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ABSTRACT 

 

Background 

Biological subtypes in Alzheimer’s disease (AD), originally identified on 

neuropathological data, have been translated to in vivo biomarkers such as structural 

magnetic resonance imaging (sMRI) and positron emission tomography (PET), to 

disentangle the heterogeneity within AD. Although there is methodological variability 

across studies, comparable characteristics of subtypes are reported at the group level. 

In this study, we investigated whether group-level similarities translate to individual-

level agreement across subtyping methods, in a head-to-head context.  

 

Methods 

We compared five previously published subtyping methods. Firstly, we validated the 

subtyping methods in 89 amyloid-beta positive (Aβ+) AD dementia patients (reference 

group: 70 Aβ- healthy individuals; HC) using sMRI. Secondly, we extended and 

applied the subtyping methods to 53 Aβ+ prodromal AD and 30 Aβ+ AD dementia 

patients (reference group: 200 Aβ- HC) using both sMRI and tau PET. Subtyping 

methods were implemented as outlined in each original study. Group-level and 

individual-level comparisons across methods were performed.  

 

Results 

Each individual method was replicated and the proof-of-concept was established. All 

methods captured subtypes with similar patterns of demographic and clinical 

characteristics, and with similar maps of cortical thinning and tau PET uptake, at the 

group level. However, large disagreements were found at the individual level. 
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Conclusions 

Although characteristics of subtypes may be comparable at the group level, there is a 

large disagreement at the individual level across subtyping methods. Therefore, there 

is an urgent need for consensus and harmonization across subtyping methods. We call 

for establishment of an open benchmarking framework to overcome this problem. 
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1. INTRODUCTION 

 

The study of biological subtypes has opened a great opportunity to unravel the 

heterogeneity within Alzheimer’s disease (AD). The topic was rekindled in 2011 by the 

seminal study from Murray et al. (1), and during the last five years it has exploded with 

numerous structural magnetic resonance imaging (sMRI) subtyping studies (see (2) for 

a review). In 2018, the first tau positron emission tomography (PET) subtyping study 

was published (3), and more are expected to come in the near future.  

 

However, studies investigating AD subtypes differ considerably, with almost no 

methodological consensus. Murray et al. (1) based subtyping on postmortem tau 

neurofibrillary tangle (NFT) counts in the hippocampus and three cortical regions. All 

patients were at Braak’s stage V or VI (4) and were classified into three subtypes 

according to the 25th and 75th percentiles in the hippocampus-to-cortex index: typical 

AD, limbic-predominant AD, and hippocampal-sparing AD. Byun et al. (5) translated 

this subtyping method to sMRI data with volumes of the same brain regions as in 

Murray’s method, but defined abnormality as -1 standard deviation from age-, sex-, and 

intracranial volume (ICV)-adjusted normative data of healthy controls. This method 

identified a fourth subtype: minimal atrophy AD (5). In contrast, Risacher et al. (6) 

followed the 25th and 75th percentiles procedure using the hippocampus-to-cortex index, 

but with seven cortical regions extending the three regions used in Murray et al. (1). 

Risacher et al. (6) also corrected for age, sex, and ICV, but they based this correction 

on the amyloid-beta negative (Aβ-) healthy controls as the reference group, and used a 

different correction method that also included the MRI field strength. Studies from our 

lab used visual rating scales of brain atrophy in medial temporal, frontal, and posterior 
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cortices (7–13), and determined abnormality based on clinical cut points (14). We also 

used an unsupervised clustering method in another cross-sectional study (15), which 

has recently been extended for subtyping on longitudinal data (16). Other groups used 

different unsupervised clustering methods (17–24), highlighting the methodological 

variability across studies. Additionally, Charil et al. (25) recently translated Murray’s 

method to tau PET while Whitwell et al. (3) applied a clustering method on tau PET 

data. 

