaling, mMAP, and GLEAM ), providing support

that the adjusted methods are more accurate than the unadjusted ones.
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All five methods generally agree on the ordering of states by (ILI-)symptomatic case count

(Table 1), with rank correlations of the adjusted methods ranging from 0.47 to 0.97. mMAP and

GLEAM have 0.97 and 0.91 correlations with the reported case counts, which is likely because

official COVID-19 deaths and positive COVID-19 cases represent overlapping pools of patients

and are therefore subject to similar biases. COVID Scaling also shows a relatively high correlation

with the reported cases, 0.88, which may reflect the use of COVID-19 test statistics in its model.

div-IDEA and div-Vir, however, solely rely on aggregate data from ILINet, which may cover a

different set of patients.

7

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 7, 2020. ; https://doi.org/10.1101/2020.04.18.20070821doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.18.20070821
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1: COVID-19 (ILI-)symptomatic case count estimates compared with reported case counts at the

national and state levels from March 1, 2020 to (a) April 4, 2020 and (b) May 16, 2020. Cases are presented

on a log scale. Adjusted methods take into account increased visit propensity (div-IDEA, div-Vir, COVID

Scaling) and pneumonia-recorded deaths along with a lower estimated case fatality rate (mMAP). In places

where the ILI-based methods show no divergence in observed and predicted ILI visits, the estimates of

COVID-19 cannot be calculated and are not shown. Note that Florida does not provide ILI data, so only

mMAP could be estimated there.
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Figure 2: Distribution of the state-level ratios of estimated to reported case counts from March 1, 2020 to

April 4, 2020. The right-hand plot shows the results of using all methods together: taking the min, median,

and max of the state-level estimates across methods.

Figure 3: Cumulative weekly case counts from March 1 to May 16, 2020 for the United States, New York,

Washington, and Louisiana, as estimated by each method and the reported cases. The estimate for each week

indicates total cases up to the denoted date. Solid and dotted lines indicate the adjusted and unadjusted

estimates, respectively. Refer to the Supplementary Materials for results over all locations.
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Reported div-IDEA div-Virology COVID Scaling mMAP GLEAM

Reported 1.00 0.58 0.71 0.88 0.97 0.91

div-IDEA – 1.00 0.74 0.64 0.58 0.47

div-Virology – – 1.00 0.69 0.70 0.66

COVID Scaling – – – 1.00 0.86 0.78

mMAP – – – – 1.00 0.96

GLEAM – – – – – 1.00

Table 1: Pairwise Spearman correlations between adjusted methods and reported case counts from March

1, 2020 to April 4, 2020 across the state level.

3 Discussion

We present five methods based on four distinct approaches to estimate the COVID-19 cumulative

symptomatic incidence across the United States. The methods are complementary, in that they

rely on different methods, assumptions and use diverse datasets. Despite their clear differences,

these methods estimate that the likely COVID-19 cumulative symptomatic incidence varies from 5

to 50 times higher, at the state level, than what has been reported so far in the U.S. By providing

ranges of estimates, both within and across models, our suite of methods offers a robust picture

of the under-ascertainment of state-level COVID-19 case counts. When making public health de-

cisions to respond to COVID-19, it is important to account for the uncertainty in estimates of

symptomatic incidence; the multiple estimates presented here provide a consistent picture of the

number of infected individuals.

Our estimates are specifically for symptomatic cases, while a high proportion of COVID-19 cases

are believed to be asymptomatic [6, 7, 23]. To estimate total cases, our counts can be adjusted by

the proportion of symptomatic cases. For example, if 40% of cases are asymptomatic, this could

indicate a total cumulative incidence of up to 17.1 million as of May 16, 2020.

Our approaches could be expanded to include other data sources and methods to estimate

incidence, such as Google searches [28, 29, 30], electronic health record data [31], clinician’s

searches [32], and/or mobile health data [33]. Accurate and appropriately sampled serological test-

ing would provide the most accurate estimate of incidence and would be useful for public health

measures, especially when attempting to relax or re-institute shelter-in-place recommendations. In

addition, serological testing could be used to evaluate the reliability of the methods presented in

this study. This could inform prevalence estimation methods for COVID-19 in other countries as

well as for future pandemics. The ILI-based methods presented in this study demonstrate the po-

tential of existing and well-established ILI surveillance systems to monitor future pandemics that,

like COVID-19, present similar symptoms to ILI. This is especially promising given the WHO
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initiative launched in 2019 to expand influenza surveillance globally [34]. Incorporating estimates

from influenza and COVID-19 forecasting and participatory surveillance systems may prove useful

in future studies as well [18, 35, 36, 37, 38, 39].

