
1 

 

Regional differences in reported Covid-19 cases show genetic correlations with higher socio-economic 

status and better health, potentially confounding studies on the genetics of disease susceptibility 

Abdel Abdellaoui1,* 

 

 1 Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands 

* Correspondence to: a.abdellaoui@amsterdamumc.nl  

 

ABSTRACT  

Background: In March 2020, England showed a rapid increase in Covid-19 cases. Susceptibility for 

infectious diseases like Covid-19 is likely to be partly genetic. Mapping the genetic susceptibility for 

Covid-19 outcomes may reveal biological mechanisms that could potentially aid in drug or vaccine 

developments. However, as the disease spreads unevenly across the country, regional allele frequency 

differences could become spuriously associated with disease prevalence.  

Methods: A regional genome-wide association study (RGWAS) was conducted in 396,042 individuals 

from England to investigate the association between 1.2 million genetic variants and regional 

differences in daily reported Covid-19 cases from March 1s t to April 18th 2020.  

Results: The polygenic signal increases during the first weeks of March, peaking at March 13th with the 

measured genetic variants explaining ~3% of the variance, including two genome-wide significant loci. 

The explained variance starts to drop at the end of March and reaches almost zero on April 18th. The 

majority of this temporary polygenic signal is due to genes associated with higher educational 

attainment and better health.  

Conclusions: The temporary positive relationship between Covid-19 cases and regional socio-economic 

status (SES) at the beginning of the Covid-19 outbreak may reflect 1) a higher degree of international 

travelers, 2) more social contacts, and/or 3) better testing capacities in higher SES regions. These 

signals are in the opposite direction of expected disease risk increasing effects, which has the potential 

to cancel out signals of interest. Genetic association studies should be aware of the timing and location 

of cases as this can introduce interfering polygenic signals that reflect regional differences in genes 

associated with behavior.  
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INTRODUCTION 

Covid-19 is the infectious disease caused  by  the single-stranded  RNA  virus  severe  acute  respiratory  

syndrome  coronavirus  2  (SARS-CoV-2).1 The virus  was  first  detected  in  Wuhan,  China, in  December  

2019,2 and soon thereafter spread to other parts in the world. The World Health Organization (WHO) 

declared a Public Health Emergency of International Concern (PHEIC) on January 30th and a worldwide 

pandemic on March 11th 2020. In England, the first cases were identified in two tourists visiting York 

on January 29th, on January 30th a public health information campaign was launched to advise people 

on how to slow the spread of the virus, the first transmission was confirmed February 28th, and a rapid 

increase in infections followed in the beginning of March, raising the UK risk level from moderate to 

high on March 12th.3 On March 18th, schools in the UK were ordered to close, and on March 20th 

restaurants, pubs, clubs, and indoor sport and leisure facilities also had to close their doors. As of April 

18th, England had 95,297 reported Covid-19 cases and 15,464 reported Covid-19 related deaths.  

There is much variation in the severity of Covid-19 symptoms, ranging from asymptomatic to mild 

flu-like symptoms to critical illness. The severity of the symptoms and the mortality rate are strongly 

associated with age, sex, and underlying health problems. It is not yet clear to which extent genetic 

susceptibility plays a role in the individual differences in Covid-19 symptoms. It is well-established 

however that the underlying health problems that are associated with Covid-19 symptom severity, 

such as obesity, diabetes, and cardiovascular disorders, are heritable complex traits that are caused by 

a combination of many genes with small effects and environmental inf luences.4 Identifying which 

genes are associated with Covid-19 outcomes is of great importance, as genetics are likely to play a 

role in individual differences in the susceptibility for infectious diseases in general,5 and drug targets 

with support from genetic association studies are more than twice as likely to succeed.6,7 An 

international effort to investigate the role of genetic susceptibility for Covid-19 is on the way,8 with UK 

Biobank9 as one of the contributing cohorts. Individual-level Covid-19 test results from UK Biobank 

participants are still ongoing and are not part of the current study; instead, here we use the genotype 

data and geographic location of UK Biobank participants and link those to the total number of regional 

Covid-19 cases as reported by Public Health England (PHE)10. As one of the largest genotyped datasets 

in the world with a rich collection of phenotypic measurements (N ~500,000),9 UK Biobank is likely to 

be contributing a substantial part of the polygenic signal for Covid-19 susceptibility. It is therefore 

important that the possible sources of polygenic signal in datasets like these are well characterized.  