 

Despite this variability, all these studies tend to identify subtypes with similar 

characteristics, arguing for validation (see (2) for a review). However, this validation is 

reported at the group level. The ultimate goal of investigating heterogeneity in AD is to 

understand individual variability; hence validation also needs to be demonstrated at the 

individual level. Surprisingly, no head-to-head comparison of subtyping methods has 

been published so far. Such a comparison arises as an urgent and important step towards 

facilitating consistent progress in this field, especially with the current surge in 

subtyping studies using longitudinal sMRI (16,26,27) and tau PET (3,25,28). To 

illustrate this problem and substantiate our claim for harmonizing subtyping methods, 

we applied subtyping methods based on five previous studies  (1,5–7,15,25), on sMRI 

and tau PET data, in the same cohort. In our primary analyses, we performed a head-

to-head comparison and report subtypes’ frequencies, characteristics, and cortical 

thickness and tau PET uptake maps from the different methods. In our secondary 

analyses, we investigated how methodological variations influence the performance of 

the different subtyping methods. We hypothesized that the different methods would 

provide largely comparable subtypes at the group level, while disagreement would be 

larger at the individual level. 
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2. METHODS 

 

2.1. Participants 

 

All participants were selected from the ADNI (http://adni.loni.usc.edu/).  The goal of 

the ADNI (launched in 2003, PI: Michael W. Weiner; (29)) is to measure the 

progression of prodromal AD and early AD using MRI, PET, and biomarkers, as well 

as clinical and neuropsychological assessments. Two separate ADNI cohorts were 

included in this study:  

 

Firstly, given that subtypes were originally identified in AD dementia, we validated the 

previously published subtyping methods using sMRI in a cohort of 89 AD dementia 

patients (Aβ+) from ADNI-1. We also included a control group of 70 Aβ- healthy 

individuals (HC). Amyloid status was determined on the basis of cerebrospinal fluid 

biomarkers (30).  

 

Secondly, subtyping was applied to a cross-sectional cohort of 84 patients (54 Aβ+ 

prodromal AD patients, 30 Aβ+ AD dementia patients) from ADNI-2 and -3 using both 

sMRI and tau PET. The control group for this cohort comprised 200 Aβ- HC. Here, 

amyloid status was determined through amyloid PET (florbetapir cut-off = 1.11; (31) 

or florbetaben cut-off = 1.08 from ADNI’s current recommendation, 

http://adni.loni.usc.edu/).  
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We will refer to these two cohorts as the sMRI cohort (ADNI-1, AD dementia patients) 

and the sMRI-tauPET cohort (ADNI-2 and -3, prodromal AD and AD dementia 

patients). We validated the previously published methods in the sMRI cohort and 

extended our analyses to the sMRI-tauPET cohort. The study protocol followed by all 

participating centers within the ADNI was approved by their respective institutional 

review board. Informed and written consent was obtained from all the participants. 

 

2.2. MRI and PET imaging 

 

MRI acquisition and processing 

 

3-D accelerated T1-weighted sequences were acquired with sagittal slices and voxel 

size 1.1 × 1.1 × 1.2 mm3. MRI data for the ADNI-1 were acquired on 1.5T scanners, 

and MRI data for ADNI-2 and -3 were acquired on 3.0T scanners.  

 

For the sMRI cohort, processed data were already available from our previous studies 

(7,15). For methods from other labs (5,6) and for all the methods in the sMRI-tauPET 

cohort, data were unavailable, so we processed the sMRI through TheHiveDB system 

(32) with FreeSurfer 6.0.0 (http://freesurfer.net/).Following the cross-sectional stream, 

quality control of the output from FreeSurfer was conducted visually. Automatic region 

of interest parcellation yielded volumetric measures for cortical and subcortical brain 

structures (33–35). For the subtyping method using visual rating scales (7), the rating 

scales were computed automatically using AVRA (Automatic Visual Ratings of 

Atrophy) v0.8 (https://github.com/gsmartensson/avra_public) (36). AVRA is a deep 
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learning model trained on over 3000 MRI scans rated by an expert neuroradiologist 

with excellent inter-rater agreement (37). 

 

Tau PET acquisition and processing 

 

Tau PET scans were collected using a GE PET/CT scanner. [18F]AV-1451 was injected 

with a dosage of 370 MBq (10.0 mCi) ± 10% and scans were acquired between 75-105 

min post-injection. The dynamic acquisition was 30 min long and comprised of 6 × 5 

min frames. For each tau PET scan, a sMRI scan was available within 90 days (except 

in 3 AD dementia and 5 prodromal AD patients, >90 days).  

