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Abstract 

Introduction: Clinical grade whole genome sequencing (cWGS) has the potential to 

become standard of care within the clinic because of its breadth of coverage and 

lack of bias towards certain regions of the genome. Colorectal cancer presents a 

difficult treatment paradigm, with over 40% of patients presenting at diagnosis with 

metastatic disease. We hypothesised that cWGS coupled with 3’ transcriptome 

analysis would give new insights into colorectal cancer. 

Methods: Patients underwent PCR-free whole genome sequencing and alignment 

and variant calling using a standardised pipeline to output SNVs, indels, SVs and 

CNAs. Additional insights into mutational signatures and tumour biology were gained 

by the use of 3’ RNAseq. 

Results: Fifty-four patients were studied in total. Driver analysis identified the Wnt 

pathway gene APC as the only consistently mutated driver in colorectal cancer. 

Alterations in the PI3K/mTOR pathways were seen as previously observed in CRC. 

Multiple private CNAs, SVs and gene fusions were unique to individual tumours. 

Approximately 20% of patients had a tumour mutational burden of >10 mutations/Mb 

of DNA, suggesting suitability for immunotherapy.  

Conclusions: Clinical whole genome sequencing offers a potential avenue for 

identification of private genomic variation that may confer sensitivity to targeted 

agents and offer patients new options for targeted therapies.  
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INTRODUCTION 

Colorectal cancer (CRC) is one of the most common malignancies, with over 30,000 

cases reported in the UK in 2015-2016 and a 5 year survival rate of approximately 

60% (1). CRC is typically initiated by a mutation in the Wnt signalling pathway gene 

APC (2) (adenomatous polyposis coli) or associated genes (CTTNB1, RNF143, 

RSPO2/3) that leads to the formation of a polyp (3) that then progresses via 

mutations in a number of oncogenes and tumour suppressors into an invasive 

cancer. In parallel with the expansion of our knowledge of the biology of colorectal 

cancer, the field of targeted oncology is rapidly advancing, with targeted agents 

available (4) for a high percentage of driver and modifier mutations across a wide 

range of cancers.  

The Cancer Genome Atlas (TCGA) project set out to characterise mutations in 

colorectal cancer by exome sequencing of a cohort of 600 patients using the Agilent 

SureSelect panel via tumour-normal subtraction (5). It confirmed recurrent mutations 

in APC, TP53, SMAD4, PIK3CA and KRAS as well as identifying recurrent mutations 

in ARID1A, SOX9 and AMER1 (FAM123B). Giannakis et al. (6) carried out exome 

sequencing on a clinically annotated cohort of 619 patients, finding further recurrent 

mutations in BCL9L, RBM10, CTCF and KLF5, and also showing that neoantigen 

load as determined by exome sequencing was associated both with tumour 

associated lymphocyte infiltration and overall survival. However, a key weakness of 

the TCGA and other studies has been the use of exome sequencing to demonstrate 

key oncogenic drivers. Exome sequencing, whether by the amplicon or hybridisation 

approach, may miss key oncogenic drivers due to allelic drop out or the biases 

inherent to targeting approaches (7).  
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Whole genome sequencing has a number of potential advantages. Firstly, it can 

increase overall variant calling accuracy as exome sequencing techniques can suffer 

from probe drop out and poor coverage, especially at splice junctions and in “difficult” 

to sequence regions where probe drop out is common (8). Secondly, it can natively 

call fusions (9) and other structural variants (10) (by detection of split reads); and 

finally it can identify copy number variants (11) to a higher accuracy than alternative 

techniques. Given the recent attention to tumour mutational burden (TMB) in 

selecting patients for anti-PD1 therapies such as pembroluzimab, whole genome 

sequencing can accurately call mutation burden (12).  

However, until very recently, studies of colorectal cancer using whole genome 

sequencing have been limited in number or scope. Shanmugan et al. (13) carried out 

whole genome sequencing in order to identify therapeutic targets in four patients with 

metastatic disease, finding several known mutations of interest as potentially 

targetable. Ishaque et al. (14) carried out paired metastasis-primary tumour whole 

genome sequencing in colorectal cancer, finding novel non-coding oncogenic drivers 

and an elevated level of “BRCAness”. The Pan Cancer analysis of whole genomes 

(PCAWG) consortium (15) presented 52 colorectal (37 colon, 15 rectal) whole 

genome sequenced tumours as part of the larger consortium effort, although at the 

time of writing, no specific examination of the landscape of these had been carried 

out, presumably because of the previous TCGA colorectal cancer paper which 

examined the exomes of 276 colorectal cancers (5).  

The United Kingdom 100,000 Genomes project has set out to sequence tens of 

thousands of cancer genomes (16), across multiple tumour types, using a clinical 

grade sequencing pipeline and variant calling algorithm. Our study has carried out 

whole genome sequencing of 54 paired colorectal tumour-normal samples, utilising a 
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the Genomics England clinical-grade sequencing, alignment, variant calling and 

annotation pipeline in order to understand the utility of WGS in colorectal cancer.  