UK Biobank provides a unique data resource to address questions regarding the geographic 

distribution of polygenic complex trait variation in ways that have not been possible before. UK 

Biobank allowed us recently to identify that, after controlling for ancestry, polygenic complex trait 

variation is not randomly distributed across geographic space in Great Britain.11 The strongest regional 

differences we observed were in line with regional differences in socio-economic status.11 Of the 33 

complex traits and diseases we analyzed, polygenic signals associated with educational attainment 

showed the strongest geographic clustering after controlling for regional ancestry differences.11 People 

that migrated out of the poorest regions in Great Britain had the highest polygenic scores for a higher 

education level on average, while those that stayed had the lowest on average, a process that 

increased these regional genetic differences over time.11 Regional differences in health outcomes like 

obesity and diabetes were more in line with regional differences in genes associated with educational 

attainment than with genes associated with the health outcomes themselves, suggesting 

environmental influences that cause people from regions with lower education levels to have worse 

health outcomes.11 Obesity and diabetes have been associated with worse symptoms and higher 

fatality rates for Covid-19,12,13 raising the questions about whether we can expect regional differences 

in Covid-19 outcomes to show similar patterns. 
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This study investigates whether regional differences in daily reported Covid-19 cases in England 

during March and the first half of April 2020 are in line with regional genetic differences in UK Biobank 

participants. Since this study uses regional reports of Covid-19 cases instead of individual-level Covid-

19 outcomes, we expect to have more power to detect regional genetic correlates of social 

stratification if they are in line with Covid-19 outcomes and less power to detect strong polygenic 

signals directly related to the genetic susceptibility of Covid-19. If regional patterns of social 

stratification lead to associations between regional Covid-19 outcomes and genetic variants, these 

should be accounted for when the aim is to identify genes related to Covid-19 susceptibility in order 

to better understand the disease and accelerate drug target and vaccine developments. 

 

RESULTS 

Data and Analysis 

Regional Genome-Wide Association Studies (RGWASs)11 were run on the cumulative number of 

reported Covid-19 cases for every day between March 1s t and April 18th 2020. The RGWASs were run 

on 396,042 UK Biobank9 participants of European descent on 1,246,531 common single-nucleotide 

polymorphisms (SNPs) with minor allele frequencies (MAF) > .01. In an RGWAS, all subject get assigned 

the same phenotype as the rest of the subjects in their region. The phenotypes were defined as 1) the 

regional daily cumulative number of reported Covid-19 cases, and 2) the regional daily cumulative 

number of reported Covid-19 cases divided by the regional adult population size according to 2018 

census data (case-rate). Regional data on the number of cases were available for 151 local authority 

regions in England obtained from Public Health England (PHE)10 and regional data on the population 

sizes for 149 out of the 151 regions were obtained from the Office of National Statistics (ONS)14. All 

RGWASs were run using the linear-mixed model approach in fastGWA.15 To control for confounding 

due to population stratification and family-relatedness, we corrected for a sparse genetic-relatedness 

matrix (GRM) and the first 100 principal components (PCs) and applied an LDSC-intercept based 

genomic control (GC).11 We then computed the SNP-based heritability and the genetic correlation with 

educational attainment (EA), based on the EA3 GWAS16 excluding all British cohorts (N=245,612, SNP-

based heritability = .10), using LD Score regression17,18. For more details on the methods, rationale, and 

interpretation of the RGWAS approach, see Abdellaoui et al (2019)11.  