 

For subtyping methods using tau PET (1,5,6,25), processing was performed using the 

PetSurfer Toolbox (38) within FreeSurfer 6.0.0. AV-1451 images were co-registered 

onto the corresponding FreeSurfer-processed sMRI. The regions (cortical and 

subcortical) estimated for each individual were consistent with those used for sMRI-

based subtypes (33). Partial volume correction (PVC) was applied using the 

symmetric geometric matrix method (39). AV-1451 signal was quantified in each 

region as the standardized uptake value ratio (SUVR), computed with the cerebellum 

grey matter as the reference region with PVC.  

 

2.3. Subtyping methods 

 

Based on two recent systematic reviews (2,40), we identified four sources of 

methodological variation in previous subtyping studies:  

(i) Type of method (hypothesis-driven vs. data-driven). 
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(ii) Definition of subtype (dependent on the sample of study vs. dependent 

on an external reference group). 

(iii) Modality (postmortem NFT vs. sMRI vs. tau PET). 

(iv) Measure (NFT count vs. automated volumes vs. automated SUVR 

values vs. visual ratings).  

 

The method proposed by Murray et al. (1) is the only one based on postmortem NFT 

count and motivated subsequent neuroimaging studies. In this study, we focused on 

neuroimaging-based methods based on five subtyping studies, covering all these levels 

of methodological variation: Risacher et al. (6), Byun et al. (6), Ferreira et al. (7), 

Poulakis et al. (15), and Charil et al. (25). Each subtyping method was implemented to 

replicate the original method as closely as possible, as elaborated further in Table 1 

and Supplemental Table S1. We also translated some of the sMRI-based methods to 

tau PET (5,6). For Byun’s method on tau PET, we identified a minimal tau subtype that 

is not captured by Charil’s or Risacher’s methods. 

 

Quantification of AV-1451 signal in the hippocampus, a key region for subtyping in 

many studies (5,6,25), is contentious (41,42). Hence, we additionally applied subtyping 

using the entorhinal cortex instead of the hippocampus, also facilitating comparability 

with the study by Whitwell et al. (3). 

 

2.4. Methodological variations 

 

As a secondary objective, we implemented the following methodological variations to 

evaluate their potential impact on agreements among subtyping methods: 
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i. The effect of using three vs. seven cortical regions in Risacher’s method 

Although Risacher et al. (6) translated Murray’s method (1) to sMRI, 

Risacher’s method included seven cortical regions instead of the original 

three regions in Murray’s method. Here, we compared these two versions of 

Risacher’s method: with three vs. seven cortical regions. 

ii. The effect of statistical corrections for ICV and age on sMRI methods 

In our primary analysis, we evaluated the method by Risacher et al. (6) 

(seven cortical regions) by adjusting for ICV and age using a single 

regression model for both covariates. Here, we evaluated the impact of 

adjusting for ICV only, or adjusting for ICV and age using separate 

regression models for each covariate. We also performed these comparisons 

for Risacher’s method using three cortical regions. 

iii. The effect of statistical corrections for age on tau PET methods 

In the primary analysis of tau PET-based subtyping (5,6,25), potential 

covariates were not accounted for. Correction for ICV is not necessary 

unlike in sMRI methods, but age may potentially affect tau PET SUVR (43). 

Here, we compared subtyping with age-corrected SUVR and uncorrected 

SUVR. 

iv. The effect of PVC on tau PET-based subtyping methods 

In the primary analysis, we performed PVC of tau PET SUVR for a reliable 

quantification, as SUVR can be affected by off-target binding, especially in 

the hippocampus (44,45). Here, we compared subtyping between PVC 

SUVR and non-PVC SUVR. 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 23, 2020. ; https://doi.org/10.1101/2020.04.19.20064881doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.19.20064881
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 
 

2.5. Statistical analysis 

 

We compared subtyping methods at the group-level in terms of age, sex, MMSE, 

education, and APOE ε4 status. Within each subtyping method, hypothesis testing was 

performed to compare the distribution of subtypes with the Kruskal-Wallis test. A p-

value 0.05 was deemed significant. Group-level cortical thickness and tau PET uptake 

maps were generated by comparing each subtype with the healthy controls. In each 

hemisphere, data were smoothed onto the surface using a 10 mm Gaussian kernel with 

a full width at half maximum. A general linear model was fitted at each vertex. All 

maps were visualized at p≤0.01 (uncorrected). Individual-level agreement among 

subtyping methods was quantified by Cohen’s kappa ( < 0, no agreement;  = 0–0.20, 

slight agreement;  = 0.21–0.40, fair agreement;  < 0.41–0.60, moderate agreement; 

 = 0.61–0.80, substantial agreement;  = 0.81–1.0, almost perfect agreement) (46).    