 

METHODS  

Patients 

Sequential patients undergoing elective colorectal surgery at the Queen Elizabeth 

Hospital Birmingham were recruited for the study. Patients were selected who had 

sporadic colorectal cancer and did not have an Amsterdam positive history of 

colorectal cancer or an age of onset less than 45 years. Consent for the study was 

taken and the study was fully ethically approved by the University of Birmingham 

Human Biomaterials Resource Centre (HBRC, ethical approval ref 15/NW/0079).  

Samples 

Immediately after resection, resected specimens were conveyed to a 

histopathologist who facilitated direct biopsy of tumour material and associated 

normal bowel (defined as the distal resection margin) by frozen section. Samples 

were immediately snap frozen on liquid nitrogen and stored at -80°C until needed. 

Tumour content was verified by frozen section, with at least 60% tumour being 

needed for inclusion in the study. DNA was extracted using a Qiagen DNEasy kit 

and RNA with a Qiagen RNEasy kit. Nucleic acid quantity and quality were assessed 

using a Qubit2 fluorimeter and TapeStation assay. 

Library preparation 
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Sequencing libraries of 500 ng DNA extracted from fresh-frozen tumour or normal 

tissue were prepared using the TruSeq® DNA PCR-free method (Illumina). 

Sequencing (100 base paired reads) was performed on the HiSeq2500 platform to a 

mean depth of >30x for the normal genome and >60x for the tumour genome, after 

the removal of duplicate read-pairs. 

 

RNA: Libraries were prepared using 50 ng of RNA using a Lexogen QuantSeq 3’ 

RNA kit from tumour and matched normal samples. Polyadenylated mRNA was 

pulled down then cDNA synthesis and 3’ library preparation carried out. Samples 

were indexed and pooled across an Illumina NextSeq v2 flow cell and sequenced 

using a 75 base single-ended sequencing strategy 

Bioinformatics 

WGS: Raw reads were converted to FASTQ using bcl2fastq, quality trimmed then 

mapped to the GRCh37 (hg19) Human Reference Genome using the Isaac3 (17) 

aligner (Illumina). Single nucleotide and indel variants were mapped using the 

Strelka2 (18) variant caller (for the germline calls using germline-only mode and for 

somatic calls using joint tumour/normal mode), somatic structural variants using the 

Manta (19) structural variant caller and copy number aberrations using the Canvas 

(20) copy number caller. Annotation of the variants was performed using Illumina’s 

annotation engine Nirvana (https://github.com/Illumina/Nirvana/wiki) using Ensembl 

73 as database reference. Novel driver analysis was generated using 

MutSigCV2(21), Intogen(22) and dNdScv(23) with and without hyper-mutated 

samples. Non-coding driver analysis was performed with FunSeq2 (24). Mutational 

Signatures were generated using the MutationalPatterns R/Bioconductor package 
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(25). All variants were stored in VCF files. Telomere length from whole genome 

sequencing data was derived using TelomereCat (26) 

Copy number calls were pooled across individuals with bedtools and overlapped with 

bedIntersect to identify regions that were recurrently gained/lost. Structural variants 

were pooled using bedtools and overlapped with intersectBed to identify common 

regions of structural variation.  

In samples requiring mutational confirmation, Sanger sequencing was performed 

(primer sequences available on request).  

RNA-seq: FASTQ files were quality trimmed, adapters were removed and reads 

were aligned to the hg19 reference genome using the STAR aligner (27) (version 

2.6.1). Genes were annotated using the Ensembl v74 database and gene-centric 

read counts generated using Partek Flow GSA algorithm (28). Hierarchical clustering 

and PCA plots were also generated. CMS and CRIS signatures were called using 

the CMSCaller R package (29). For calculation of the CIRC score, the methodology 

of Lal et al. was used (30). For immune infiltration scores via CIBERSORT, the 

methodology described by Chen et al. was used (31). For the signature derivation, 

the BioSigner module of Bioconductor was used (32). 

Data availability 

All data are available in the European Nucleotide Archive (accession number XX)   
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RESULTS 

Sequencing metrics 

In total, 54 tumour-normal pairs (30/54 male, 24/54 female) underwent whole 

genome sequencing, with a median read depth of 68x for tumour samples and 38x 

for normal samples. Median purity based on WGS data was 68% (range 29-100%). 

Median somatic SNVs were 19,700 (range 2,459-1,601,093), somatic indels 4,231 

(range 360-464,252) and SVs 105 (range 6-681). Median chromosome count was 

46.5 chromosomes/genome (range 41-67). Median tumour mutational burden was 

8.04 mutations/Mb (range 0.92-577.91 mutations/Mb).  