 

Longitudinal SNP-based heritability 

The upper panel in Figure 1 shows the longitudinal change in SNP-based heritability estimates from 

the RGWAS signals from March 1s t to April 18th. On the first day that was analyzed, there were 82 

reported Covid-19 cases in England10 and a low SNP-based heritability (case-rate: h2=0.3%, SE=0.11; 

total cases: h2=0.4%, SE=0.13). The SNP-based heritability increased in the weeks that followed, and 

reached its peak on March 12th for the total cases (h2=1.4%, SE=0.14) and on March 13th for the case-

rate (h2=2.7%, SE=0.18; see Figure 2). The total number of reported cases in England on March 13 th 

was 1,959, with the highest rates in Westminster and the Royal Borough of Kensington and Chelsea 

(see Figure 2). While cases continued to rise, the SNP-based heritability remained relatively stable for 

more than a week, and began to drop after March 20th, which had 6,819 reported cases. On April 18th, 

the SNP-based heritability dropped down to 0.4% and 0.1% for the case-rate and the total number of 

cases respectively.   

 

Genetic correlations 

The bottom two panels in Figure 1 show the longitudinal change in the genetic correlation (rg) between 

the RGWASs for the regional daily cumulative reported Covid-19 cases and the individual-level 
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educational attainment GWAS (EA3)16 without British cohorts. The rg with educational attainment 

showed a similar trajectory as the SNP-based heritability with respect to its significance (bottom panel 

of Figure 1). The point estimate of the rg showed less variability and was .73 on March 13th. In April, it 

started to decrease, reaching .14 on April 18th. The standard error increased when the SNP-based 

heritability decreased, likely due to a weaker genetic signal. The high rg with educational attainment is 

in line with the regional differences in polygenic signals associated with educational attainment that 

we recently observed for other regional measures of SES, health, and cultural outcomes as well.11 

 For the RGWAS results of March 13th, we investigated the genetic correlations with a total of 

10 traits, of which 5 traits are related to socio-economic status, and 5 traits are associated with health 

outcomes that are considered risk factors for worse Covid-19 outcomes (Figure 2C). All genetic 

correlations were significant after Bonferroni correction, except for Type-2 Diabetes. The genetic 

correlations were all in the direction that would be expected given a positive association with higher 

SES11, namely higher reported Covid-19 case-rates are in line with higher cognitive abilities, higher 

income, and better health outcomes (lower BMI, body fat, and cardiovascular risk, and higher self -

rated health). 

 

 
Figure 1: SNP-based heritability of the RGWAS of the daily regional cumulative reported Covid-19 cases and their genetic 

correlations with educational attainment (EA316 without British cohorts). Error bars are 2×SE.  
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Figure 2: Case-rates on March 13th, the day with the highest SNP-based heritability. A: Geographic distribution of the 
reported Covid-19 case-rates on March 13th, the day with the highest SNP-based heritability estimate. Color bar indicates 

distribution frequency of case-rate, scaled such that it has a mean of 0 and SD of 1. B: Manhattan Plot of the RGWAS of case-
rates on March 13th. The suggestive significance threshold (blue line) is set at 1 × 10-5, and the genome-wide significance 
threshold (red line) is set at 5 × 10-8. C: Genetic correlations (rg) of the RGWAS on Covid-19 case-rate on March 13th with 5 SES-

related and 5 physical health traits as computed with LDSC regression (red stars indicate significance after Bonferroni 
correction, i.e., p < .005). 
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DISCUSSION 

We showed previously that social stratification and selective migration driven by socio-economic 

status (SES) has likely led to growing regional differences in genome-wide complex trait variation, 

especially for genes associated with educational attainment.11 Results of the current analyses suggest 

a temporary positive genetic relationship between the reported number of Covid-19 cases in March 

2020 and regional SES and health. The strength of this genetic signal increased after controlling for 

population density by dividing the total number of regional cases by the regional population size. The 

positive genetic relationship between number of cases and higher SES and health increases in the 

beginning of the outbreak and then decreases as the number of cases rapidly rises and the disease 

spreads across the country. These results could reflect that 1) higher SES regions are more likely to 

have international travellers, including tourists, 2) people in higher SES regions are more likely to have 

higher levels of social contacts, or that 3) higher SES regions were more likely to have better testing 

capacities in the beginning of the pandemic. These genetic signals are in the other direction than one 

would expect based on epidemiological data on risk factors for more severe Covid-19 symptoms,12,13 

which could supress genetic signals of interest when looking for polygenic signals associated with 

increased Covid-19 susceptibility.  