 

3. RESULTS 

 

Table 2 shows the demographic and clinical characteristics for the sMRI cohort (Table 

2 a) and the sMRI-tauPET cohort (Table 2 b). 

 

3.1. Validation of subtyping methods in the sMRI cohort 

 

The frequencies of the subtypes in the sMRI cohort were very similar to the frequencies 

reported in the original studies (5–7,15,25), suggesting we could replicate the subtyping 

methods (Table 3). 
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3.2. Group-level comparison of subtyping methods in the sMRI and sMRI-tauPET 

cohorts 

 

Figure 1 shows that, at the group-level, the subtyping methods captured similar 

demographic and clinical characteristics of the subtypes in both cohorts. Typical AD 

was always the most frequent subtype and showed greater frequency of males and lower 

MMSE scores relative to the other subtypes. Limbic-predominant AD showed lower 

MMSE scores relative to hippocampal-sparing AD. Hippocampal-sparing AD was the 

subtype with lowest frequency of APOE ε4 carriers. Minimal atrophy/minimal tau AD 

included younger individuals and showed higher MMSE scores.  

 

Figures 2-3 show that, at the group-level, the subtyping methods captured similar 

cortical thickness and tau PET uptake maps of the subtypes relative to healthy 

individuals. Cortical thinning and elevated tau PET uptake included widespread regions 

in typical AD; temporal and limbic regions in limbic-predominant AD; frontal or 

parietal regions in hippocampal-sparing AD; and relatively fewer regions in minimal 

atrophy/minimal tau AD, across all subtyping methods. Typical and limbic-

predominant AD showed smaller hippocampal volume and greater hippocampal tau 

PET SUVR relative to hippocampal-sparing and minimal atrophy/minimal tau AD 

(boxplots in Figures 2-3). Figure 4 shows the group-level tau PET uptake maps for 

entorhinal-based subtyping instead of hippocampus-based subtyping. Compared to 

hippocampus-based subtyping, albeit similar maps, hippocampal-sparing AD in 

entorhinal-based subtyping showed no tau PET uptake in medial temporal lobe regions. 

Greater tau SUVR in the entorhinal cortex was seen in typical and limbic-predominant 

AD than hippocampal-sparing and minimal tau AD (boxplots in Figure 4). 
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3.3. Head-to-head comparison of subtyping methods in the sMRI-tauPET cohort 

 

Figure 5 (a, c) shows the head-to-head comparison. Agreement among methods was 

low, reflected by low values of . Agreement among the tau PET-based methods was 

relatively higher than that of the sMRI-based methods. Since not all methods identify 

the minimal atrophy/minimal tau AD subtype, we excluded this subtype in follow-up 

analyses and observed that  values increase in both cohorts and modalities (Figure 5 

b, d). ADNI’s participant identifiers (RID) are shown in Figure S1 and in 

Supplemental Data File.  

 

3.4. Methodological variations in the sMRI-tauPET cohort 

 

When supplementing our head-to-head comparisons with several methodological 

variations, we observed the following (see Supplemental Data File): 

i. The effect of using three vs. seven cortical regions in Risacher’s method 

Results from Risacher’s method using three cortical regions were consistent 

with Risacher’s method using seven cortical regions (85% agreement). 

ii. The effect of statistical corrections for ICV and age on sMRI methods 

Relative to Risacher’s method (seven cortical regions and adjusted for ICV 

and age in a single model), 82% of the individuals were classified 

consistently when performing the ICV correction only, and 69% when 

performing the ICV and age correction with separate models. Relative to the 

variation in Risacher’s method using three cortical regions (and adjusted for 

ICV and age in a single model), 98% of the individuals were classified 
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consistently when performing the ICV correction only, and 74% when 

performing the ICV and age correction with separate models. Overall, 

agreements were better in typical AD (79-88%) compared to the other 

subtypes (15-83%). 