Limitations. Since the Divergence and COVID Scaling approaches are estimated using ILINet

statistics, their symptomatic incidence estimates are dependent on the ILI definition of a fever and

cough or sore throat. Thus, they may miss a percentage of COVID-19 patients that are symp-

tomatic without meeting the ILI definition. With this limitation, the reported estimates may serve

as an approximate lower bound. Given a clearer understanding of COVID-19 symptoms, our Diver-

gence and COVID Scaling estimates could be adjusted upward by the proportion of symptomatic

to ILI-symptomatic patients.

The uncertainty and bias of each individual method should be considered carefully. The Diver-

gence methods suffer from the same challenges faced when attempting to scale CDC-measured ILI

activity to the entire population [40]. In particular, scaling to case counts in a population requires

estimates for p(visit), the probability that a person seeks medical attention for any reason, and

p(visit | ILI) which captures health care seeking behavior given that a person is experiencing ILI;

these estimates are likely to change over time, especially during the course of a pandemic. Moreover,

the weekly symptomatic incidence estimates from this method decrease towards the end of March,

perhaps caused by a change in health care seeking behavior after the declaration of a national

emergency on March 13, 2020 and the widespread implementation of shelter-in-place mitigation

strategies. It is also important to note that ILI based methods are expected to be accurate only

while ILI surveillance systems are operating normally (reporting tends to decrease outside of the

flu season) and only while the outbreak has not yet overwhelmed hospitals and doctors. Figure 4

shows the underlying influenza surveillance data for the last five seasons. We note a sharp decrease

in the total number of reported patients in late March 2020 even though the number of providers

did not decrease more than is usually expected. This suggests that the ILINet signal may no longer

be reliable until regular reporting patterns return. As a result, we only use ILI based methods to

estimate COVID-19 symptomatic incidence early in the outbreak.

COVID Scaling relies on the assumption that COVID-19 positive test proportions uniformly

represent the pool of all ILI patients and that shortages in testing do not bias the positive pro-

portion upward or downward. mMAP is limited by assumptions of the the distribution of time

from case onset to death. Furthermore, mMAP and GLEAM rely on assumptions about the fatal-

ity rate (symptomatic case fatality rate for mMAP and infection fatality rate for GLEAM ) and

accurate reporting of COVID-19 deaths (or in the case of adjusted mMAP, that excess pneumo-

nia deaths capture all unreported COVID-19 deaths). It is possible that many deaths caused by

COVID-19 are not being officially counted as COVID-19 deaths because of a lack of testing (and
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that accounting for increased pneumonia deaths does not fully capture this) [41]. In New York

City, for example, probable COVID-19 deaths (as in, not needing a test result) are being reported

as COVID-19 deaths and accounted for a 42% increase in cumulative COVID-19 death counts

as of April 29, 2020 [42], indicating that other locations not counting probable deaths could be

missing a significant portion of deaths. Under-reporting of deaths may explain why mMAP and

GLEAM sometimes yield lower case estimates than Divergence and COVID Scaling even though

its symptomatic case definition is more inclusive. A high-level summary of the three methods, their

estimation strategy, and their assumptions are provided in Table 5.5.

Figure 4: The underlying influenza surveillance data for the last five seasons. The top subplot shows the

ILINet total number of patients and participating providers. The bottom subplot shows the total reported

numbers of influenza tests conducted and positive influenza tests.

4 Conclusions

We have presented four complementary approaches for estimating the true COVID-19 cumulative

(ILI-)symptomatic incidence in the United States from March 1 to May 16, 2020 at the national
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and state levels. The approaches rely on different datasets and modeling assumptions in order to

balance the inherent biases of each individual method. While the case count estimates from these

methods vary, there is general agreement among them that the actual state-level symptomatic case

counts up to April 4, 2020 were likely 5 to 50 times greater than what was reported. Up to May

16, 2020, most states likely had 5 to 10 times more cases than reported, with a total estimated

range of 6.0 million to 10.3 million cases over the United States.

A more accurate picture of the burden of COVID-19 is actionable knowledge that will help

guide and focus public health responses. As social distancing measures are being (or have been)

relaxed, some locations are experiencing a resurgence in cases. If the true case counts are near the

upper bound of our estimated symptomatic case count, then a fair proportion (up to 4% as of May

16) of the US population may have already been infected. Factoring in asymptomatic cases this

could increase the proportion up to 8%. On the other hand, it is evident that the large majority

of the population has not yet been exposed to COVID-19, and therefore effective, informed public

health responses to future upsurges in cases will be essential in the upcoming months.

