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Abstract 

The novel coronavirus (COVID-19) caused by severe acute respiratory syndrome coronavirus 

2 (SARS-CoV-2), emerged in the city of Wuhan, China in December 2019. Although, the 

disease appears on the African continent late, it has spread to virtually all the countries. We 

provide early spatio-temporal dynamics of COVID-19 within the first 62 days of the disease’s 

appearance on the African continent. We used a two-parameter hurdle Poisson model to 

simultaneously analyze the zero counts and the frequency of occurrence. We investigate the 

effects of important healthcare capacities including hospital beds and number of medical 

doctors in the different countries. The results show that cases of the pandemic vary 

geographically across Africa with notable high incidence in neighboring countries 

particularly in West and North Africa. The burden of the disease (per 100,000) was most felt 

in Djibouti Tunisia, Morocco and Algeria. Temporally, during the first 4 weeks, the burden 

was highest in Senegal, Egypt and Mauritania, but by mid-April it shifted to Somalia, Chad, 

Guinea, Tanzania, Gabon, Sudan, and Zimbabwe. Currently, Namibia, Angola, South Sudan, 

Burundi and Uganda have the least burden. The findings could be useful in implementing 

epidemiological intervention and allocation of scarce resources based on heterogeneity of 

the disease patterns. 

 

Keywords: COVID-19; spatial analysis; Africa; hurdle Poisson; Bayesian analysis 
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Introduction 

On March 11, 2020, the World Health Organization (WHO) declared the novel coronavirus 

disease (COVID-19) outbreak a pandemic. The disease, caused by severe acute respiratory 

syndrome coronavirus 2 (SARS-CoV-2), emerged in the city of Wuhan, China in late 

December 2019 and has quickly spread globally with 1,436,198 cases and a case fatality rate 

(CFR) of 5.96% as of April 9, 2020. [1]. This pandemic has not only become a public health 

crisis leading to loss of life but has caused the global economy to melt down with severe 

disruption to international travel, tourism and trade. As of April 7,
 
2020, 52 African countries 

have reported 10,086 confirmed cases and 487 deaths from the pandemic yielding a CFR 

3.38%. It is likely that the case ascertainment in Africa is incomplete. 

 

Human population movement generally plays an important role in the spread of infectious 

diseases and this particularly applies to COVID-19 as this respiratory virus is highly 

transmissible. The reasons for the late appearance of COVID-19 in Africa compared with 

other parts of the world are unknown but it may be due to relatively limited international 

travel to the continent [2].  There has always been awareness of importation of infectious 

diseases such as Ebola and tuberculosis from Africa to the West [3, 4]. Largely, African 

countries have reported their first COVID-19 cases to be imported from European countries, 

possible due to the proximity of the two continents [5]. The first case was confirmed on the 

African continent on February 14th, 2020 in Egypt followed by Nigeria on February 27th. The 

initial dynamics of the disease demonstrated slow spread across the continent until the 

situation escalated quickly in the last week of March. 
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Now, during the COVID-19 pandemic, global experts have shown concern about the spread 

of this disease in Africa, because of grossly underfunded and inadequate healthcare 

systems. Early detection and control of outbreaks is inefficient and unreliable due to poor 

disease surveillance, insufficient training of healthcare workers, and inadequate data 

transmission [2, 6-8].  

 

Within the frame of the outbreak of the COVID-19 pandemic, there have been a number of 

applications of statistical models to predict infection rate and spread [9, 10]. However, 

mapping of disease incidence to identify spatial clustering and patterns remains an 

important pathway to understanding disease epidemiology and is required for effective 

planning, prevention or containment actions [11-13]. There are a few studies that attempt 

to map the pandemic in China [14] and in Iran [15]. However, the temporal dynamic of the 

pandemic has not been taken into account in order to access the space-time dynamics. 