iii. The effect of statistical corrections for age on tau PET methods 

Over 80% of the individuals were consistently classified with and without 

age-adjusted tau SUVR (agreement for: Charil’s method=89%; Risacher’s 

method=100%; Byun’s method=80%). 

iv. The effect of PVC on tau PET-based subtyping methods 

Over 80% of the individuals were consistently classified with PVC and non-

PVC SUVR (agreement for: Charil’s method=87%; Risacher’s 

method=89%; Byun’s method=80%). Overall, agreements were better in 

typical AD (83-94%) compared to the other subtypes (56-78%). 

 

4. DISCUSSION 

 

The field of biological subtypes of AD has expanded rapidly in the last decade, with 

numerous recent publications on neuropathological, MRI, and PET data. However, the 

great methodological variability is complicating reaching a definitive understanding of 

the heterogeneity within AD. The current study is the first head-to-head comparison of 

several subtyping methods in the same cohort. We found that different methods identify 

subtypes largely comparable at the group level (similar frequencies, demographic, 

clinical characteristics, cortical thinning and tau PET uptake). However, strikingly, the 

agreement among subtyping methods is very low when compared head-to-head at the 

individual level. This result may have important implications for advancing the 
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implementation of precision medicine. Below we discuss several factors that may 

explain this finding and that could be addressed to minimize this problem in future 

studies. 

 

Comparability across studies at the group level suggests a convergence of results and 

initial consensus on the existence of three-four subtypes: typical, limbic-predominant, 

and hippocampal-sparing subtypes in all the studies, and minimal atrophy AD in several 

studies. Minimal atrophy AD is only identified when considering disease severity, 

while the other subtypes are identified when considering typicality (2). The dimensions 

of severity and typicality have been identified in a recent conceptual framework for 

biological subtypes of AD (2). Typicality spans from limbic-predominant to 

hippocampal-sparing, with typical AD in-between. Severity differentiates minimal 

atrophy from typical AD, accounting for neurodegeneration. 

 

The seminal study by Murray et al. (1) based subtyping on tau NFT in the hippocampus 

and three cortical regions. Importantly, all the patients had a pathological diagnosis of 

AD with Braak stage of V or VI (4). This means that all patients had NFT in the 

hippocampus by definition, and the method focused on separating the subset of patients 

with NFT predominantly in the hippocampus (limbic-predominant AD) versus the 

subset of patients with NFT predominantly in the cortical regions (hippocampal-sparing 

AD). Remainder of the patients had a rather balanced NFT count in the hippocampus 

and cortical regions, and were classified as typical AD.  

 

Murray’s method (1) motivated many subsequent sMRI studies (see (2,40)). However, 

these studies rely on sMRI, a marker of unspecific neurodegeneration. This raises 
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several problems. Firstly, while sMRI can reliably track neuropathologically-defined 

subtypes (47), the actual distribution of NFT in sMRI subtypes remains largely 

unknown. Recent studies have provided interesting preliminary data on tau PET uptake 

in sMRI-based subtypes (28,48). Secondly, the published sMRI subtype studies quite 

likely included patients in Braak stage IV for NFT or lower. Thirdly, all sMRI studies 

except for the study by Risacher et al. (6) investigated cohorts including both amyloid-

beta positive and negative AD dementia patients, while all the patients in Murray et al. 

(1) had a pathological diagnosis of AD. Fourthly, neurodegeneration is downstream to 

NFT pathology (49), and there is a time gap until overt brain atrophy can be visually 

observed or captured by automatic methods for data analysis. Nonetheless, some data-

driven methods may capture subtle differences in regional covariance in the absence of 

overt brain atrophy, mitigating this problem. Altogether, we still need to get a better 

understanding of the correspondence between neuropathologically-, sMRI-, and tau 

PET-defined subtypes. A major contribution of our current study is that subtypes 

identified with sMRI and tau PET are not interchangeable at the individual level. 