The results confirm that the large UK Biobank dataset can be leveraged to combine real-time 

demographic data with genetic data through RGWAS to study the relationship between any regional 

dynamic variable and social stratification on a national level with high temporal resolution. The RGWAS 

approach should not be considered as an alternative to the traditional individual-level GWAS, as 

regional differences are of another nature than individual differences.11 Rather, the presence of 

polygenic signals in RGWAS results should serve as an indicator to proceed cautiously when 

interpreting the results of individual-level GWASs. The same limitations that were described in the last 

implementation of the RGWAS approach remain11, including the ascertainment bias in the UK Biobank 

towards a more healthy and higher educated population and the unknown bias in the regional data (in 

this case, the bias in the regional data may be related to testing capacity and/or hospital access), and 

gene-environment correlations inflating genetic signals.  

This study combines longitudinal regional-level data with individual-level genotype data and 

GWAS summary statistics from 10 traits related to SES and health to investigate the nature of the 

polygenic effects associated with reported regional differences in Covid-19 infections. As large 

individual-level GWASs of Covid-19 susceptibilty are on the way,8 it is important to be aware that 

polygenic signals of Covid-19 susceptibility can contain genome-wide significant signals that reflect 

social differences in disease prevalence and/or testing capacity, and that these signals can vary over 

time.  
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MATERIALS AND METHODS 

Participants 

The participants of this study come from UK Biobank (UKB),19,20 which has received ethical approval 

from the National Health Service North West Centre for Research Ethics Committee (reference: 

11/NW/0382). A total of 502,536 participants (273,402 females and 229,134 males) aged between 37 

and 73 years old were recruited in the UK between 2006 and 2010. The participants were recruited 

across 22 assessment centers throughout Great Britain in order to cover a variety of different settings 

providing socioeconomic and ethnic heterogeneity and urban–rural mix. They underwent a wide range 

of cognitive, health, and lifestyle assessments, provided blood, urine, and saliva samples, and will have 

their health followed longitudinally.  

 

Genotypes and Quality Control (QC)  

A total of 488,377 UKB participants had their genome-wide single nucleotide polymorphisms (SNPs) 

genotyped on either the UK BiLEVE array (N = 49,950) or the UK Biobank Axiom Array (N = 438,423). 

The genotypes were imputed using the Haplotype Reference Consortium (HRC) panel as a reference 

set (pre-imputation QC and imputation are described in more detail in Bycroft et al, 2018).20 We 

extracted SNPs from HapMap3 CEU (1,345,801 SNPs) were filtered out of the imputed dataset. We 

then did a pre-PCA QC on unrelated individuals, filtering out SNPs with MAF < .01 and missingness > 

.05, leaving 1,252,123 SNPs. After filtering out individuals with non-European ancestry, we repeated 

the SNP QC on unrelated Europeans (N = 312,927), filtering out SNPs with MAF < .01, missingness >.05 

and HWE p < 10-10, leaving 1,246,531 SNPs. The HWE p-value threshold of 10-10 was based on: 

http://www.nealelab.is/blog/2019/9/17/genotyped-snps-in-uk-biobank-failing-hardy-weinberg-

equilibrium-test. We then created a dataset of 1,246,531 QC-ed SNPs for 456,064 UKB subjects of 

European ancestry. 

 

Ancestry & Principal Component Analysis 

To capture British ancestry, we first excluded individuals with non-European ancestry. Ancestry was 

determined using Principal Component Analysis (PCA) in GCTA. The UKB dataset was projected onto 

the first two principal components (PCs) from the 2,504 participants of the 1000 Genomes Project, 

using HM3 SNPs with minor allele frequency (MAF) > 0.01 in both datasets. Next, participants from 

UKB were assigned to one of five super-populations from the 1000 Genomes project: European, 

African, East-Asian, South-Asian, or Admixed. Assignments for European, African, East-Asian, and 