Clinical data  

In the patients studied, all had primary colorectal cancer. Two patients with rectal 

cancer underwent neoadjuvant chemoradiotherapy and one underwent neoadjuvant 

short course radiotherapy before excision of the primary tumour. The pathological 

stage of the resected tumours varied from between T2N0 to T4N2. Five patients 

presented with metastatic disease and 18 patients had “high-risk” disease consisting 

of any of poor differentiation (4 patients), extra-mural vascular invasion (18 patients) 

or threatened circumferential resection margin (2 patients). The operation types were 

abdomino-perineal excision of rectum (1 patient), anterior resection of rectum 

(25/54), left hemicolectomy (5/54), panproctocolectomy (1 patient), right 

hemicolectomy (16/54), sigmoid colectomy (4/54) and subtotal colectomy (2/54). 

Median numbers of lymph nodes identified by histopathological examination was 24 

(IQR 18-28).  
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Fifteen patients underwent adjuvant therapy consisting of capecitabine (1 patient), or 

capecitabine and oxaliplatin (14 patients). Seventeen patients had disease 

recurrence, with a median time to recurrence of 639 days (IQR 276-2501 days). 

Fourteen (25.9%) patients died whilst within the study, with a median time to death of 

598 days (IQR 398-1231 days). 

Germline mutations 

The germline genome of all patients was studied for mutations in genes associated 

with familial colorectal cancer syndromes (APC, MYH, MLH1, MSH2, MSH6, PMS2, 

POLE, POLD1, SMAD4, and BMPRA1). We found no SNVs or indel germline 

mutations in this cohort of patients.  

Hypermutator phenotype 

In total, 17/54 patients (table 1) had greater than 10 somatic mutations per 

megabase, suggesting that they may be suitable for anti-PD1 immunotherapy. Of 

these patients, five had somatic mutations that have previously been demonstrated 

as responsible for hypermutated tumours (table 1). One tumour had a POLD1 

(p.Leu227Pro) mutation, with a TMB of 206.26 mutations/Mb and a second had a 

POLE1 (p.Pro286Arg) mutation, with a TMB of 577.91 mutations/Mb. The other three 

patients had variants in the mismatch repair genes PMS1 and MSH3 (TMB 41.1, 

71.1 and 45.2 muts/mb). A further patient had a TMB of 143.31 mutations/Mb with no 

obvious germline or somatic mutation causing this phenotype.   

Most frequently mutated genes and identification of new drivers 

A generic analysis of the ten most frequently mutated genes (both SNV and indel, 

not normalised by transcript length) demonstrated that these were (from most to 
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least recurrent): TTN, APC, MUC4, FAT2, TP53, FRG1, KRAS, LRP2, CSMD3 and 

MT-ND4 (Figure 1).  

Mutational frequency of cancer genes was compared to known cancer drivers in 

(Figure 1). The most frequently mutated gene was APC (38/54 samples), followed by 

TP53 (23/54 samples), KRAS (19/54 samples) and FBXW7 (12/54 samples).  Less 

frequent mutations were seen in genes that are typically considered “druggable” but 

not seen previously in colorectal cancer including KIT, ERBB2 and ALK.  

For all driver analyses, samples were analysed in hypermutated and non-

hypermutated groups. For the hypermutated analysis, MutSigCV analysis (in order to 

identify genes significantly mutated compared to background) of driver mutations 

demonstrated 1,235 potentially significant mutations (p<0.05, q<0.05) in the dataset. 

Only APC was highlighted as significant from the typical colorectal driver mutations 

(Supplementary table 1). For the non-hypermutated analysis, MutSigCV analysis 

demonstrated 97 potentially significant mutations, with APC, TP53, KRAS, SOX9 

and FBXW7 being highlighted as significant driver genes (Supplementary table1).  

Intogen analysis (in order to identify genes under positive selection) of the 

hypermutated set (Supplementary table 2) revealed 80 genes as potential drivers via 

either OncoDriveFM or OncoDriveClust. The top five drivers as determined by order 

of significance were APC (PoncodriveFM=0, QoncodriveFM=0), TP53 (PoncodriveFM=0, 

QoncodriveFM=0), KMT2C (PoncodriveFM=6.56x10-4, QoncodriveFM=0.042), KRAS 

(PoncodriveFM=3.11E-15,QoncodriveFM=03.35E-12) and HLA-A (PoncodriveFM=5.43E-10, 

QoncodriveFM=4.88E-07). In the non-hypermutated set, 333 genes were flagged as 

potential drivers with the top 5 being: APC (PoncodriveFM=0, QoncodriveFM=0), TP53 

(PoncodriveFM=0, QoncodriveFM=0), KRAS (PoncodriveFM=4.44E-16,QoncodriveFM=03.93E-13), 
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SOX9 (PoncodriveFM=7.16E-14,QoncodriveFM=4.75E-11) and FBXW7 (PoncodriveFM=1.38E-

13,QoncodriveFM=7.33E-11). 

dNdScv analysis (in order to identify genes under positive selection) of the 

hypermutated set (Supplementary table 3) demonstrated 10 genes with p<0.05 and 

Q<0.1, the top ranked one of which was FRG1, followed by KRAS, TP53, APC, 

DYNC1I2, FBXW7, AC093323.1, PIK3CA, IGSF3 and PTEN. For the non-

hypermutated set 5 genes had p<0.05 and Q<0.1, the top ranked one being FRG1 

followed by KRAS, APC, TP53 and SOX9 (Supplementary table 3). 