 

At the group level, findings for the demographic and clinical measures were in 

agreement with previously reported studies and a recent meta-analysis (2). Broadly, 

typical AD was the most frequent subtype; typical and limbic-predominant AD were 

older in comparison to the hippocampal-sparing and minimal atrophy AD; MMSE 

scores were mostly comparable across subtypes with minimal atrophy AD showing the 

highest scores; a lower proportion of APOE ε4 carriers belonged to hippocampal-

sparing relative to typical and limbic-predominant AD; and hippocampal-sparing AD 

had the highest levels of education.  
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The head-to-head results are best understood by considering individual exemplars. A 

consistent scenario is RID 2239: across the sMRI methods, this individual was 

classified as hippocampal-sparing or minimal atrophy AD whereas across the tau PET 

methods, the individual was classified as typical AD. The difference in sMRI-based 

subtyping could be attributed to differences in cut points for abnormality across 

methods. The fact that the corresponding tau PET-based subtype was typical AD 

(higher severity) could suggest greater tau pathology relative to structural atrophy. A 

more challenging case is RID 6377: across the sMRI methods, this individual was 

classified as typical, hippocampal-sparing, limbic-predominant, or minimal atrophy 

AD, whereas across the tau PET-based method, the individual was classified as limbic-

predominant AD. Some differences in sMRI-based subtyping are relatively more 

plausible than others, considering the above-mentioned typicality and severity 

dimensions (2). To instantiate, it may be plausible that this individual demonstrated 

typical AD (with one method (6)) and limbic-predominant AD (with another method 

(7)), as these two subtypes are close to each other along the typicality dimension  (2). 

However, classification as limbic-predominant AD (with one method (7)) and 

hippocampal-sparing AD (with another method (5)) seem incompatible, since these two 

subtypes correspond to the extremities of the typicality dimension. Therefore, a 

classification with all four subtypes for the same individual leaves the case biologically 

uninterpretable and claims for consensus in the field as we aim for precision medicine. 

 

Despite having several caveats, these previous studies have made important 

contributions. Byun et al. (5) and Risacher et al. (6) translated the NFT-based method 

by Murray et al. (1) to sMRI data, and Charil et al. (25) translated the method to tau 

PET. Our analyses of methodological variations showed that the age correction made a 
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stronger impact on agreements among methods, as compared with the number of 

cortical regions or the PVC. That impact was more prominent for sMRI-based methods 

than for tau PET-based methods; and for limbic-predominant and hippocampal-sparing 

subtypes than for typical AD. The contribution of aging to hippocampal atrophy may 

be at the basis of this finding. The lower disagreement in typical AD relative to the 

other subtypes is akin to the diagnostic challenge in the clinical setting. An interesting 

result of our study is that the method of adjustment (single model for all covariates vs. 

separate model for each covariate) increased the disagreement. Future studies should 

take this finding into account when deciding on how to correct for potential 

confounders. 

 

Ongoing research is moving the field forward by characterization of subtypes not only 

at the stage of AD dementia but also at earlier stages such as prodromal AD (50,51). 

Preliminary data show that such characterization could be extended and evaluated at 

even the earliest stages of preclinical AD or individuals with subjective cognitive 

decline (52). It could be speculated that relative to full-blown dementia, atrophy levels 

are likely modest even if there exists overt tau pathology at pre-dementia stages. This 

could result in a greater dissociation between atrophy and tau pathology, in turn, leading 

to lower agreement across subtyping methods. In this scenario, understanding of 

profiles at the group-level alone is insufficient. Agreement at the individual level is thus 

warranted and lack thereof will prevent or delay the use of subtyping in clinical routine, 

clinical trials, and research. Therefore, there is an urgent need for harmonization of the 

different subtyping methods. To this end, we claim for establishing a framework for 

benchmarking for future studies. A possibility could be selection of a well-

characterized cohort (preferably with multimodal data including postmortem and 
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antemortem data in a longitudinal setting) and establishment of metrics used to evaluate 

the performance of the subtypes methods (e.g. group-level and individual-level results). 

The dataset should be standard so that it can be utilized by future subtyping methods to 

ensure individual-level consistency across methods. The dataset should also be open 

and accessible to all researchers in the field. As a preliminary step, we provide all the 

data used for subtyping in this study along with ADNI RIDs (see Supplemental Data 

File). 