Further, to our knowledge, there is dearth of studies that have examined the spatio-

temporal dynamics in Africa. Our aim, therefore, is to analyze the spatio-temporal dynamics 

of COVID-19 within the first 62 days of the disease’s arrival on the African continent. We 

propose a two-parameter hurdle Poisson model to simultaneously analyse the zero counts 

as well as average occurrence of the disease. The two parameters are extended, through 

appropriately chosen link functions, to the spatio-temporal covariates following the 

framework of distributional regression coined by Klein et al. [16]. Additionally, we 

investigate the effect of important healthcare capacities including hospital beds and the 

number of medical doctors on the risk of COVID-19 in the different African countries. The 

hurdle model is a modified count model in which two processes generating the zeros and 

the positives are not constrained to be the same [17]. The idea is that a binomial 
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distribution model governs the binary outcome that stipulates whether the count variable 

returns a zero or a positive realization. For the truncated-at-zero count data, a conditional 

distribution, in this case, a Poisson distribution is considered. With this, we are able to 

examine both the patterns of zeros and the average counts of the pandemic across space 

and time throughout Africa.  

 

Methods  

Data sources 

In this paper, we used publicly available daily number of confirmed COVID-19 cases reported 

by the World Health Organization (https://covid19.who.int) from 14th February to 15th 

April 2020. Due to the requirement of the spatial effect model considered in this study, we 

only included 47 African countries that have confirmed COVID-19 cases and share at least 

one international boundary with another country. Additionally, we obtained data on 

healthcare capacities: number of hospital beds and physicians for each of the countries from 

the World Development Indicators of the World Bank (https://data.worldbank.org).    

 

Statistical analysis 

Preliminary exploratory spatial analysis was used to investigate the spatial and spatio-

temporal distribution of incidence of COVID-19, healthcare capacities (number of hospital 

beds and number of physicians) across Africa. We used Pearson’s correlation to assess the 

relationships between number of confirmed COVID-19 cases and each of the two healthcare 

capabilities of each country.  

For the spatio-temporal analysis, we considered a two-component hurdle Poisson model 

which consists of a point mass at zero followed by a truncated Poisson distribution for the 
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non-zero count observation. For an independently and identically distributed random 

variable, the hurdle Poisson distribution is expressed as  

���� � �|�, 	
� � � �                                               � � 0                    
�1 � �� 	������	��! �1 � �����	��        � � 1,2, … , ∞          
 

where ��  is the response variable of interest that counts the occurrence of COVID-19 cases 

at a particular country,  � is the none occurrence probability, that is, the probability of not 

reporting a COVID-19 case in a given, day and 	 measures the frequency of occurrence. 

Thus, as 	 increase, the average count of COVID-19 increases. If � is 0, it implies that each 

country reported an infection during the period under consideration, but if � is 1 then no 

one would be infected by the pandemic on the continent. Usually, � is considered to be 

strictly between 0 and 1, such that everyone in the population of the African continent has a 

non-zero probability of being infected with the virus even if they do not get infected during 

the period considered. Under the hurdle distribution, the expected value of � is given by 

���� � �	 �1 � �����	��⁄ . 

Based on the framework of distributional regression that allows the multiple parameters of 

a response distribution, rather than just the mean as common in most classical applications, 

we extend the two parameters space �� � ��� � �, �� � 	� of the hurdle Poisson model to 

the spatial and spatio-temporal covariates of the COVID-19 cases in Africa through some 

suitable (one-to-one) link functions that ensure appropriate restrictions on the parameter 

space.   

The general form of the geo-additive hurdle Poisson model considered is given by   

�������� � ��� �  �� ! "	
�� ! "�	
�� ! #� ! �"#����
���	� � ��� �  �� ! "	
�� ! "�	
�� ! #� ! �"#�� 
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where �� and �� are link functions chosen as logit and log links for the parameters � and 	 

respectively. Omitting subscript,  � is the model constant term, "	
�  is the structured spatial 

random effect, "�	
�  is the unstructured random effect, # is the temporal term and 

"# accounts for the spatio-temporal random effect. Consequently, the temporal term was 

model based on Bayesian P-spline. This allows for the estimation of the temporal term as a 

linear combination of basis spline (B-splines) based on a second order random walk prior 

with inverse gamma for the hyperparameters [18]. We considered cubic B-splines with 20 

equidistance knots, which induce enough flexibility to capture even the most severe non-

linearity. 