An analysis of non-coding drivers using FunSeq2 (33) revealed multiple regions with 

statistically significant increased mutation rates as compared to background 

(supplementary table 4). In the hypermutated set, the top ranked region 

(Chr2:133021792-133036207) was identified as having recurrent mutations and is 

predicted in silico to bind the BRCA1, CHD2, IRF3, MAFK, MXI1, NFKB1, RFX5 and 

SMC3 transcription factors. The long non-coding RNA ENSG00000232274.1 

(chr1:143,189,434-143,211,070) was also recurrently mutated. In the non-

hypermutated sample set, the AP-1 transcription factor complex member JUND was 

recurrently mutated in 46/47 samples in non-coding regions. FunSeq2 analysis also 

ranked APC as the top ranked coding driver mutation in 27/54 samples.  

An overlapping analysis of potential drivers using Venny from all four algorithms only 

demonstrated APC as being a potential driver in the dataset across all four sets of 

calls (Figure 2). When the MutSigCV calls were removed, 12 genes were enriched 

(KRAS, TP53, FBXW7, PIK3CA, NPEPPS, CTNND1, FLII, MGA, SETPB1, BCL9, 

MSH3 and ANXA6). When the Intogen calls only were removed, 4 genes were 

enriched (ZNF517, CROCC, TPO and FSHR). When dNdScV was removed, RIPK4 
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only was enriched and when FunSeq2 calls only were removed there were no 

significant genes. 

A pathway analysis of these pooled drivers across the four algorithms using G 

Profiler (34) revealed enrichment in a number of transcription factor associated 

enriched pathways, KEGG pathways, and GO terms (supplementary table 5) 

Copy number aberrations 

A pooled analysis of copy number variation across the cohort was performed (Figure 

3). A consistent low-level pattern of both copy number gain and loss was observed. 

When filtered by exonic regions across all samples, 6/354 losses and 2/30 gains 

were observed to be exonic. Gains were seen in all samples in the FOXI2 

(chr10:129534543-129537433) and REX1BD genes (chr19:18654566-18746304). 

FOXI2 is a forkhead binding gene associated with transcriptional activation which 

has been seen to be consistently hypomethylated in colorectal cancer (35) and 

REX1BD (Required For Excision 1 Binding Domain) is a putative DNA repair gene 

(36).  

Losses were seen for all samples in MYO1C (chr17:1385365-1386295), CBARP 

(chr19:1230748-1231737), PIMREG (chr17:6358505-6359232), NFATC1 

(chr18:77159859-77161091), UCN3 (chr10:5415602-5416345) and AMH 

(chr19:2247518-2248270). MYO1C controls nuclear membrane tension (37), has 

been previously reported as recurrently deleted in gastric cancer (38) and is thought 

to have a role in PIK3 signalling (39). NFATC1 is a gene of the nuclear factor of 

activated T cells (NFAT) class, which have been shown to play a key role in the 

progression of solid tumours (40).   
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Structural Variants 

Structural variants were filtered on the basis that the most functionally relevant ones 

were likely to be those involving known cancer driver genes. In total, 29 potential 

oncogenic gene fusions, detected by WGS were seen in 16 samples (Table 2). Of 

the 29 potential gene fusions, no recurrent gene fusions were seen. However, 

fusions involving IDH1-PTH2R, CDK6-CDK14, KAT6B-RBMS3, ERBB2-HAP1, 

CCDC6-TMEM212AS1 and BRAF-DLG1 were seen.  

Mutational signatures 

The top three most frequent mutational signatures (V3 SBS signatures (41)) (Figure 

4) as determined at the cohort level using the somatic SNVs of all samples were 

Signature 1 (53/54 samples), Signature 5 (53/54 samples) and Signature 40 (27/54 

samples). Signature 1 is the “Ageing” signature and is associated with the 

consequences of normal tissue ageing, mainly spontaneous cytosine deamination. 

Signature 5 is associated with tobacco smoking and Signature 40 is also associated 

with ageing. Other signatures seen were Signature 44 (defective DNA mismatch 

repair), 17a (pre-treatment with fluorouracil), 17b (pre-treatment with fluorouracil), 13 

(APOBEC), 20 (concurrent POLD1 and MMR deficiency), 4 (direct damage by 

tobacco smoke), 7c (UV radiation), 9 (IGHV hypermutation), 18 (Reactive oxygen 

species) and 41 (unknown). Signatures 57, 46, 47 were also seen which are known 

to be due to sequencing artefact.  

