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Abstract  

Background: Pandemic COVID-19 by SARS-COV-2 infection is facilitated by the ACE2 

receptor and protease TMPRSS2. Modestly sized case series have described clinical factors 

associated with COVID-19, while ACE2 and TMPRSS2 expression analyses have been 

described in some cell types. Cancer patients may have worse outcomes to COVID-19. 

Methods: We performed an integrated study of ACE2 and TMPRSS2 gene expression across 

and within organ systems, by normal versus tumor, across several existing databases (The 

Cancer Genome Atlas, Census of Immune Single Cell Expression Atlas, The Human Cell 

Landscape, and more). We correlated gene expression with clinical factors (including but not 

limited to age, gender, race, BMI and smoking history), HLA genotype, immune gene 

expression patterns, cell subsets, and single-cell sequencing as well as commensal 

microbiome.   

Results: Matched normal tissues generally display higher ACE2 and TMPRSS2 expression 

compared with cancer, with normal and tumor from digestive organs expressing the highest 

levels. No clinical factors were consistently identified to be significantly associated with gene 

expression levels though outlier organ systems were observed for some factors. Similarly, no 

HLA genotypes were consistently associated with gene expression levels. Strong correlations 

were observed between ACE2 expression levels and multiple immune gene signatures 

including interferon-stimulated genes and the T cell-inflamed phenotype as well as inverse 

associations with angiogenesis and transforming growth factor-β signatures. ACE2 positively 

correlated with macrophage subsets across tumor types. TMPRSS2 was less associated with 

immune gene expression but was strongly associated with epithelial cell abundance. Single-cell 

sequencing analysis across nine independent studies demonstrated little to no ACE2 or 

TMPRSS2 expression in lymphocytes or macrophages. ACE2 and TMPRSS2 gene expression 
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associated with commensal microbiota in matched normal tissues particularly from colorectal 

cancers, with distinct bacterial populations showing strong associations. 

Conclusions: We performed a large-scale integration of ACE2 and TMPRSS2 gene expression 

across clinical, genetic, and microbiome domains. We identify novel associations with the 

microbiota and confirm host immunity associations with gene expression. We suggest caution in 

interpretation regarding genetic associations with ACE2 expression suggested from smaller 

case series. 

 

Keywords: ACE2, TMPRSS2, expression, clinical, genetic, HLA, microbiome, correlates, 

cancer, normal, SARS-COV-2, COVID-19 
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Background 

Severe acute respiratory syndrome (SARS) coronavirus 2 (SARS-CoV-2), which causes 

the disease COVID-19, was initially described near the end of 2019 [1, 2] and has caused a 

global pandemic. SARS-CoV-2 is a positive-sense single-strand RNA virus related to the SARS 

and the Middle East respiratory syndrome (MERS) coronaviruses that have caused previous 

global health emergencies [3]. COVID-19 is characterized predominately by fever, cough, and 

pneumonia, with some patients presenting with diarrhea and other symptoms [4, 5]. Mortality 

rates are described as approximately ten times higher than seasonal influenza in some clinical 

sub-groups [6].  

Angiotensin-converting enzyme 2 (ACE2) has been identified as the receptor for the 

SARS-CoV family [7], and the SARS-CoV-2 spike protein binds ACE2 on host cells with greater 

affinity than previous SARS-CoV [8, 9]. Type II transmembrane serine protease TMPRSS2 is 

the primary human protease that mediates spike protein activation on infected cells, facilitating 

viral entry via receptor-mediated internalization [9, 10]. Multiple physiologic roles are known for 

ACE2 impacting systems such as cardiovascular, nephrology, and immune [11] but perhaps 

most notably related to SARS-CoV-2, pulmonary, where ACE2 has been described to limit 

severe acute lung injury [12]. Analyses of ACE2 protein expression by organ system have 

suggested high levels in epithelia of the lung and small intestine, consistent with presenting 

symptoms of patients with COVID-19 [13]. However, these studies have not integrated analysis 

of TMPRSS2 and integrated analyses may better inform which organ systems express both 

genes and may be at greatest infection risk.  

Gene expression studies by bulk RNA sequencing and single-cell approaches have 

attempted to delineate expression patterns of normal airway tract and other tissues [14-16]. 

These studies have suggested high ACE2 expression levels on the epithelia of oral and airway 

mucosa as well as small intestine. ACE2 has additionally been suggested as an interferon-
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response gene suggesting a complicated interaction between viral infection and host antiviral 

response [15]. Further, a report has been advanced suggesting that lymphocytes may directly 

be infected by SARS-CoV-2 [17], a finding reported with MERS as well [18], however of unclear 

clinical significance. 