For the all structured spatial and spatio-temporal effects, the countries are considered as 

discrete set of spatial locations and we used a Markov random field prior that considers a 

binary structure for the neighborhood structure of the countries such that proximate 

locations that share boundaries are assigned a weight of 1 and 0 if they do not. To ensure 

smoothness, we consider a Gaussian Markov random field prior that induces a penalty in 

which differences between spatially adjacent regions are penalized. Exchangeable 

independent and identically distributed normal prior was considered for the unstructured 

random effects.    

The Bayesian inference is based on the distributional regression framework of Klein, Kneib 

[16], who developed some Markov chain Monte Carlo simulation techniques in which 

suitable proposal densities are constructed based on iterative weighted least squares 

approximation to the full conditional. All smoothing variance parameters and 

hyperparameters are assigned inverse gamma hyperpriors and we perform some sensitivity 

analysis but the results, based on the different hyperpriors, turn out to be indistinguishable.     
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To implement the spatio-temporal component, we considered weekly distributions of the 

pandemic across the continent but due to paucity of data during the first weeks of 

occurrence, we considered the first month (14th Februsary-13th March) as the first week. 

Thus, the spatio-temporal complete data were grouped into a six-week period. The 

intention was to examine how the countries fared in terms of the occurrence of the 

pandemic over a weekly period. We implement four models, by sub-setting temporal and 

spatial covariates on the mean parameter while keeping the temporal, structured and 

unstructured spatial effects for the probability parameter, and based model choice on 

deviance information criterion (DIC). The details of the implemented models including the 

values of the DIC are presented in Table 1. For all models, we performed 15,000 iterations 

with 3,000 set as burn-in and the thinning parameter was set at 10. The generated Markov 

chains were investigated through trace plots to ascertain mixing and convergence. 

 

Results  

Preliminary COVID-19 distribution in Africa 

The distribution of the present state of COVID-19 as at 11th April, the number of hospital 

beds and physicians (per 10,000 population) by country are presented in Figure 1(A-C).  The 

Figure shows that cases of COVID-10 varied geographically across Africa with notable high 

incidence in West and North Africa (Figure 1A). However, when this incidence was 

converted to number of cases per 100,000 population, the burden of the disease in Africa 

was most felt in Djibouti, East Africa and North Africa (Tunisia, Morocco and Algeria) (Figure 

S1). Interestingly, countries with the highest burden of the pandemic in Africa are among 

those with the highest number of hospital beds and physicians, particularly those from the 

northern fringe (Figure 1B-C). Figure 2 examines the pattern of relationships between the 
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pandemic and numbers of hospital beds and physicians. Findings reveal a positive 

correlation between COVID-19 and each of number of physicians (r=0.49, p-value=<0.001) 

and hospital beds (r=0.14, p-value=0.34) though only the estimate for physicians is 

significant.   

Spatio-temporal analysis 

Table 1 presents the specifications of the four models considered together with the values 

of the model diagnostics criteria. As evident from the Table, the fourth model whose mean 

component includes the trend, structured and unstructured random effects, and the spatio-

temporal components had the lowest DIC value and thus provides the best fit. Presentations 

of results shall therefore be based on those of this model. Figure 3 presents the maps of 

Africa showing the spatio-temporal patterns of the parameter �, measuring the frequency of 

occurrence of COVID-19 on the continent during the period 14th February to 15th April, 

2020, based on a six-week group.. The results show that during the period 14th February – 