Kataegis 

The phenomenon of kataegis (localised somatic hypermutation) has been previously 

demonstrated in breast cancer (42). In our study, we found that it occurred in all 54 
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samples significantly to one extent or another (Supplementary table 1). Kataegis 

occurred particularly frequently at a per sample level between chr20:31050000-

31080000 (Supplementary figure 1) which corresponds to the region of 

NOL4L/C20orf112 (chr20:31,030,862-31,071,385) a known fusion partner of RUNX1 

and PAX5 in leukaemia (43). 

Telomere length 

Because of the well observed phenomenon of shorter telomere length in cancer, we 

studied the lengths of telomeres as measured by whole genome sequencing, which 

have previously been shown to correlate well to older methods such as Southern 

blotting (26). Median telomere length in cancer was 5,028 bp and in normal germline 

blood was 6,294 bp (Mann-Whitney p<0.0001).   

RNA-seq 

Differential expression profiles 

In order to understand if there were any de novo transcriptional subgroups within the 

dataset, a cut-off of the top 250 genes by variance was extracted from the dataset. 

When comparing tumour/normal expression and using clustering analysis, the 

number of groups found to have the lowest Davis-Bouldin index (5 clusters, 1.17) 

were used to set a threshold for K-means clustering (Figure 5). Hierarchical 

clustering of 5 separate groups’ revealed separation between the five groups and 

KEGG pathway analysis of each subgroup was performed (Supplementary table 6). 

In three of the clusters there were either only one or two samples found. There was 

no distinction between these clusters in terms of anatomical location, stage or 

tumour mutational burden.  
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For subgroup one, an over-representation of pathways concerning inflammation and 

DNA repair was seen. For subgroups two and three no significant pathway over-

representation was seen, possibly because these groups only had one sample within 

them. For subgroup four, multiple separate inflammatory pathways (mostly IL-17, 

Th1 and Th2 centric) were over-represented. Subgroup five had a number of 

interesting over-represented pathways, including reduced MHC presentation, 

Wnt/BMP signalling, TGFbeta signalling (via upregulated SMAD) and upregulated 

Hedgehog signalling.  

Pathway analysis 

Single sample gene expression differences do not explain much of the context of 

disease processes, so we carried out a pathway gene expression analysis using the 

KEGG pathways of over-expressed genes to normal counts across the whole 

dataset. From this, we found a number of pathways of interest that were differentially 

expressed in colorectal cancer: the p53 signalling pathway (hsa41105, p=2.24x10-

53, FDRp=1.06x10-51), NF-kappa-B signalling pathway (hsa040605, p=1.75x10-47, 

FDRp=4.95x10-46), and the ‘colorectal cancer’ pathway (hsa03030, p=2.06x10-41, 

FDRp=5.41x10-41) were all over-expressed in this cohort of patients. 

A number of other pathways of interest (but not of direct relevance to colorectal 

cancer) were over-expressed, including platinum drug resistance (hsa01524), the 

Cytosolic DNA-sensing pathway (a.k.a. cGAS-STING, hsa04623) and several 

involved with DNA repair (FA pathway hsa03460, DNA replication hsa03030, NER, 

hsa03420).  
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CMS/CRIS 

Two classifiers for transcriptional subtypes in colorectal cancer have been identified 

(the Consensus Molecular Subtype (CMS) and the CRC Intrinsic Subtypes (CRIS) 

subtype (44, 45)), which reflect the disease biology of the tumour and have been 

linked with prognosis. These subtypes are derived from pre-existing molecular data 

by various computational methods to discover transcriptionally distinct groups within 

colorectal cancer. CMS and CRIS classifiers were generated for all tumours (Figure 

6). Of the 54 sequenced tumours, the CMS classifier grouped the samples as 

follows: CMS1=13/54, CMS2=9/54, CMS3=8/54, CMS4=12/54 and NA=3/54. For the 

CRIS classifier there were CRIS-A=9/54, CRIS-B=7/54, CRIS-C=12/54, CRIS-

D=8/54, CRIS-E=5/54 and NA=4/54.  

CIRC 

We have previously demonstrated the utility of the Coordinate Immune Response 

Cluster (CIRC) (30) as a Th1-centric RNA based signature in predicting Class I & II 

MHC immunovisibility (beyond TMB) in order to target with immunomodulatory 

drugs. Average of expression Z-score for the 28 genes in the CIRC was calculated 

for each tumour sample, with the lowest CIRC score being -0.56 and the maximum 

3.17. In total, 12/54 samples had CIRC > 0 suggesting immunovisibility.  

Cell deconvolution using RNAseq  

Immune infiltration estimation using cell type deconvolution by CIBERSORT 

(31)(Table 3) was performed on 3’ RNAseq data. This demonstrated a rich and 

varied immune infiltration within the colorectal cancers studied. The predominant cell 
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type was CD4+ memory (resting) T-cell, followed by M2 macrophages, CD8+ T-cells, 

M0 macrophages then activated mast cells. There did not seem to be any correlation 

with purity estimates of the samples as determined by WGS.  