5 Data and Methods

CDC ILI and Virology: The CDC US Outpatient Influenza-like Illness Surveillance Network

(ILINet) monitors the level of ILI circulating in the US at any given time by gathering information

from physicians’ reports about patients seeking medical attention for ILI symptoms. ILI is defined

as having a fever (temperature of 37.8+ Celsius) and a cough or a sore throat. ILINet provides

public health officials with an estimate of ILI activity in the population but has a known availabil-

ity delay of 7 to 14 days. National level ILI activity is obtained by combining state-specific data

weighted by state population [12]. Additionally, the CDC reports information from the WHO and

the National Respiratory and Enteric Virus Surveillance System (NREVSS) on laboratory test

results for influenza types A and B. The data is available from the CDC FluView dashboard [11].

We omit Florida from our analysis as ILINet data is not available for Florida.

COVID-19 Case and Death Counts: The US case and death counts are taken from the

New York Times repository, which compiles daily reports of counts at the state and county levels

across the US [43]. For the mMAP validation in the supplementary materials, the case and death

counts from other countries are taken from the John’s Hopkins University COVID-19 dashboard

[44]. Counts are taken up until May 28, 2020.

COVID-19 Testing Counts: In addition, daily time series containing positive and negative

COVID-19 test results within each state were obtained from the COVID Tracking Project [45].
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US Demographic Data: The age-stratified, state-level population numbers are taken from

2018 estimates from the US census [46].

5.1 Approach 1: Divergence

Viewing COVID-19 as an intervention, this approach aims to construct control time series rep-

resenting the counterfactual 2019-2020 influenza season without the effect of COVID-19. While

inspired by the synthetic control literature [47, 48], we are forced to construct our own controls

since COVID-19 has had an effect in every state. We formulate a control as having the following

two properties:

1. The control produces a reliable estimate of ILI activity, where ILI refers to the symptomatic

definition of having a fever in addition to a cough or sore throat.

2. The control is not affected by the COVID-19 intervention (that is, the model of ILI conditional

on any relevant predictors is independent of COVID-19).

We construct two such controls, one model-based and one data-driven.

5.1.1 Method 1: Incidence Decay and Exponential Adjustment Model

The Incidence Decay and Exponential Adjustment (IDEA) model [21] is a single equation epidemi-

ological model that estimates disease incidence over time early in an outbreak while accounting

for control activities and behaviours. The model is as follows:

I(t) =

(
R0

(1 + d)t

)t
where I(t) is the incident case count at serial interval time step t. R0 is the basic reproduction

number, and d is a discount factor modeling reductions in the effective reproduction number with

time due to public health interventions, changes in public behavior, environmental factors, and

the depletion of susceptible hosts. The IDEA model has been shown to be identical to Farr’s law

for epidemic forecasting and can be expressed in terms of a susceptible-infectious-removed (SIR)

compartmental model with improving control [49].

We fit the IDEA model to ILI case counts from the start of the 2019-2020 influenza season

to the last week of February 2020. The start of the 2019-2020 influenza season is defined in a

location specific manner as the first occurrence of two consecutive weeks with ILI activity above

2%. Model fitting is done using non-linear least squares with the Trust Region Reflective algorithm

as the optimizer. Next, the model is used to predict what ILI would have been had the COVID-19

pandemic not occurred. In other words, we use the IDEA model ILI estimates as the counterfactual
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when assessing the impact of the COVID-19 intervention. When fitting the IDEA model, we use a

serial interval of half a week, consistent with the serial interval estimates from [50] for influenza.

We note that serial interval estimates from [51] for COVID-19 as well as from [52] for SARS-CoV-1

are longer than that of influenza, but that is not an issue as we use IDEA to model ILI.

5.1.2 Method 2: Virology

As an alternative control to the IDEA model, we also present an estimator of ILI activity using

influenza virology results. As suggested by [19], there has been a divergence in March between

CDC measured ILI activity and the fraction of ILI specimens that are influenza positive. Clinical

virology time series were obtained from the CDC virologic surveillance system consisting of over

300 laboratories participating in virologic surveillance for influenza through either the US WHO

Collaborating Laboratories System or NREVSS [12]. Total number of tests, total influenza positive

tests, and percent positive tests are our variables of interest.

None of the three time series satisfy both properties of a valid control, as defined in 5.1, since

total number of tests is directly susceptible to increase when ILI caused by COVID-19 is added.