Patients with cancer may be at particularly high risk for SARS-CoV-2 infection and 

deleterious outcomes to COVID-19 disease. In a single hospital study from Wuhan, China 

patients with cancer made up 1% of the overall prevalence of COVID-19 [19], substantially 

higher than the overall incidence of cancer in the Chinese population at 0.29% [20]. Outcomes 

to COVID-19 appeared to be worse in patients with cancer with increased intensive care unit 

admission, mechanical ventilation, and mortality, especially those who had recently received 

chemotherapy or surgery [19]. A subsequent literature-based international meta-analysis of 

COVID-19 incidence in patients with cancer has suggested a prevalence of approximately 2.0% 

globally [21]. Particularly there is concern that patients being treated with cancer 

immunotherapy drugs may be at even a greater risk given the possible overlapping immune-

related toxicities for checkpoint blocking antibodies with the pneumonitis and diarrheal 

syndromes seen in COVID-19. Multiple societies, including the Society for Immunotherapy of 

Cancer, have issued guidance for cancer care during the pandemic as well as the use of 

immunomodulatory agents such as anti-IL6 [22]. 

Several clinical associations have arisen from a smaller series of patients infected with 

COVID-19. Some include risk factors for poor outcomes such as elevated body mass index 

(BMI) [23] and diabetes [24] as well as possible associations with race [25]. More broadly, 

germline genetics and host immune status may have a substantial impact on anti-viral host 

defense [26], similar to what is seen with cancer immunotherapy [27]. 

To better inform considerations surrounding SARS-CoV-2 and COVID-19 in patients with 

cancer and more broadly in the general population, we performed an integrated analysis of 
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ACE2 and TMPRSS2 gene expression across clinical, genetic, and microbiome domains. We 

identify novel associations with the commensal microbiota and confirm host immunity 

associations with gene expression. We suggest caution against over-interpretation of clinical or 

genetic associations from smaller case series noting that these are not strongly associated with 

ACE2 or TMPRSS2 gene expression. We hope these data may better inform clinical 

considerations surrounding risk stratification and prevention approaches. 

 

Methods 

Datasets 

Sample metadata tables were downloaded from The Cancer Genome Atlas (TCGA) 

(Genomic Data Commons (GDC) portal: https://portal.gdc.cancer.gov). Out of 11,093 aliquots 

total, 10,732 were selected to keep one unique aliquot per patient per sample type, as illustrated 

in Supplementary Figure 1. The final cohort consists of 9,657 primary tumors, 367 metastatic 

samples (all from skin cutaneous melanoma (SKCM)), and 708 normal tissues from 10,038 

patients across 34 tumor types (33 primary and one metastatic) (Supplementary Tables 1 and 

2). Out of 708 normal tissues, 14 tumor types have 15 or more normal samples available, hence 

were included for statistical comparisons when applicable. The standardized, upper-quartile 

normalized, batch-corrected, and platform-corrected RNAseq expression of 20,531 genes in 

RSEM (RNA-Seq by Expectation Maximization)-quantified read count estimates were 

downloaded from PanCancer Atlas consortium studies (https://gdc.cancer.gov/about-

data/publications/pancanatlas) and log2-transformed for further analysis. FPKM (Fragments Per 

Kilobase of transcript per Million mapped reads) quantification of gene expression as well as 

whole-exome sequencing (WES) BAM files were downloaded from GDC [28]. Demographic and 

clinical information were retrieved from the TCGA Pan-Cancer Clinical Data Resource (TCGA-
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CDR) [29]. BMI and smoking history were retrieved from legacy clinical files. To the author’s 

knowledge, only two tumor types had diabetes status information (pancreatic adenocarcinoma 

(PAAD) and uterine corpus endometrial carcinoma (UCEC)), which was retrieved from clinical 

XML files on GDC. 82% of PAAD and 7% of UCEC patients have diabetes status recorded. 

Hence only PAAD was included in analysis. Commensal microbiota abundance and viral 

presence of TCGA samples were downloaded from published studies [30, 31]. Single-cell 

RNAseq (scRNAseq) gene expression in malignant cells, immune cells, and normal cells were 

retrieved from nine studies consisting of patients diagnosed with cancer and healthy donors. 

Links to data files, single-cell cohorts, and bioinformatics software are provided in 

Supplementary Table 3. Data generated in this study are accessible on GitHub repository 

https://github.com/riyuebao/ACE2_TMPRSS2_multicorrelates.  

 

ACE2 and TMPRSS2 gene expression correlation and percentile calculation 

The gene expression of ACE2 (Entrez Gene ID 59272) and TMPRSS2 (Entrez Gene ID 

7113) was retrieved from the RSEM-quantified RNAseq data and used for all analyses 

described in this study. Spearman’s correlation was calculated between the expression of the 

two genes in tumor (n=10,024) and normal (n=708) samples across all tumor types and within 

individual tumor types. The expression percentile was calculated separately within each of the 

four analysis sets (ACE2 in normal, ACE2 in tumor, TMPRSS2 in normal, TMPRSS2 in tumor) 

following two steps. First, the median expression of ACE2 or TMPRSS2 was calculated within 

individual tumor types. Next, tumor types were ranked by the median expression of each gene 

from higher to lower, and the position of each tumor type in the ranked list was scaled to 0 to 

100, hereafter regarded as “expression percentile” per tumor type, with smaller values indicating 

top-ranked tumor types. The same process was repeated for each gene in tumor samples (34 

tumor types) and normal tissues (14 tumor types).  
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Analysis of clinical correlates  

The expression of ACE2 and TMPRSS2 was compared between designated clinical 

groups, split by age (younger (<65 years) / older (≥65 years) in tumor or normal), gender 

(female / male in tumor or normal), race (African American (AA) / Asian / White in tumor or 

normal), menopause (not post / post in tumor or normal), BMI (level 1 (<25) / level 2 (25-30) / 

level 3 (30-35) / level 4 (>35) [32] in tumor or normal), smoking history (never / light / heavy [33] 

in tumor or normal), tumor stage (I / II / III / IV in tumor), tumor grade (G1G2 / G3G4 in tumor). 