13th March, Senegal has the highest average record of the pandemic closely followed by 

countries such as Egypt and Mauritania. By the week of 14th -20th March, the burden 

shifted to Togo, South Africa, Egypt, DR Congo, Senegal and Burkina Faso. However, during 

the period 21st to 27th March, the findings show that South Africa had the highest burden 

of the pandemic, while for the week 28th March to, 3rd April, the share pandemic appears 

to be relatively similar across the countries. For the week 4th – 10th April, the burden 

shifted to Niger, Morocco, Guinea, Egypt, and Sierra Leone and lastly, for the week 11th – 

15th  April, the burden was most felt by countries such as Somalia, Chad, Guinea, Tanzania, 

Gabon, Sudan, and Zimbabwe but least for Namibia, Angola, and Uganda. The specifications 

and diagnostic criterions are shown in Table 1.  
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Results for the structured and unstructured random terms are presented in Figure 4 (A & B) 

for the frequency of occurrence of the pandemic. The two maps reveal different patterns 

across the continent, obviously because neighborhood structure of the countries was taken 

into account only in the structured effect. Thus, the structured random effect presents a 

western-southern divide indicating that the burden of the pandemic has been generally 

heavier among countries in the West African region specifically, in neighboring Ivory Coast, 

Burkina Faso, Ghana, Mali, Guinea, Senegal, as well as Morocco and Algeria in North Africa 

but generally lighter in the southern African countries. However, estimates from the 

unstructured effect that assumes independent and identically distributed normal prior show 

that South Africa, Egypt, Algeria, Morocco, Tunisia, and Cameroon, had the highest 

individual burden but lowest for South Sudan, Central African Republic, and Mauritania. The 

estimates are moderate for Nigeria, Ghana, Ivory Coast, Burkina Faso, Niger, Senegal, 

Republic of Congo, and Kenya. 

 

Results for the spatial patterns of the probability of no occurrence are presented in Figure 5 

(A & B). The structured spatial effects show that neighboring countries in the southern and 

central Africa have the highest likelihood of not recording any cases of COVID-19. The map 

for the unstructured effect however reveals that the likelihood of not reporting a case was 

highest among Mauritania, Botswana, South Sudan, Burundi, Namibia, Libya, Chad, Central 

African Republic, Somalia, Malawi, Benin, Sierra Leone, The Gambia and Swaziland, but 

lowest for South Africa, Egypt, Algeria, Morocco, Tunisia, and Senegal. The temporal 

patterns presented in Figure 6 (A & B) displayed the posterior mean estimate (black) and 

95% credible interval (blue). The Figure reveals that the frequency of occurrence has been 

on a consistent rise since the first case was reported up to around day 50, followed by a 
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somewhat gradual decline for about three days after which there was evidence of another 

rise. On the other hand, the estimates for the likelihood of no occurrence decline sharply till 

day 50 and appear to flatten thereafter. Note that the wide credible intervals at the early 

days are evidence of few reported cases at those periods.   
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Discussion 

This study has established that the burden of COVID-19 in Africa varies geographically with 

each country’s healthcare-related variables. As COVID-19 causes significant health and 

economic challenges globally, the impacts on Africa are still in their infancy.  The present 

study reveals that the geographical spread of the disease in Africa and its relation to 

individual country health capacities. Findings from the spatio-temporal analysis reveal that 

the occurrence and burden of COVID-19 in Africa varied geographically with neighboring 

countries particularly in the western part of the continent which could imply that 

neighboring countries pose significant importation risk to each other. This is quite 

challenging but explains the reason why Africa countries should form a coalition to fight 

against COVID-19. 