Similarly, percent positive flu tests may decrease when COVID-19 is present. On the other hand,

total positive flu tests satisfies property 2, but is not a reliable indicator of ILI activity (property

1) on its own because it is highly dependent on the quantity of tests administered.

We propose a modification that satisfies the properties. Let F+
t , Nt, It denote positive flu tests,

total specimens tested, and ILI visit counts respectively. In addition, let Ft be the true underlying

flu counts. For any week t we assume the following relation:

Ft =
F+
t · It
Nt

There are two interpretations of this quantity: 1) It extrapolates the positive test percent-

age (F+
t /Nt) to all ILI patients (It), a quantity known in the mechanistic modeling literature as

ILI+ [53]. 2) Test frequency is a confounder in the relationship between the number of positive

tests (F+) and total flu (Ft). Adjusting for test frequency closes the indirect pathway between Ft

and F+
t [54]. In the Supplementary Material, we demonstrate over a series of examples that this

estimator behaves as desired. Each estimate of Ft is then scaled to population ILI cases using least

squares regression over pre-COVID-19 ILI counts.

In other words, we first use virology data to estimate Ft (actual flu cases causing ILI) as percent

ILI visits times percent positive for flu. Then, modeling ILI visits (It) as an affine function of Ft in

a normal (without COVID-19) situation, we use 2019 pre-COVID-19 data to map Ft to It. This

allows us to estimate the divergence after the COVID-19 intervention occurs.
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5.1.3 ILI Case Count Estimation

In order to fit the IDEA and virology models, we estimate the ILI case count in the population

from the CDC’s reported percent ILI activity, which measures the fraction of medical visits that

were ILI related.

In a similar fashion to the approach of [40], we can use Bayes’ rule to map percent ILI activity

to an estimate of the actual population-wide ILI case count. Let p(ILI) be the probability of any

person having an influenza-like illness during a given week, p(ILI | visit) be the probability that

a person seeking medical attention has an influenza-like illness, p(visit) be the probability that a

person seeks medical attention for any reason, and p(visit | ILI) the probability that a person with

an influenza-like illness seeks medical attention. Bayes’ rule gives us

p(ILI) =
p(visit)

p(visit | ILI)
· p(ILI | visit)

p(ILI | visit) is the CDC’s reported percent ILI activity, for p(visit) we use the estimate from [40]

of a weekly doctor visitation rate of 7.8% of the US population, and for p(visit | ILI) we use a

base estimate of 27%, consistent with the findings from [26]. Once p(ILI) is calculated, we multiply

p(ILI) by the population size to get a case count estimate within the population.

5.1.4 Visit Propensity Adjustment

We note that health care seeking behavior varies by region of the United States as shown in [26].

To better model these regional behavior differences, we adjust p(visit | ILI), the probability that a

person with an influenza-like illness seeks medical attention, using regional baselines for the 2019-

2020 influenza season [12].

Additionally, because our method estimates the increase in ILI visits due to the impact of

COVID-19, we must distinguish an increase due to COVID-19 cases from an underlying increase

in medical visit propensity in people with ILI symptoms. Due to the widespread alarm over the

spread of COVID-19, it would not be unreasonable to expect a potential increase in ILI medical

visits even in the hypothetical absence of true COVID-19 cases.

For this reason, we also explore increasing p(visit | ILI) from 27% to 35% to measure the

possible effect of a change in health care seeking behavior due to COVID-19 media attention and

panic. The increase of p(visit | ILI) to 35% is consistent with health care seeking behavior surveys

done after the start of COVID-19 [24, 25]. The Divergence and COVID Scaling methods have

adjusted versions which incorporate this shift as well as unadjusted versions that keep the baseline

27% propensity.
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5.1.5 Estimating COVID-19 Case Counts

The ultimate goal is to estimate the true burden of COVID-19. The IDEA and virology predicted

ILI case counts can be used to estimate CDC ILI had COVID-19 not occurred. In other words,

the IDEA and virology predicted ILI can be used as counterfactuals when measuring the impact

of COVID-19 on CDC measured ILI. The difference between the observed CDC measured ILI and

the counterfactual (IDEA predicted ILI or virology predicted ILI) for a given week is then the

estimate of COVID-19 ILI-symptomatic case counts for that week. Fig. 5 shows example observed

CDC measured ILI, IDEA model predicted ILI, and virology predicted ILI. The supplementary

materials contain similar plots to Fig. 5 for all locations. For this method as well as the following

two, we start estimating COVID-19 case counts the week starting on March 1, 2020. We note that

while the IDEA and virology ILI predictions tend to track CDC ILI well earlier in the flu season,

after COVID-19 started to impact the United States there is a clear divergence between predic-

tions and observed CDC ILI, with CDC ILI increasing while the counterfactual estimates decrease.