For tumor grade, G1 and G2 were collapsed to indicate low- to mid-grade (G1G2), and G3 and 

G4 were collapsed to indicate high-grade (G3G4). Within each clinical factor, sub-groups of < 

15 samples were excluded. For each clinical factor, comparisons were performed across all 

tumors and within individual tumor types. For all tumor types, first, data were fitted into a two-

way ANOVA model with tumor type and clinical group as variables plus the interaction between 

the two. Second, if more than two clinical groups exist, Tukey's honest significance test (HSD) 

was used with the fitted ANOVA model for pairwise comparisons while controlling for type I 

errors. Within each tumor type, Tukey's HSD was used with one-way ANOVA models when 

more than two groups are present; otherwise Welch Two Sample t-test was used. The list of 

clinical groups and statistical results are provided in Supplementary Tables 4, 5, and 6. 

 

Analysis of HLA correlates  

HLA-A, HLA-B, and HLA-C genotypes were identified for 9,559 patients from TCGA 

across 34 tumor types using OptiType (v1.3.2) with WES BAM files. We performed two levels of 

analysis. In the allele level analysis, considering each patient carries two copies of HLA-A, B, or 

C alleles, both copies were counted towards the total number (19,118) of A, B, or C alleles in 

the entire cohort. In the patient-level analysis, only one HLA-A, B, or C allele was kept as the 

final label to assign to each patient, with the priority determined by the lexicographical ranking of 

all alleles present in the entire cohort. For each patient, between the two copies of HLA-A, B, or 
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C alleles, if one was ranked before the other, then the first one was assigned to the patient. The 

calculation of HLA prevalence calculation was performed at the allele level. The comparison of 

ACE2 and TMPRSS2 gene expression between HLA genotypes was performed at the patient 

level using two-way ANOVA, given that gene expression was estimated per sample. 

 

Analysis of immune gene expression signatures   

Five immune responsive and suppressive signatures (interferon-stimulated genes (ISG), 

T cell-inflamed (Tinfl), myeloid, angiogenesis (angio), and transforming growth factor-β (TGF-β)) 

(Supplementary Table 7) were correlated with ACE2 and TMPRSS2 gene expression in tumor 

and normal tissues. The expression level of a signature was computed as the average 

expression of all genes in this signature after centering and scaling. Spearman’s correlation was 

calculated between each signature and ACE2 or TMPRSS2. The full correlation metrics are 

provided in Supplementary Table 8.  

 

Analysis of immune and stromal cell subset correlates  

FPKM estimates of RNAseq gene expression was used for quantifying enrichment of 64 

tumor and stroma cell types using xCell (v1.1.0). xCell converts gene expression into rank-

based metrics within each sample, hence normalization and batch correction were not required. 

To make data comparable across samples, xCell was run once using all samples (n=10,732). 

Spearman’s correlation was computed between the enrichment score of each cell population 

and ACE2 or TMPRSS2 expression. The full correlation metrics are provided in Supplementary 

Table 9. 

 

Analysis of viral-associated tumors 

HPV, EBV, and HBV were selected for this study as those are the three most prevalent 

cancer-associated viruses in the cohort. Other viruses detected were excluded. Samples were 
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set to HPV positive/negative by cutoff 10, EBV positive/negative by cutoff 5, and HBV 

positive/negative by cutoff 5 given previously recommended thresholds [31]. STAD, ESCA, 

LAML, and OV were reset to “negative” for HPV, EBV, and HBV after a manual inspection, 

which revealed no strong clinical support for viral presence in those tumor types. Within each 

tumor type, ACE2 and TMPRSS2 gene expression was compared between viral positive and 

negative tumors using Welch Two Sample t-test. Across all tumor types, two-way ANOVA was 

used to compare gene expression between viral positive and negative tumors with tumor type 

and viral group as variables plus the interaction between the two. 

 

Analysis of microbial correlates  

 The abundance of 1,093 genus-level microbial taxa was quantified from tissue RNAseq 

data after rigorous QC, batch correction, and contamination filtering, and normalized to 1 million 

reads to make data comparable across samples [30]. Seven hundred six normal tissues and 

9,801 tumor samples were included in the analysis where data were available. Taxa were 

filtered to keep bacteria in analysis; viruses and archaea were excluded. Nine hundred fifty taxa 

present in at least 20% of samples were kept for statistical testing. Within each tumor type, 

Spearman’s correlation was computed between each bacteria taxon and ACE2 or TMPRSS2 

gene expression in tumor and normal tissues. For each test, at least 15 samples with taxon 

abundance ≥ one were required. 75 taxa passed FDR-adjusted P<0.05 and Spearman’s ρ > 0.5 

or < -0.5 in at least one pairwise correlation (Supplementary Table 10). 