 

There are several possible reasons for the geographical distribution of COVID-19 across 

Africa. The first is the route of disease introduction to Africa. For example, when China was 

the only COVID-19 epicenter, the risk of COVID-19 importation from China to Africa was high 

for North Africa [6].  A study based on travel data from provinces in China, identified  Egypt, 

Algeria, and South Africa as having the highest importation risk from China [5, 6]. However, 

as the epicenter changes from China to Italy and the US, the risk to other regions in Africa 

increases as there more African travelers from Europe and North America than Asia [5]. The 

second reason is the issue of border porosity in most African countries [19, 20]. The ease of 

people’s movement between borders could increase importations as seen in Nigeria where 

many returning Nigerians from Ivory Coast were diagnosed to have COVID-19. This is what 
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happens with neighboring African countries as they endanger each other unless enhanced 

border and air-flight restrictions are put in place. 

 

COVID-19 is a significant health issues because it can quickly overwhelm healthcare capacity 

if not checked. In this study, countries with more healthcare capacities measured by number 

of hospital beds and physicians have more cases. Healthcare capacity could use as a 

measure of a country’s wealth [21, 22], therefore, it is more likely that citizens of such 

countries have more tendencies for traveling overseas, thereby having a greater chance of 

importing COVID-19 and other infectious  diseases on their return. Our finding is consistent 

with a previous study that suggested African countries with higher surveillance systems are 

more likely to identify a higher risk of disease importation [6]. This implies that additional 

public health capacity is needed for those countries that have limited resources to detect 

COVID-19 and undertake meaning contact tracing to curtail the rapid spread of the virus. 

 

There have been warnings that some countries in Africa could be the next epicenters [23, 

24]. Thus far, the burden of COVID-19 in Africa is low in comparison with Europe, Asia, and 

North America. There is a need for early introduction of interventions such as isolation, 

quarantine and social distancing [25]. However, many African countries are poor and 

whether these control measures will work as effectively as seen in China is still an open 

question [24].  
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Conclusion 

As the pandemic spreads, the African Centers for Disease Control have intensified 

investment in enhancing diagnostic and surveillance capacity across the countries [26]. 

Africa may only be able to fight this virus if conscientious efforts and support are garnered 

globally to battle COVID-19 [23]. We have shown the trajectory of COVID-19 in Africa is 

peaking up, with each African country posing a risk to its neighbors. The findings in this 

study will be useful in implementing epidemiological intervention based on heterogeneity of 

the disease patterns for allocation of resources and targeted intervention strategies 
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Table 1. Assessment of various model specification used in this study
†
 

Model Specification �� pD DIC 

1 Spatial (����  + ������ ) + ST 12013.66 219.49 12452.66 

2 Trend + ST 9661.47 317.98 10297.43 

3 Trend + spatial (����  + ������) 12237.92 107.30 12452.53 

4 Trend + spatial (�
���

 + �
�����

) + ST 9134.13 215.38 9564.89 

†
���� represents structured spatial random effect, ������ is the unstructured random effect, ����� is 

the temporal term and �� accounts for the spatio-temporal random effect. 
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  Figure 1. (A) Total number of confirmed COVID-19 cases as at 11
th

 April 2020, (B) Distribution of the 

number of hospital beds (per 10,000), (C) Distribution of the number of physicians (per 10,000). 
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Figure 2: Scatter of number of confirmed cases of COVID-19 and healthcare capacities 

(Number of hospital beds/medical doctors). 
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Figure 3: Spatiotemporal pattern of COVID-19 in Africa 
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(A) 

 

(B) 

 

Figure 4: Structured (A) and unstructured (B) spatial effects for the mean of COVID-19 

(lambda parameter) in Africa 
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(A) 

 

(B) 

 

Figure 5: Structured (A) and unstructured (B) spatial effects for the probability of no 

occurrence of COVID-19 (pi parameter) in Africa 
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(A)

 

(B)

 

Figure 6: Temporal trend of COVID-19 for (A) mean number of occurrence and (B) likelihood 

of no occurrence  
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Supplementary materials 

 

Figure S1. Burden (cases per 100,000 population) of COVID-19 across Africa as at 16
th

 April 2020. 

 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 25, 2020. ; https://doi.org/10.1101/2020.04.21.20074435doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.21.20074435
http://creativecommons.org/licenses/by/4.0/