This method is expected to be accurate only while ILI surveillance systems are operating

normally (reporting tends to decrease outside of the flu season) and only while the outbreak has

not yet overwhelmed hospitals and doctors. As a result, we use ILI based methods to estimate

COVID-19 symptomatic incidence only early in the outbreak, until April 4th. The disappearance

of the divergence does not mean that the outbreak is over, but rather that the ILI signal is no

longer reliable.
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Figure 5: COVID-19 is treated as an intervention, and we measure COVID-19 impact on observed CDC

ILI, using IDEA model predicted ILI and virology predicted ILI as counterfactuals. The difference between

the higher observed CDC ILI and the lower IDEA model predicted ILI and virology predicted ILI is the

measured impact of COVID-19. The impact directly maps to an estimate of COVID-19 ILI-symptomatic

case counts. Virology predicted ILI is omitted when virology data is not available. We note that this method

is meaningful only at the beginning of the outbreak (March 2020), while ILI surveillance systems are still

fully operational and before they are impacted by COVID-19. The disappearance of the divergence does not

mean that the outbreak is over, but rather that the ILI signal is no longer reliable.
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5.2 Approach 2: COVID Scaling

This approach infers the COVID-19 fraction of the total ILI by extrapolating testing results ob-

tained from the COVID Tracking Project [45], following the same reasoning as the Virology Di-

vergence method. That is,

Ct =
C+
t · It
N c
t

where C+
t , N c

t , It denote positive COVID-19 tests, total COVID-19 specimens, and ILI visit counts

respectively.

State-level testing results were aggregated to the weekly level and positive test percentages

were computed using the positive and negative counts, disregarding pending tests. Positive test

counts were adjusted for potential false negatives. There are varying estimates for the false negative

rate for the RT-PCR used in COVID-19 tests, with some reports suggesting rates as high as 25-

30% [55, 56]. We apply a 15% false negative rate in our analysis; repeating our analysis using

a range of values from 5% to 25% yielded little difference in our estimates. On the other hand,

COVID-19 testing is highly specific, so we assume no false positives. Then, the number of false

negatives (FN) can be computed from the recorded (true) positives (TP ) and the false negative

rate (fnr) as

FN = TP · fnr

1− fnr
Because COVID-19 testing is sparse in many states, there are issues with zero or low sam-

ple sizes, as well as testing backlogs. Rather than taking the empirical positive test percentage

(C+
t /N

c
t ), we first smoothed the test statistics over time by aggregating results over a 2-week slid-

ing window. This has a Bayesian interpretation of combining each week’s observed statistics with

the prior of the previous week, weighted by relative specimen count. For convenience, C+
t and N c

t

henceforth refer to these respective quantities. We also applied the same process to the ILI informa-

tion to reduce noise and so that the data are comparable. This helped but did not address all issues

with case backlog, so we further smoothed the COVID-19 estimates using a Bayesian spatial model:

Denote pjt as the probability that a given ILI patient in state j and week t has COVID-19.

Under the condition that testing is applied uniformly, the COVID-19 status of patient i from state

j in week t is

X
(i)
jt ∼ Bernoulli(pjt)

Assuming COVID-19 status is independent in each ILI patient, conditional on the state prevalence,

the state testing results follow a Binomial distribution. We apply a spatial prior based on first-order
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conditional dependence:

pjt ∼ Beta(αjtN0t, (1− αjt)N0t)

αjt =
1

|Nj |
∑
k∈Nj

pkt

where Nj are the neighbors of state j. The strength of the prior was specified by setting N0t to be

the number of total tests at the 5th quantile among all states in each week. Finally, we compute αjt

by replacing each pkt by their empirical estimates. Using the Beta-Binomial conjugacy we derive

closed-form posterior mean estimates for pjt:

p̂jt =
C+
jt + αjtN0t

N c
jt +N0t

As described previously, the weekly, state-level reported percent ILI were then multiplied by

p̂jt to get an estimate of the percent of medical visits that could be attributed to COVID-19. These

values were subsequently scaled to the whole population using the same Bayes’ rule method as

described in ILI Case Count Estimation (4.2.3).