South-Asian ancestries were based on > 0.9 posterior-probability of belonging to the 1000 Genomes 

reference cluster, with the remaining participants classified as Admixed. Posterior-probabilities were 

calculated under a bivariate Gaussian distribution where this approach generalizes the k-means 

method to take account of the shape of the reference cluster. We used a uniform prior and calculated 

the vectors of means and 2x2 variance-covariance matrices for each super-population. A total of 

456,064 subjects were identified to have a European ancestry. A PCA was then conducted on the 

individuals of European ancestry (N = 456,064) in order to capture ancestry differences within the 

British population (see Figure 3). In order to capture ancestry differences in homogenous populations, 

genotypes should be pruned for LD and long-range LD regions removed.21 The LD pruned (r2 < .2) UKB 

dataset without long-range LD regions consisted of 131,426 genotyped SNPs. The PCA to construct 
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British ancestry-informative PCs was conducted on this SNP set for unrelated individuals using flashPCA 

v2.22 PC SNP loadings were used to project the complete set of European individuals onto the PCs.  

 

 

Figure 3: The geographic distributions (birthplace) of the first five PCs, Moran’s I and empirical p -values for Moran’s I. P-

values denoted in green are significant after Bonferroni correction (N = 312,927 unrelated individuals of European 
descent).11 

 

Genetic Relatedness Matrix 

The genetic relatedness matrices (GRMs) contain genetic relationships between all individuals based 

on a slightly LD pruned HapMap 3 SNP set (LD-pruning parameters used in PLINK: window size = 1000 

variant count, step size = 100, r2 = 0.9 and MAF > 0.01, resulting in 575,293 SNPs). The GRMs were 

computed using GCTA.23 We created a sparse GRM, containing only the relationships of related 

individuals (cut-off = .05, resulting in 179,609 relationships).  

 

Regional Genome-Wide Association Study (RGWAS) 

For the RGWASs, we ran linear mixed model (LMM) GWASs using fastGWA15 on participants with 

European ancestry, which controls for cryptic relatedness and population stratification by including a 

genetic relatedness matrix (GRM) in the model.24 The phenotypes were defined as the number or rate 

of reported Covid-19 cases in the local authority of the subject’s current address. Sex and age were 

included as covariates, as were the first 100 PCs as an additional control for population stratification. 

As observed before with the RGWAS approach,11 the results revealed a considerable inflation of test 

statistics that was not due to polygenic effects, which was captured by LD score intercepts25. We 

controlled for this inflation with an LD score intercept-based genomic control,25 i.e., we adjusted the 

standard errors (SE) of the estimated effect sizes as follows: 𝑆𝐸𝐺𝐶 =  √𝐿𝐷𝑆𝐶 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 ∗  𝑆𝐸2.  For 

more details on the methods, rationale, and interpretation of the RGWAS approach, see Abdellaoui et 

al (2019)11. 

 

SNP-based heritability and genetic correlations 

SNP-based heritabilities and genetic correlations were computed using LD-score regression26.26 The 

genetic correlation between traits is based on the estimated slope from the regression of the product 

of z-scores from two GWASs on the LD score and represents the genetic covariation between two traits 

based on all polygenic effects captured by the included SNPs. The genome-wide LD information used 
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by these methods were based on European populations from the HapMap 3 reference panel. 25,26 All 

LD score regression analyses included the 1,290,028 million genome-wide HapMap SNPs used in the 

original LD score regression studies.25,26 The GWAS summary statistics for the traits for which we ran 

the genetic correlations (Figure 2C) are from: educational attainment,16 excluding all British cohorts 

(N=245,612, SNP-based h2=.10), the Townsend27 (N=112,151, SNP-based h2=.04), Childhood IQ28 

(N=12,441, SNP-based h2=.28), Adult IQ29 (N=78,308, SNP-based h2=.19), Income27 (N=112,151, SNP-

based h2=.06), Coronary Artery Disease30 (N=86,995, SNP-based h2=.28), Body Fat31 (N=100,716, SNP-

based h2=.10), BMI32 (N=322,154, SNP-based h2=.13), Type-2 Diabetes33 (N=69,033, SNP-based h2=.18), 

Self-rated health34 (N=111,749, SNP-based h2=.10). 
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