 

LASSO regression modeling and variable importance  

LASSO regression models of ACE2 or TMPRSS2 gene expression were built in tumor 

(n=10,024) and normal (n=708) samples separately using 90 features consisting of tissue type 

as well as clinical (age, gender, race), immune signatures (ISG, T cell-inflamed, myeloid, 

angiogenesis, TGF-β), immune cell subsets (macrophage M1, macrophage M2, CD8 T cell, 
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CD4 T cell), stroma cell subset (epithelial cell), and 75 microbiota features from microbiota 

correlation analysis (Supplementary Figure 2). Macrophage M1/M2 and T cells were included 

in the model based on emerging evidence suggesting an important role of macrophage and 

proinflammatory phenotype [34] in COVID-19 disease. Thirty-four tumor types were collapsed 

into 15 tissue types based on categorizations from The Human Protein Atlas to reduce 

complexity. Categorical variables were converted to dummy variables using R function 

dummyVars with parameter fullRank set to TRUE. Data were preprocessed to remove features 

that have near-zero variance, high correlation (Spearman’s ρ > 0.75), or high collinearity. Each 

feature was scaled and centered. Given the purpose of this analysis was to evaluate the relative 

importance of features rather than training and validating a predictive model, we did not split 

samples into training and test sets. Instead, we used all samples with 10-fold cross-validation. 

Variable importance was reported as raw values and as scaled values to 0-100 

(Supplementary Table 11). R package caret (v6.0-84) was used for analysis. 

 

Statistical analysis 

In all analyses, a minimal sample size of 15 per group was required for statistical testing. 

For group-wise comparisons, two-way ANOVA was used with tumor type and a group of interest 

as variables plus the interaction. When more than two groups are present, Tukey’s HSD test 

was used for pairwise comparisons. Within each tumor type, two-sided Welch Two Sample t-

test was used to compare log2-transformed gene expression between groups; for paired 

samples, two-sided paired t-test was used. Spearman’s correlation was used to determine the 

relationship between two continuous variables. For multiple comparisons, p-values were 

corrected using Benjamini & Hochberg (BH)-FDR method. LASSO regression models were 

used to evaluate variable importance with 10-fold cross-validation. Those analyses were 

performed using R (v3.6.1) and Bioconductor (release 3.10). P-values less than 0.05 were 

considered statistically significant. 
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Results 

 

ACE2 and TMPRSS2 are highly expressed in digestive organs and tumors, however, 

lower in tumor compared to matched normal 

Given the association between COVID-19 disease and various organ-specific 

symptoms, we investigated the distribution of ACE2 and TMPRSS2 expression in tumor and 

normal tissues across 34 tumor types consisting of 15 tissue types (Supplementary Tables 1, 

2, and 3). None of the acute myeloid leukemia (LAML) samples express TMPRSS2; hence 33 

tumor types were used for the analysis of TMPRSS2.  

When ranked by expression percentile in each tumor type, cholangiocarcinoma (CHOL), 

colon adenocarcinoma (COAD), pancreatic adenocarcinoma (PAAD), rectum adenocarcinoma 

(READ), and stomach adenocarcinoma (STAD) are among the top 25% percentile for both 

genes, all of which are digestive organs (Figure 1A). We acknowledge that TMPRSS2 is highly 

expressed in prostate adenocarcinoma (PRAD) likely due to known TMPRSS2:ERG gene 

fusion overexpression [35]. ACE2 and TMPRSS2 expression showed weak positive correlation 

in normal (Spearman’s ρ = 0.28, FDR-adjusted P<0.0001) and in tumor (ρ = 0.30, FDR-adjusted 

P<0.0001) (Figure 1B). Correlation within each tumor type showed a consistent pattern and can 

be further explored in external data files available on GitHub 

(https://github.com/riyuebao/ACE2_TMPRSS2_multicorrelates). 

In 14 tumor types where 15 or more matched normal tissues are available 

(Supplementary Table 1), we compared gene expression between tumor and matched normal 

from the same patients. The expression of ACE2 and TMPRSS2 was significantly higher in 

normal tissues relative to tumors (Figure 1C). Within individual tumor types, this pattern was 
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significant for ACE2 in breast cancer (BRCA), colon adenocarcinoma (COAD), chromophobe 

kidney cancer (KICH), liver hepatocellular carcinoma (LIHC), prostate adenocarcinoma (PRAD), 

thyroid cancer (THCA), and for TMPRSS2 in 8 tumor types (FDR-adjusted P<0.05 and higher in 

normal). Three tumor types showed elevated levels for both genes in normal tissues compared 

to tumors (BRCA, COAD, and LIHC) (Figure 1D).  