5.3 Approach 3: Mapping Mortality to COVID-19 Cases

Other studies have introduced methods to infer COVID-19 cases from COVID-19 deaths using

(semi-)mechanistic disease models [15] or statistical curve-fitting based on assumptions of epi-

demic progression [16], but, to the best of our knowledge, no methods have been proposed to

directly infer COVID-19 cases without either of these assumptions.

Mortality Map (mMAP) uses, under a Bayesian framework, reported deaths to predict previous

true case counts, similar to prior work on influenza [17]. mMAP accounts for right-censoring (i.e.

COVID-19 cases that are not resolved yet) by adapting previously used methods [13]. A study of

clinical cases in Wuhan found that the time in days from symptom onset to death roughly follows

a log-normal distribution with mean 20.2 and standard deviation 11.6 [57]. It also found the mean

time from hospitalization to death to be 13.2 days, similar to the estimate of 13.7 from a large

cohort study in California [58], suggesting that the timing of disease progression is similar in the

United States. Using this distribution, a time series of reported deaths, D, and the age-adjusted

symptomatic case fatality rate (sCFR), we estimate the distribution of symptomatic cases C,

defined at the usual time of symptom onset, using an iterative Bayesian approach. We use Bayes’

rule to define the probability that there was a case on day t given a death on day τ

p(case on t | death on τ) =
p(death on τ | case on t) · p(case on t)

p(death on τ)
(1)

Let Cd∗ denote the predicted distribution of when D are classified as cases (i.e. are hospitalized),

Cd denote the predicted distribution of when D and future deaths are classified as cases (so

20

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 7, 2020. ; https://doi.org/10.1101/2020.04.18.20070821doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.18.20070821
http://creativecommons.org/licenses/by-nc-nd/4.0/


adjusted for right-censoring), and tmax denote the most recent date with deaths reported. Let

p(death on τ | case on t) = p(T = (τ − t)) denote the log-normal probability. mMAP performs the

following steps:

1. Initialize the prior probability of a case on day t, p0(case on t), as uniform.

2. Repeat the following for each iteration i:

• Calculate C
(i)
d∗ .

C
(i)
d∗ (t) =

tmax∑
τ=t+1

D(τ) · pi−1(case on t | death on τ)

=

tmax∑
τ=t+1

D(τ) · p(T = (τ − t)) · pi−1(case on t)
τ−1∑
s=1

p(T = (τ − s)) · pi−1(case on s)

(2)

where the denominator is equivalent to p(death on τ) in (1).

• We estimate that the proportion p(T≤(tmax − t)) of C
(i)
d (t) have died by tmax and use

this to adjust for right censoring.

C
(i)
d (t) =

C
(i)
d∗ (t)

p(T≤(tmax − t))
(3)

• Update prior probabilities

pi(case on t) =
C

(i)
d (t)∑
C

(i)
d (t)

(4)

• Repeat until
||C(i)

d −C
(i−1)
d ||

||C(i)
d ||

≤ ε, where ε is a pre-specified tolerance level.

3. Cd(t) represents the number of cases on day t that will lead to death. We scale this to estimate

the number of all symptomatic cases by dividing by the sCFR.

C(t) =
Cd(t)

sCFR
(5)

Interestingly, the update step for C
(i)
d (t) in each iteration is the same as the Richardson-Lucy

deconvolution step proposed for influenza [17] and the expectation-maximization step to find the

maximum likelihood estimate for emission tomography (without right-censoring in the latter) [59],

albeit with different notation in each study. Supplementary section 4.3 demonstrates that mMAP

successfully predicts cases in simulated and true scenarios using data from six countries. As well,

supplementary section 4.1 demonstrates that if mMAP converges, which it does for every US state,

Cd fully explains deaths under the assumed probability distribution (6), and supplementary section

4.2 demonstrates that this satisfies the calculation of the fatality rate as presented in [13].
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D(t) =
t−1∑
τ=1

p(T = t− τ) · Cd(τ) , ∀ t ∈ 1..tmax (6)

Alternatively, if one were interested in estimating the incidence of all cases – symptomatic and

asymptomatic – Cd(t) would need to be divided by the infection fatality ratio (IFR) in step 3

(equation 5). For the sake of comparison with the ILI-based methods in this study, we chose to

use sCFR in the denominator in equation 5 to estimate the incidence of just the symptomatic

cases. The national sCFR values used are 1.8% and 1.1% for the adjusted method. These values

were found by adjusting the IFR estimates (1.1% and 0.65%) with an assumed 40% asymptomatic

rate (estimates of the percentage of asymptomatic cases range from 18% [6] to 50% [7, 8] and the

CDC puts 40% as the best point estimate of this number [22, 23]). The first IFR value comes

from an analysis of individual case data in China and repatriated Chinese citizens in January and

February to estimate the fatality ratio for all — symptomatic and asymptomatic — infections [60].