 

This study has some limitations. The cohort was part of the ADNI, which has strict 

selection criteria and excludes individuals with non-amnestic presentations or 

cerebrovascular pathology. It is likely that agreement among subtyping methods is 

different in clinically oriented or more heterogeneous cohorts. Hypothesis-driven 

methods are well covered in our study (1,5–7,25). However, previous subtyping studies 

have applied many different data-driven methods. We selected Poulakis’ method (15) 

and our current study cannot provide direct insight on methods used by other groups 

(2,40). However, the selection of subtyping methods illustrates the case made in the 

current study. We based our analyses on cross-sectional tau PET and sMRI data. The 

next step should be to include longitudinal data. However, the availability of such a 

dataset is limited at present, particularly for tau PET. Longitudinal data will be relevant 

to investigate disease progression in the subtypes, disentangling the disagreement due 

to the temporal lag between NFT accumulation (tau PET) and brain atrophy (sMRI) 

from pure methodological noise. 

 

The field of biological subtypes is expanding rapidly with investigation of multiple 

modalities/biomarkers and extending to pre-dementia stages and other 
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neurodegenerative diseases (40). We conclude that subtyping methods may appear 

comparable across studies, at the group-level. However, a major finding of the present 

study is the large disagreement among subtyping methods at the individual level. 

Hence, there is an urgent need for consensus and harmonization across subtyping 

methods. To achieve this, we suggest establishment of an accessible and standard 

framework for benchmarking. A comprehensive dataset along with clear evaluation 

metrics will facilitate a fair comparison and ultimately ensure better agreement among 

future subtyping methods. 
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Table 1. Overview of the subtyping methods implemented in this study 

 

 

Method 
Type of 

method 

Definition 

of 

subtypes 

Modality Measure Subtypes Graphical Representation 

Charil 

(25) 

Hypothesis-

driven 

Within-

sample 

dependent 

tau PET SUVR TAD, LP, HS 

 

Risacher 

(6) 

Hypothesis-

driven 

Within-

sample 

dependent 

sMRI 

and     

tau PET 

Automated 

volumes 

and  

SUVR 

TAD, LP, HS 

  

Byun 

(5) 

Hypothesis-

driven 

External 

reference 

group 

sMRI 

and     
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Key: TAD=typical AD; HS=hippocampal-sparing; LP=limbic-predominant; MA=minimal atrophy; 

SUVR=standardized uptake value ratio; SD=standard deviation. aThis figure corresponds to the sMRI-based 

method. For the tau PET-based method, volume measures are replaced with SUVR and classification of LP and 

HS is reversed; bMA corresponds to the subtype identified by the sMRI-based method. For the tau PET-based 

method, the corresponding subtype would be minimal tau. cZH=z-score for hippocampus; ZF= z-score for frontal 

regions; ZP= z-score for parietal regions; ZT= z-score for temporal regions. This figure corresponds to the sMRI-

based method and z-scores are computed for volumes. For the tau PET-based method, volume measures are 

replaced with SUVR and abnormal tau levels have z-scores ≥ 1; dThe two clusters reflecting typical AD patterns 

in the original publication by Poulakis et al. (15), were combined into a single typical AD subtype to allow 
comparisons across subtyping methods.  
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Table 2. Demographic and clinical characteristics of the cohorts  

(a) Validation of subtyping methods in AD dementia patients (sMRI cohort) 

 HC (Aβ-) AD dementia (Aβ+) p-value 

N 70 89 0.033 

Sex (F,%) 51 39 0.139 

Age (years) 75.15 ± 5.22 74.73 ± 7.72 0.757 

Education (years) 15.66 ± 2.65 15.16 ± 3.24 0.402 

APOE 4 carriers (%) 10 74 <.0001 

MMSE 29.04 ± 1.10 23.48 ± 1.87 <.0001 

(b) Subtyping methods in Prodromal AD and AD dementia patients (sMRI-tauPET cohort) 