 

Clinical factors and HLA genotypes do not strongly associate with ACE2 and TMPRSS2 

gene expression in tumor or normal tissues 

Several clinical observations on COVID-19 indicated clinical factors such as BMI might 

be associated with severity [5, 23]. We sought to investigate the association between clinical 

variables (age, gender, race, tumor stage, tumor grade, menopause, BMI, smoking history) and 

ACE2 or TMPRSS2 gene expression in tumor or normal tissues from 10,038 patients. For each 

clinical factor, data were fitted into a two-way ANOVA model with tumor type and clinical factor 

as variables plus the interaction between the two. Overall we did not observe significant 

differences in expression for either gene when comparing designated clinical groups within 

tumor or normal tissues (Figure 2A to 2F) (Supplementary Tables 4 and 5). Outliers exist 

though are of unclear clinical relevance at this time (Supplementary Table 6). The results 

suggested those clinical variables are not strongly associated with ACE2 or TMPRSS2 

expression. In addition, we investigated the association between the presence of diabetes and 

gene expression in pancreatic adenocarcinoma (PAAD), where data were available. Similarly, 

no significant differences in gene expression were detected in tumor or normal tissues from 

patients with or without diabetes.  

Two HLA genotypes (B*46:01, B*54:01) have been reported to be associated with 

severe clinical outcomes by other groups [36]. We investigated the prevalence of the two alleles 

and identified low prevalence across all tumor types (0.6% and 0.2%, respectively, out of 19,118 

HLA-B alleles from 9,559 patients). When looking into individual tumor types, both alleles were 
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found to be significantly enriched in liver hepatocellular carcinoma (LIHC; FDR-adjusted 

P<0.0001), which was likely due to the enrichment of Asian populations in this cohort (43%). 

Comparison of ACE2 or TMPRSS2 gene expression among 36 HLA-A, 44 HLA-B, and 25 HLA-

C genotypes with 15 samples or more per genotype showed no significant differences after 

adjusting for tumor-type specific gene expression, and can be further explored in external data 

files available on GitHub.  

 

ACE2 correlates with distinct immune gene expression signatures and cell subsets while 

TMPRSS2 correlates with epithelial cell populations in tumor and normal tissues 

To understand potential associations of ACE2 and TMPRSS2 in tissues relevant to 

patients being treated with cancer immunotherapy, we investigated the correlation between 

ACE2 or TMPRSS2 and immune gene expression signatures known to be relevant in immuno-

oncology (Supplementary Tables 7 and 8). ACE2 was positively correlated with ISG signature 

in tumor samples from 24/34 tumor types (71%, 14 reached FDR-adjusted P<0.05) and normal 

tissues from 10/14 tumor types (71%, 4 reached FDR-adjusted P<0.05), and negatively 

correlated with angiogenesis and TGF-β signatures (Figure 3A). TMPRSS2 showed a mixed 

pattern of correlations with those immune responsive or suppressive signatures (Figure 3B).  

We did not find a consistent pattern of ACE2 with cell subsets across all tumor types 

with the exception of a high positive correlation with macrophage M2 in normal tissues from 

kidney cancers (KIRC, KICH, KIRP) (Spearman’s ρ = 0.84, 0.82, 0.79, FDR-adjusted P<0.0001) 

and stomach adenocarcinoma (STAD) (ρ = 0.67, FDR-adjusted P<0.001) (Figure 3C) 

(Supplementary Table 9). TMPRSS2 was positively correlated with epithelial cell abundance in 

tumor samples from 29/33 tumor types (88%, 17 reached FDR-adjusted P<0.05) and normal 

tissues from 14/14 tumor types (100%, 9 reached FDR-adjusted P<0.05) (Figure 3D).  

With the observation of correlation with specific immune signatures, we sought to 

investigate whether ACE2 or TMPRSS2 were expressed directly by immune cells or other 
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specific cell types in nine independent single-cell RNAseq studies. This includes tumor and 

immune cells from cancer patients diagnosed with glioblastoma or melanoma (Single Cell 

Portal, Broad Institute), or head and neck cancer [37]. In the cancer patient cohorts, less than 

1% of the malignant cells express ACE2 and/or TMPRSS2, while few to none of the immune 

cells express either gene. An exploration of three studies focusing on immune cells from healthy 

donors (13,316 PBMCs (Immune Cell Atlas), 39,563 ileum lamina propria immunocytes 

(Immune Cell Atlas), 594,857 immune cells (Census of Immune Cells, EBI)) further confirmed 

the lack of ACE2 and TMPRSS2 expression in immune cell populations. Realizing that other 

studies had reported the genes as highly expressed in lung, heart, brain, and colon, we 

investigated published large-scale profiling of 702,968 single cells from non-cancer patients or 

healthy donors (Human Cell Landscape) [38]. We found TMPRSS2 was expressed in stomach, 

colon, kidney, prostate, intestine, jejunum, pancreatic, esophagus, and bladder tissues, while 

ACE2 was only expressed in jejunum and fetal intestine. Lastly, we examined a public 

scRNAseq cohort from patients with COVID-19 infection 

(https://doi.org/10.5281/zenodo.3747336) and confirmed that ACE2 was not expressed in 

immune cells, and TMPRSS2 was present in six out of 140,956 cells total by one read count. 

Therefore, we concluded that ACE2 or TMPRSS2 are not expressed in immune cell 

populations, at least in the cohorts investigated. The expression of both genes in bulk RNAseq 

data was likely to be derived from non-immune cells, such as epithelial cells in the tissues. 