The second value comes from a meta-analysis of published IFR values and is the CDC best point

estimate of the IFR [22, 23]. The sCFR estimates for each state are adjusted using the age-stratified

fatality rate [61] and the population age structure provided by the US census [46].

5.3.1 Accounting for Unreported COVID-19 Deaths

While mMAP assumes all COVID-19 deaths are reported, some deaths will be unreported be-

cause of limited testing and false negative results [62, 63]. Previous research on the H1N1 epidemic

estimated that the ratio of lab-confirmed deaths to actual deaths caused by the disease was 1:7

nationally [64] and 1:15 globally [65]. While the actual rate of under-reporting is unknown, we

include an adjustment, mMAPadj , that uses an estimate of unreported COVID-19 deaths based on

reports of excess pneumonia deaths, as has been done in previous studies [62]. mMAPadj assumes

that excess pneumonia deaths in March 2020 were due to COVID-19.

The CDC reports weekly pneumonia deaths, DP (w), expected weekly pneumonia deaths based

on a model of historical trends, E[DP (w)], and deaths that are classified as pneumonia and COVID-

19, DP∩COV (w) [66, 67]. We estimate that the number of un-classified COVID-19 deaths each week,

DU (w), is the following:

DU (w) = DP (w)− E[DP (w)]−DP∩COV (w) (7)

This results in 355, 438, 605, and 540 nationwide excess deaths for the four weeks from March

1 to March 28, which is the most recent data at the time of writing this paper. To account for

missing data in recent weeks, We assume that the weekly number of excess deaths remains constant

after March 21, i.e. that there were 540 excess deaths the weeks of March 29 - April 4 and April

5 - April 11. Since the expected pneumonia deaths are not available at the state level, excess
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deaths are calculated nationally and then attributed to each state s in proportion to the number

of pneumonia deaths in that state. Then, the weekly excess deaths are evenly distributed across

each day of the week.

Ds
U (w) = DU (w) ·

Ds
P (w)∑

s∈S
Ds
P (w)

Ds,adj(t) = Ds(t) +
1

7
Ds
U (w), where t ∈ w

(8)

5.4 Approach 4: Global Epidemic and Mobility Model

The Global Epidemic and Mobility model is an individual-based, stochastic, and spatial epidemic

model. GLEAM uses real-world data to perform in silico simulations of the spatial spread of in-

fectious diseases at the global level. In the model, the world is divided into over 3,200 geographic

subpopulations constructed using a Voronoi tessellation of the Earth’s surface. Subpopulations

are centered around major transportation hubs and integrate data on the population such as age

specific contact patterns [68], short-range (i.e. commuting) and long-range (i.e. flights) mobility

data from the Offices of Statistics for 30 countries on 5 continents as well as the Official Aviation

Guide (OAG) and IATA databases (updated in 2019) [69, 70]. The model has been used exten-

sively to analyze previous epidemic such as the H1N1 2009 pandemic and the Zika epidemic in

the Americas [71, 72, 73], and to simulate the early spreading of COVID-19 in mainland China [18].

We use the model to analyze the spatiotemporal spread and magnitude of the COVID-19 epi-

demic in the continental US. For COVID-19 the model adopts a classic SLIR disease characteriza-

tion in which individuals can be classified into four compartments: susceptible, latent, infectious,

or removed. Susceptible individuals become latent through interactions with infectious individuals.

During both the latent and infectious stages we assume that individuals are able to travel. Follow-

ing the infectious period, individuals then progress into the removed compartment where they are

no longer able to infect others, meaning they have either recovered, been hospitalized, isolated, or

have died. GLEAM is able to simulate explicitly the disease dynamic at the individual level.

Approximate Bayesian Computation is used to estimate the posterior distribution of the basic

parameters of the model. The calibration of the global model for COVID-19 is reported in [18].