RNA signature for hypermutation 

In order to see whether a RNA based signature for hypermutation could be 

developed from RNA-seq data, gene-centric gene expression was processed using 

BioSigner (Bioconductor) using a threshold of >20 mutations/Mb in the WGS data (in 

order to develop a clear signature as >50% of hypermutant samples were near to the 

classical 10 mutations/Mb cut-off). Using 250 iterations of the algorithm, we 

attempted to generate Random Forest (RF), Partial Least Squares Discriminant 

Analysis (PLSDA) and Support Vector Machines (SVM) models of gene expression 

for hypermutant samples. We found that no stable model could be generated, 

however this could be a consequence of the relatively few numbers of hypermutant 

samples.   

Correlation between drug mutations database and druggable mutations  

In order to ascertain the possibility of actionable targets from the mutations observed 

in the dataset, we entered a list of protein coding mutations found in at least one 

sample to the Drug Interaction Database (http://www.dgidb.org). Potential drug 

targets were observed for the genes – APC, TP53, KRAS, FBXW7, ATM, PIK3CA, 

ARID1A, KMT2A, PTEN, SMARCA4, IDH1 and RRM2B (supplementary table 7). 

Also, 17/54 (32%) of patients exceeded the 10 mutations/Mb threshold for potential 

benefit for treatment with PD-1/PD-L1 therapy.  
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Utilising the OpenTarget platform (http://www.opentargets.org), which takes lists of 

mutations and functionally characterises them into drug targets, the 50 top genes 

from each tool for driver ranking (MutSigCV2, Intogen, dNdScv, Funseq2) were 

aggregated and input into the system (due to a limit of 200); after duplicate filtering 

this left 123 genes of interest. OpenTargets demonstrated significant enrichment for 

GI and epithelial tract cancers of all subtypes (Supplementary table 7). Also, 

significantly enriched pathways were seen in classical cancer pathways but also 

Interferon signalling, phagocytosis and Class I MHC signalling. Of the identified 

druggable genes, for small molecule agents, 8/123 had clinical precedence, 50/123 

discovery precedence, and 49/123 were predicted to be tractable. Among antibody-

based agents, 3/123 had clinical precedence, 68/123 had high tractable confidence 

and 83/123 had mid-low tractable confidence.  

 

CONCLUSIONS  

The use of clinical grade whole genome sequencing in this study has allowed us to 

identify known and novel driver mutations that are potentially druggable based on the 

current state of knowledge. Our study demonstrated the known driver mutations 

seen in colorectal cancer such as APC, KRAS, BRAF and PIK3CA (5), but also more 

novel mutations that would potentially be targetable by molecular agents. For 

instance, we detected KIT mutations that would potentially be targeted by the 

tyrosine kinase inhibitor imatinib (46), offering a therapeutic option not available to 

these patients.  

We also identified and validated several interesting potential driver mutations by 

frequency within our cohort. Recurrent mutations were seen in KMT2C, which codes 
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for lysine methyltransferase-2C. These mutations have typically been seen in 

leukaemia and other blood malignancies but other more recent studies have 

demonstrated that these mutations occur amongst a wide variety of other cancers 

(47) and are targetable by inhibitors of KMT2C function. Mutations were also seen in 

ATM (targetable with ATM kinase inhibitors (48)), IDH1 (targetable with the small 

molecular inhibitor of IDH1, Ivosidenib (49)) and SMARCA4 (targetable with CDK4/6 

inhibitors) (50). We attempted to identify new driver mutations as well as validate 

existing drivers using validated calling algorithms, however only APC was 

consistently enriched across all four callers in our study, once again emphasising the 

predominant Wnt signalling driven nature of colorectal cancer. The recurrent nature 

of HLA-A mutations (which were not validated by Sanger sequencing) in our cohort 

is interesting, as it is seen infrequently across all cancers (51), and could potentially 

represent a mechanism of immune invasion in a subset of cancers.   

Recurrent alterations in genome structure, in the form of structural variants, copy 

number aberrations or gene fusions have also been highlighted as a potential target 

for therapy. For instance the FGFR2/3 fusion seen in approximately 40% of 

cholangiocarcinoma is a target for the drug pemagatinib (52). Our study has shown 

several recurrent copy number variations or structural variations but also a number 

of unique “private” variations that may be targetable. For instance, we observed 

potential fusions between BRAF and DLG1 (which may be targetable by BRAF 

kinase inhibition (53)) and between ERBB2 and HAP1 (which may be targetable by 

lapatinib (54)).  