 

ACE2 and TMPRSS2 gene expression associates with microbiota in normal tissues 

particularly from colon and stomach adenocarcinoma  

Given associations between strong anti-tumor immune responses due to the presence of 

tumor-related virus and particular commensal microbiota, we sought to investigate associations 

between ACE2 and TMPRSS2 gene expression with the presence of virus or tissue microbiota. 

Across known viral positive and negative tumor types, we found an inconsistent pattern relative 
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to viral associated versus non-viral associated tumors (HPV, EBV, HBV). We then correlated 

1,093 commensal microbiota identified in tumor and normal tissue RNAseq data, as published 

in [30] with gene expression. We identified 75 taxa that showed significant and strong positive or 

negative correlation (Spearman’s ρ > 0.5 or < -0.5) with either gene in at least one pairwise 

correlation (FDR-adjusted P<0.05) (Figure 4A and 4B) (Supplementary Table 10).  Colon 

adenocarcinoma (COAD) and stomach adenocarcinoma (STAD) were the two tumor types 

demonstrating the strongest and most prevalent positive correlation of ACE2 and TMPRSS2 

gene expression with abundance of specific bacteria taxa, respectively. Kidney cancers, 

including renal papillary cell carcinoma (KIRP), chromophobe (KICH), and renal clear cell 

carcinoma (KIRC), also showed positive correlations between ACE2 and microbiota if not as 

prevalent as colon or stomach cancers. If ranked by Spearman’s correlation coefficient, 

Chlamydia was the top microbiota positively correlated with ACE2 in colon adenocarcinoma (ρ = 

0.81, FDR-adjusted P < 0.0001) (Supplementary Table 10). For both genes, those patterns 

were less prominent in tumor samples, which could be due to high heterogeneity in tumors. 

Overall we observed approximately a 2.6:1 ratio of commensal microbiota for gram-negative to 

positive groups in the 75 taxa (50 negatives, 19 positives, others undetermined) 

(Supplementary Table 10).  

 

Integration of multi-dimensional correlates revealed specific contributors shaping ACE2 

and TMPRSS2 expression in tumor and normal tissues 

 To integrate all correlates and evaluate their relative importance in determining the gene 

expression of ACE2 and TMPRSS2, we built LASSO regression models in tumor and normal 

tissues separately utilizing features from the clinical, immune, and microbial domains 

(Supplementary Figure 2). Clinical features included were age, gender, and race, while 

menopause, BMI, and smoking history were excluded because >50% of the samples were 

missing information. HLA genotype was not included because of many categories and/or levels, 
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which may lead to overfitting. Immune gene expression signatures included ISG, T cell-

inflamed, myeloid, angiogenesis, and TGF-β. Immune cell type features included macrophage 

M1/M2, CD8, and CD4 T cells, and non-immune cell type features included epithelial cells. 

Microbe features included the 75 bacteria taxa from the analysis above. In addition, we 

collapsed 34 tumor types into 15 tissue types and included these in the model to account for 

tissue-specific gene expression variations.  

We calculated the importance of each feature in the models with 10-fold cross-validation 

(Supplementary Table 11). After quality control and filtering, among the features kept in each 

model, immune and epithelial cells were the top-ranked features that predict ACE2 expression 

in normal tissues and tumors. Microbiota was observed to be important features for ACE2 in 

normal tissues but not in tumors (Figure 5A and 5B). For TMPRSS2 expression, epithelial cell 

abundance is the most important predictor in both normal and tumor samples (Figure 5C and 

5D). Taken together, these results suggested that immune signatures, epithelial cells, and 

commensal microbiota were important predictors for ACE2 expression, while TMPRSS2 

expression was primarily determined by epithelial cells. 

 

Discussion 

We performed a pan-cancer analysis of the receptor that facilitates SARS-CoV-2 

infection (ACE2) and the protease that mediates spike protein activation and viral entry 

(TMPRSS2) by integrating data across six resources including clinical, genetic, transcriptomic 

and microbiome domains. We found that ACE2 and TMPRSS2 are generally expressed lower in 

tumors relative to matched normal and that digestive organs (both tumor and normal samples) 

have the highest expression. Neither clinical factors nor HLA genotypes were consistently 

associated with gene expression levels. Multiple immune gene expression signatures such as 
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ISG and the T cell-inflamed tumor microenvironment did correlate with ACE2, and inverse 

correlations were seen with angiogenesis and TGF-β. ACE2 expression correlated with 

increased macrophage abundance in some tumors, while TMPRSS2 was strongly associated 

with epithelial cells. Regarding lymphocytes and macrophages, no ACE2 expression was 

observed in these cells across multiple single-cell sequencing studies. Microbiota contents are 

clearly associated with ACE2 and TMPRSS2 gene expression levels, possibly suggesting a 

causal role and the potential to be a modifiable biomarker. 

The mortality of COVID-19 disease has been substantially greater than that seen with 

seasonal influenza and led to the identification of or hypothesis that certain clinical factors may 

be associated with outcomes. The factors of particular focus included advanced age, BMI, and 

possibly diabetes or other chronic health conditions such as cardio-pulmonary syndromes and 

immuno-suppression or cancer [19, 23, 24]. In addition, certain races or ethnicities have 

experienced greater morbidity and mortality due to pandemic [25]. In our analysis of 

ACE2/TMPRSS2 gene expression in tumors and matched normal tissues, we observe no 

consistent association for these factors. Further work would be required to investigate other 

variables associated with these disease states, such as chronic inflammatory conditions, 

immuno-suppression, and other disparities that may be contributing factors [39, 40], and cellular 

context is important to interpret the complexity of those associations [41].  