Within the US, we have implemented domestic airline traffic reductions and local commuting

pattern reductions. The magnitude of these reductions is based on the analysis of data from millions

of (anonymized, aggregated, privacy-enhanced) devices [74] and official airline data from OAG. We

consider two major social distancing periods in the US. The first period includes mitigation policies

widely adopted on March 16, 2020 [20], including system-wide school closures, work from home

policies (smart work), and reduction in casual social interactions in the community. The second

period refers to the issuing in more than 41 states of “stay at home” or “shelter in place” orders
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starting on April 1, 2020. The impact of these mitigation policies is reflected in specific contact

patterns calculated in the model’s synthetic populations on the different layers where individuals

interact: households, schools, workplaces, and in the general community. We also consider in each

state the progression into reopening phases after April 30th, 2020. We assume varying levels of

effectiveness of the mitigation policies and generate an ensemble of models that provides the

weekly number number of new deaths by using estimates of COVID-19 severity from available

data [23, 75, 60]. We then perform model selection based on the information loss with respect

to the reported weekly deaths. The selected models allow us to compute the median and 95%

CI for cumulative infections in each state (Fig. 6). The estimated total number of infections can

be adjusted to provide an estimate of COVID-19 symptomatic cases by reducing the predictions

by an estimated asymptomatic rate of 40% [22, 23]. In Fig. 6, we report the model estimates of

the cumulative number of infections on May 16, 2020 compared to the number of cases reported

through that date within each state. We see a strong correlation between the reported cases and

our model’s estimated number of infections, (Pearson’s correlation coefficient on log-values 0.98,

p < 0.001). If we assume that the number of reported cases and simulated infections are related

through a simple binomial stochastic sampling process, we find that the median ascertainment rate

of detecting an infected individual by May 16, 2020 is 11.2% (95%CI: [6.4%, 40.5%]). The detailed

model’s results are publicly available at https://covid19.gleamproject.org/.

5.5 Aggregation of Estimates

The divergence-based methods predict national COVID-19 symptomatic incidence directly using

national ILI data. mMAP and GLEAM predict national symptomatic incidence using national

death data, while COVID Scaling estimates national symptomatic incidence by aggregating the

case estimates from each state.

The Divergence and COVID Scaling methods provide separate case estimates for each week

within the studied period, which are summed to the total cumulative case estimates. mMAP and

GLEAM provide daily estimates which are further aggregated by week.
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A

B

Figure 6: (A) Model estimates of the cumulative number of infections using the GLEAM model by

May 16, 2020 for each state. (B) Correlation between the number of reported cases of COVID-19

for each state and the model estimates of the total number of infections by May 16, 2020.
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Approach Divergence COVID Scaling mMAP GLEAM

Brief

Description

Treat COVID-19

ILI-symptomatic

case count estimation

as a causal inference

problem. COVID’s

impact on ILI

activity is measured

using as controls an

Incidence Decay with

Exponential

Adjustment model as

well as influenza

testing statistics.

Extrapolate

state-level positive

test percentages for

COVID-19 to the

weekly ILI data to

estimate COVID-19

proportion in

medical visits, then

scale to the whole

population.

Using reported

COVID-19 deaths,

the sCFR, and a

distribution of time

from cases to deaths,

predict the latent

case distribution.

Estimates cumulative

infections using a

stochastic spatially

structured epidemic

model, calibrated on

weekly incident

deaths.

Data Input ILI activity and

influenza test results.

ILI activity and

COVID-19 test

results.

COVID-19 deaths. COVID-19 deaths.

Model

Assumptions 1. The divergence

between predicted

ILI activity for the

2019-2020 season

and measured ILI

activity after the

start of the

COVID-19

pandemic can be

attributed to

COVID-19.

2. Scaling from ILI to

population is

reliable.

1. COVID-19 test

reports accurately

represent the pool

of weekly ILI

visits.

2. Delayed test

reporting does not

significantly affect

positive test

proportions after

applying

smoothing

3. Scaling from ILI to

population is

reliable.

1. All COVID-19

deaths are

reported (mMAP)

or explained by

excess pneumonia

deaths

(mMAPadj).

2. The distribution of

time from cases to

death is

log-normal.

3. The age-stratified

IFR is the same as

reported in [61].

1. Modeling

estimates for the

effect of school

closures, smart

working, and social

distancing effects

on the

transmissibility of

SARS-CoV-2.

2. Spatial variation of

the IFR are not

considered.

3. Differential

transmissibility

across age brackets

is not considered.

Expected

Bias

This method can be

sensitive to model fit

and changes in

healthcare seeking

behavior among

symptomatic

individuals. This

method will work

only while ILI

surveillance is

reliable.

ILI visits and

COVID-19 tests may

capture different

segments of the sick

population.

May underestimate

cases as many

COVID-19 related

deaths may go

unreported or

untested.

Revision to the

current estimate of

the IFR affects the

model estimated of

the total number of

infections/cases.
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Table 1: (On previous page) Comparing the four approaches to estimate COVID-19 cases in the

US.
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