Tumour immunotherapy, using a combination of anti-PD1 and/or anti-CTLA4 therapy 

has been shown to have a survival benefit across multiple tumour types (55), 

especially when stratified to patients with high tumour mutational burden (TMB). 
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TMB correlates directly with neoepitope production and thus immunovisibility of the 

tumour. A threshold of 10 mutations per megabase of sequence has been suggested 

as a cut-off threshold sufficient for benefit for immunotherapy (56). Our study has 

shown that up to 20% of patients with colorectal cancer reach this threshold, which is 

higher (16%) than previously reported (5). This may be because whole genome 

sequencing provides a more comprehensive detection of mutations compared to 

other strategies, and also because of variations in how TMB is calculated. 

We have carried out a variety of analyses of the RNA data derived from our samples. 

Surprisingly, the pathway analysis demonstrated findings of potential clinical utility, 

for instance, the presence of Kegg pathway hsa01524 (Platinum resistance). 

Oxaliplatin is commonly given in adjuvant chemotherapeutic treatment in colorectal 

cancer and resistance remains a problem (57), especially on the background of 

toxicity that leads to peripheral neuropathy.  Interestingly, we have shown that the 

most frequent transcriptomic subtype within our dataset is CMS4, which is 

associated (44) with a worse prognosis (also seen in our dataset) and a more 

aggressive phenotype mainly due to the presence of fibroblasts which act as 

“malignant stroma”. The low numbers of accurate classification of our samples may 

represent a weakness of 3’ RNAseq (although we have previously used this 

technique without issue) or inherent weaknesses in the CMS classifier when a low 

tumour content heterogenous tumour sample undergoes sequencing (58). We have 

also demonstrated by cell deconvolution a rich and varied immune infiltration with the 

predominant cell types being CD4+ memory and CD8+ cells, however M2 

macrophages are seen in most tumours. M2 macrophages are known as “repair” 

macrophages that decrease inflammation and promote tissue repair (59). If this is 

indeed the case it highlights an intriguing future path of research in colorectal cancer. 
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The CIRC classifier, which we have previously used to highlight immunovisibility (30) 

in cancer demonstrates that a proportion of samples have immunovisibility beyond 

those expected by high TMB.  

In an era of personalised medicine, we have attempted to utilise current drug 

databases (DGIDb (60) and OpenTarget (61)) in order to identify targets for 

personalised medicine therapy. All patients had mutations within their tumour that 

were potentially “druggable” allowing their recruitment into a current or planned 

clinical trial. This is an exciting finding, as it gives a potential route of treatment for 

patients with metastatic disease, however the majority of these trials are phase one 

in nature and thus are not conclusively demonstrated to be active in colorectal 

cancer, or indeed in the targeted genomic alteration outside of pre-clinical models.  

In conclusion, we have demonstrated the utility of standardised clinical grade WGS 

at detecting both new biological insights into colorectal cancer as well as targets for 

therapy. WGS has the advantage of breadth and depth of coverage but comes at the 

cost of expense; this is likely to drop significantly as technologies improve. A 

particular disadvantage in the clinical setting is the need for access to fresh-frozen 

tumour material in order to perform whole genome sequencing to the highest quality. 

The use of 3’ RNA seq allows a cost-effective way to further enrich the data returned 

by these assays and may be useful for future studies. The UK government has 

recently recommissioned Genomics England to sequence five million genomes over 

the next decade and we suggest based on our results that whole genome 

sequencing should be considered standard of care for colorectal cancer. We 

additionally suggest that RNA sequencing should be utilised as standard of care due 

to the additional insights it gives into tumour biology.  
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Figure 1: Integrated plot of characteristics of whole genome sequencing dataset of colorectal 

cancer 

A- Variant classification by type (Y-axis), Frequency of variant (X-axis) 

B- Variant type (Y-axis), SNP = single nucleotide polymorphism, INS = insertion, DEL = deletion; 

frequency (X-axis) 

C- Single nucleotide variant (SNV) class plot – Y-axis demonstrates nucleotide changes. X-axis 

demonstrates proportions of variants in cohort; numbers on end of bars demonstrate total numbers 

of each variant 

D- Bar chart showing variants per sample – variants (y-axis); samples on x-axis 

E- Variant classification summary showing range of variants per sample (y-axis), x-axis shows 

missense (green), nonsense (red), frame shift deletion (blue), splice site (yellow), frame shift 

insertion (purple), in frame deletion (brown), in frame insertion (dark red), non-stop mutation (light 

blue), transcription start site mutation (orange) 

F- Top ten mutated genes by frequency – genes on y-axis, numbers of mutations on X-axis; colours 

the same as panel E 

G- Oncoprint of colorectal driver genes (left Y-axis) by sample (X-axis) with variant type shown in key. 