An initial hypothesis when considering the deleterious outcomes for patients with cancer 

and COVID-19 disease was that cancer tissues themselves might have higher expression of 

viral entry related genes. We found that gene expression levels did not support this to be the 

case. Rather cancer tissues broadly have lower expression of ACE2 and TMPRSS2, though the 

cancers of the digestive tract do have the highest relative level among cancer tissues. This 

suppressed expression level is consistent with that observed in immuno-oncology gene 

expression studies [42], in which the T cell-inflamed tumor microenvironment has been 
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observed to be lower in cancer compared with matched normal. ACE2 has been described as a 

type I interferon-inducible gene [15]. Across our analysis, we see strong correlations of ACE2 

with type I (ISG) and type II (T cell-inflamed) interferon signatures consistent with this.  

Observing higher ACE2 levels in T cell-inflamed tumors does suggest cautious 

consideration in the administration of cancer immunotherapy during the COVID-19 pandemic, 

especially in patients with tumors of the aerodigestive tract such as head and neck, lung and 

colorectal/anal tracts. T cell-inflamed gene expression is strongly correlated with treatment 

response to checkpoint immunotherapy [43] and has not been associated with immune-related 

adverse events (irAE) [44]. However, if ACE2 and TMPRSS2 levels are high, making viral 

infection potentially more likely, concomitant treatment with checkpoint blockade may potentially 

change anti-viral host response [45] or possibly obscure rapidly delineation of symptoms such 

as fatigue, dyspnea, diarrhea [46] and complicate irAE management, especially given emerging 

evidence that corticosteroids may worsen COVID-19 disease [47].  

Direct infection or dysregulation of immune cell populations is an additional area of 

concern in patients with cancer and more broadly in infected patients. COVID-19 can manifest 

with lymphopenia with some autopsy series suggesting lymph node or splenic atrophy [48]. 

Certainly, dysregulated macrophage activity, with the elaboration of IL-6 and other inflammatory 

cytokines, is a major component of the disease. Studies have raised the possibility that SARS-

CoV-2 infects lymphocytes [17] or macrophages [48], leading to COVID-19 associate findings. 

In our study, we investigated the expression of ACE2 and TMPRSS2 across multiple single-cell 

sequencing databases encompassing nine independent studies. However, we found no 

evidence of expression in these cells. It must be noted that the possibility exists that type I 

interferon may induce ACE2 expression, which would not be captured in our analysis. We would 

note, however, that previous studies have not definitively determined that T cells or 

macrophages are infected by SARS-CoV-2, and direct viral culture from purified cell populations 
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would be needed to confirm this. Additionally, multiple other known pathologies associated with 

sepsis and extreme illness could explain these lymph node and splenic findings, and few 

patients with COVID-19 have been documented to have an extreme viremia consistent with 

what would be required as a pre-requisite to such histologic findings. 

Immune responses to cancer and in other settings are increasingly being recognized as 

influenced by the commensal microbiota [49]. We were, therefore, interested in investigating 

associations of tissue-based microbiota and ACE2 as a surrogate for the risk of SARS-CoV-2 

infection. In our analysis, we found strong correlations of specific bacterial flora and high 

expression of ACE2 in COVID-19 related organs, including colorectal and kidney. Particularly in 

colorectal, where presentations with diarrhea have been widely described, we note a ratio of at 

least 2:1 of gram-negative bacteria in the bacteria populations significantly associated with 

elevated ACE2 expression. A dominance of gram-negative bacteria in the fecal microbiota is 

assumed at baseline, and yet disequilibrium with an increase of these bacteria is associated 

with diminished immunological outcomes, especially in immunosuppressed patients [50]. In our 

study, we have analyzed a heterogeneously collected group of tumors and match normal 

tissues. However, this observation suggests that further investigation of the commensal 

microbiome in COVID-19 and possibly that bacterial antibiosis related to coronavirus infection 

might be of relevance in the future. 

We note limitations to our report with the acknowledgment that the use of pre-existing 

data does not fully capture the complexity of active infection by SARS-CoV-2. Rather we sought 

to investigate factors correlated with viral cell engagement via ACE2 and viral entry via 

TMPRSS2 as possible associative risk factors that might be entertained on a clinical or 

translational level when considering risk for patients with cancer and otherwise of COVID-19. 