 HC (Aβ-) Prodromal AD (Aβ+) AD dementia (Aβ+) p-value 

N 200 54 30 <.0001 

Sex (F,%) 59 48 50 0.285 

Age (years) 70.45 ± 5.65 74.09 ± 7.34 77.46 ± 8.27 <.0001 

Education (years) 16.90 ± 2.31 15.76 ± 2.66 15.77 ± 2.57 0.002 

APOE 4 carriers (%) 22 61 53 <.0001 

MMSE 29.24 ± 1.05 27.48 ± 2.30 22.13 ± 4.23 <.0001 

Data are reported as mean ± standard deviation;  

Key: HC=healthy control; AD=Alzheimer’s disease; sMRI=structural MRI; PET=positron emission 

tomography; Aβ=amyloid-beta; F=female; MMSE=Mini-Mental State Examination; APOE=apolipoprotein. 
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Table 3. Frequencies of the subtypes compared with previously published studies in the sMRI cohort 

Subtype 

Risacher Byun Ferreira Poulakis 

Pub. 
This 

Study 
Pub. 

This 

Study 
Pub. 

This 

Study 
Pub.a 

This 

Study 

Typical AD 69 69 59 55 51 52 69 66 

Hippocampal-sparing AD 17 19 12 17 17 19 7 10 

Limbic-predominant AD 14 12 19 21 17 18 4 1 

Minimal atrophy AD - - 10 7 15 11 19 23 

Data are reported as % and rounded to the nearest integer for readability 

Key: AD=Alzheimer’s Disease; Pub.=published study. aFrequencies of subtypes based on the ADNI cohort only, 

since the original study by Poulakis et al. (15), also includes another cohort. 
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Figure 1. Demographic and clinical characteristics captured by the different subtyping methods 
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Key: sMRI=structural magnetic resonance imaging; PET=positron emission tomography; F=female; APOE= 

apolipoprotein; MMSE=mini mental state exam; MA=minimal atrophy AD; MT=minimal tau AD; LP=limbic-

predominant AD; HS=hippocampal-sparing AD; TAD=typical AD. 
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Figure 2. Group-level cortical thickness maps across subtyping methods in the sMRI-tauPET cohort 

 

For simplicity, only left lateral and medial views are presented since very similar results were obtained for the 

right lateral and medial views. Differences in cortical thickness maps are shown in each subtype relative to HC. 

Yellow-red regions reflect thinner cortex in AD subtypes relative to HC. All brain maps are uncorrected for 

multiple comparisons at p < 0.01. Risacher et al. identified three subtypes only and hence, there are no cortical 

maps corresponding to MA subtype. Poulakis et al., identified all four subtypes. However, the HS subtype (1 

individual) had to be excluded from the study due to invalid tau PET data. Key: TAD=typical AD; 

HS=hippocampal-sparing AD; LP=limbic-predominant AD; MA=minimal atrophy AD; HC=healthy control.  
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Figure 3. Group-level tau PET uptake maps across subtyping methods using the hippocampus in the 

sMRI-tauPET cohort 

 

 
 

For simplicity, only left lateral and medial views are presented since very similar results were obtained for the 

right lateral and medial views. Differences in tau PET uptake maps are shown in each subtype relative to HC. 

Cyan regions reflect greater tau PET uptake in AD subtypes relative to HC. All brain maps are uncorrected for 

multiple comparisons at p < 0.01. Key: TAD=typical AD; HS=hippocampal-sparing AD; LP=limbic-

predominant AD; MT=minimal tau AD; HC=healthy control. 
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Figure 4. Group-level tau PET uptake maps across subtyping methods using the entorhinal cortex in the 

sMRI-tauPET cohort 

  

For simplicity, only left lateral and medial views are presented since very similar results were obtained for the 

right lateral and medial views. Differences in tau PET uptake maps are shown in each subtype relative to HC. 

Blue-cyan regions reflect greater tau PET uptake in AD subtypes relative to HC. All brain maps are uncorrected 

for multiple comparisons at p < 0.01. Key: TAD=typical AD; HS=hippocampal-sparing; LP=limbic-

predominant; MT=minimal tau; HC=healthy control. 
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Figure 5. Individual-level agreement among subtyping methods as illustrated by Cohen’s kappa values 

 

Key: sMRI=structural magnetic resonance imaging; PET=positron emission tomography; MA=minimal atrophy 

AD; MT=minimal tau.  
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