Percentages across whole cohort seen in percentages down right Y-axis  

H- TCGA style log(10) variants per sample plot (y-axis) with TCGA cohorts (X-axis), Bham = 

Birmingham cohort (fifth from left) 

I- Mutational type plot: 

Top left panel - % mutation changes in cohort 

Top right panel - % transition vs. transversion mutations across cohort 

Bottom panel – Bar chart showing proportion of mutations with percentage on y-axis and type of 

mutations shown by different coloured bars   
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Figure 2: Overlapping genes from each significant variant caller (Intogen, MutSigCV, dnDScv and 

FunSeq2)  
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Figure 3: Genome wide copy plot all samples across cohort (green – gain, red – loss); Height of bar 

is proportional to number of samples with copy number variation.  
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Figure 4 – Most frequent single base substitution mutational signatures shown in hierarchical cluster plot (samples with identical signature 

combinations were collapsed)  
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Figure 5: Hierarchical clustering plot of 100 most variably expressed genes in RNAseq data, demonstrating five separate clusters 
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Figure 6: Graph of CMS calls (left) and CRIS calls (right) for dataset  
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Table 1– Hypermutated samples with TMB > 10 and potential somatic variants known to be 

associated with hypermutation  

Sample TMB (Muts/mb) Potential somatic variants 

A03 206.25 POLD1 (p.Leu227Pro) 

A09 85.47 PMS1 (p.Ser118Ter) 

A10 95.41 MSH3 (p.Val393Ala) 

A12 143.31 None detected 

B05 221.68 MSH3 

(p.Lys383ArgfsTer32) 

MLH3 (p.Lys383ArgfsTer32) 

POLE (p.Arg759Cys) 

B08 577.91 POLE (p.Pro286Arg) 

 

Table 2: List of potentially oncogenic structural variants in cohort. 

Gene Consequence Chromosome Position Ref Alt 

GNAM11 GNA11 i > HNRNPM i > chr19 3109401 intron DEL 

NRG1 NRG1 i  > L3HYPDH i > chr8 32154965 intron BND 

SMAD4 MRO i < SMAD4 i < chr18 51065790 intron INV 

PTPRK MAN1A1 i > PTPRK i > chr6 128452884 intron DUP 

IDH1 VRK2 i < IDH1 i < chr2 208257287 intron INV 

IDH1 IDH1 e < PTH2R i < chr2 208242100 exon INV 

CDK6 CDK14 i > CDK6 e > chr7 92612231 exon INV 

CDK6 CDK14 i > CDK6 e > chr7 92612048 exon INV 

SRGAP3 

LMCD1-AS1 i < SRGAP3 i 

< chr3 9168820 intron DEL 

NGR1 LDAH i  > NGR1 i > chr8 32654703 intron BND 

NRG1 LDAH i  < NGR1 i < chr8 32654498 intron BND 

KAT6B RBMS3 i > KAT6B e > chr10 75031261 exon BND 

FAM46C MAN1A2 i > FAM46C i > chr1 117619648 intron DEL 
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SMAD4 CTIF i < SMAD4 i < chr18 51062229 intron DUP 

RARA RARA i < TTC25 i < chr17 40354212 intron DUP 

NRG1 NRG1 i < UNC5D I <  chr8 32192673 intron DUP 

CDK12 FBX047 i < CDK12 i < chr17 39521585 intron INV 

CDK12 PLXDC1 i > CDK12 i > chr17 39465725 intron INV 

ERBB2 ERBB2 e > HAP1 e > chr17 39727989 exon INV 

ZNF521 

MCHR2-AS1 i < ZNF521 i 

< chr18 25327550 intron BND 

PPP6C SCAI i < PPP6C i < chr9 125174977 intron DEL 

EML4 EML4 i > MTA3 i > chr2 42284332 intron DEL 

BRD4 BRD4 i < AKAP8 e < chr19 15332325 intron DEL 

KMT2C KMT2C i < TPTEP1 i < chr7 1522434118 intron BND 

CCDC6 

TMEM212-AS1 i < CCDC6 

e < chr10 59788825 exon BND 

CCDC6 

TMEM212-AS1 i > CCDC6 

e > chr10 59906506 exon BND 

BRAF DLG1 i > BRAF e > chr7 140794385 exon BND 

GPHN GPHN i > FAM71D i > chr14 66721301 intron DEL 

ELL RFX2 i < ELL i < chr19 18478021 intron DEL 

 

 

Table 3: CIBERSORT classification of immune cells 

Cell type Score 

T cells CD4 memory resting 24.2 

Macrophages M2 11.9 

T cells CD8 11.3 

Macrophages M0 10.6 

Mast cells activated 8.3 
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B cells memory 7.6 

NK cells activated 7.5 

B cells naive 5.5 

Dendritic cells activated 4.7 

Plasma cells 4.2 

T cells follicular helper 4.1 

Neutrophils 2.9 

Macrophages M1 2.7 

NK cells resting 1.2 

T cells CD4 naive 1.2 

T cells regulatory (Tregs) 0.8 

Monocytes 0.8 

Dendritic cells resting 0.8 

T cells CD4 memory activated 0.4 

Mast cells resting 0.3 

Eosinophils 0.09 

T cells gamma delta 0 
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Supplementary Figure 1 – Kataegis plot across whole genome for all samples. Regions of kataegis 

shown by blue lines above chromosomal plots 
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