Certainly, there may be virus infection-induced changes that are dynamic. However, we believe 

our analysis to be the most comprehensive catalog of ACE2 and TMPRSS2 correlates to date 
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(34 tumor types from 15 tissue types across 10,038 subjects including both tumor samples and 

matched normal tissues as well as scRNAseq databases consisting of patients with cancer and 

healthy donors). We also acknowledge that the microbiota we analyzed were identified from 

tissue RNAseq data, and the sample collection and preparation of tissue RNAseq was not 

designed originally to completely rule out potential contamination or confirm the vitality of 

identified microbes. However, these source data constitute the largest collection of microbiota 

communities identified from patients with cancer, have previously been used in this manner to 

build prediction algorithms, and the data were optimized via rigorous methodology to control for 

noise across the data set [30]. We also note that we are unable in this analysis to comment on 

respiratory or fecal samples from patients infected with COVID-19 and very much look forward 

to better understanding the functional mechanisms associated with those commensal and 

pathogenic microbiota related to COVID-19. Lastly, our work does not determine a causal role 

of those correlates in driving response or severity of COVID-19 disease and would require 

further mechanistic studies as well as prospective clinical trials in patients to further develop or 

investigate interventional approaches. 

 

Conclusions 

We have performed a multi-omic analysis of ACE2 and TMPRSS2 gene expression 

related to clinical, genetic, microbiome covariates associated with COVID-19 infection. We have 

identified novel commensal microbiome associations and further described interferon 

associated gene expression patterns in normal and tumor tissues related relevant to SARS-

CoV-2 infection. These data will hopefully inform sample collection, future analyses, and 

treatment of patients with cancer and others infected with COVID-19. 
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List of abbreviations 

SARS-CoV-2 = Severe acute respiratory syndrome coronavirus 2. MERS = Middle East 

respiratory syndrome. ACE2 = Angiotensin-converting enzyme 2. TMPRSS2 = Type II 

transmembrane serine protease. BMI = body mass index. TCGA = The Cancer Genome Atlas. 

GDC = Genomic Data Commons. RSEM = RNA-Seq by Expectation Maximization. FPKM = 

Fragments Per Kilobase of transcript per Million mapped reads. WES = whole-exome 

sequencing. TCGA-CDR = TCGA Pan-Cancer Clinical Data Resource. scRNAseq = single-cell 

RNAseq. Tukey's HSD = Tukey's honest significance test. ISG = interferon-stimulated genes. 

Tinfl = T cell-inflamed. angio = angiogenesis. TGF-β.= transforming growth factor-β. 
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Figure 1. Distribution of ACE2 and TMPRSS2 gene expression in tumor and normal 

tissues across 34 tumor types. (A) Tumor types ranked by expression percentile in each 

gene. Five tumor types that show > 25% expression percentile within each analysis set in both 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 30, 2020. ; https://doi.org/10.1101/2020.04.29.20082867doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.29.20082867
http://creativecommons.org/licenses/by-nc-nd/4.0/


32 
 

genes are bolded. Four analysis sets are shown: (left panel) ACE2 in normal (n=14 tumor 

types), TMPRSS2 in normal (n=14 tumor types); (right panel) ACE2 in tumor (n=34 tumor 

types), TMPRSS2 in tumor (n=33 tumor types; LAML not shown due to lack of TMPRSS2 

expression in this tumor type). (B) Correlation between ACE2 and TMPRSS2 gene expression 

in normal (n=708 samples) and tumor (n=10,024 samples). (C and D) ACE2 and TMPRSS2 

gene expression are higher in normal relative to tumor samples in (C) all tumor types pooled 

and in (D) individual tumor types. Line connects tumor and matched normal samples from the 

same patient (n=692 patients). Spearman’s correlation was used in B. Two-sided paired t-test 

was used in C and D. P-values shown are after FDR correction for multiple comparisons. **** 

P<0.0001, *** P<0.001, ** P<0.01, * P<0.05. For comparisons that do not reach significance 

level of 0.05, exact p-values are shown. A full description of each cancer ID is provided in 

Supplementary Table 1. 
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Figure 2. Clinical correlates of ACE2 and TMPRSS2 expression do not show consistent 

patterns across individual tumor types. (A to F) Gene expression by age (<65y, ≥ 65y), 

gender (female, male), race (African American, Asian, White), menopause (non-post, post), BMI 

(levels 1 to 4), smoking history (never, light, heavy), and by sample type (tumor, normal) when 

applicable. The criteria for each group definition are described in Methods. The number of 

samples in each group is provided in Supplementary Tables 4 and 5. In E, only p-values 

between levels 1 and 4 are shown; the rest is provided in Supplementary Table 5. Two-way 

ANOVA was used in A to F, with tumor type and clinical group as the variables plus interaction 

between the two. For clinical factors that have more than two groups (C, E, F), Tukey's honest 

significance test (HSD) was used with the fitted ANOVA model for pairwise comparisons while 

controlling for Type I errors. Two-way ANOVA p-values after BH-FDR correction are shown in 
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A, B, D, and Tukey's HSD p-values are shown in C, E, F. * P<0.05. For comparisons that do not 

reach significance level of 0.05, exact p-values are shown.   
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Figure 3. ACE2 and TMPRSS2 expression are correlated with distinct immune signatures 

or cell populations. (A and B) Correlation of five immune gene expression signatures, 

Interferon stimulated genes (ISG), T cell-inflamed (Tinfl), myeloid, angiogenesis (angio), and 

transforming growth factor-β (TGF-β) with (A) ACE2 and (B) TMPRSS2 gene expression. (C 

and D) Correlation of 64 immune, stroma, and other cell subsets with (C) ACE2 and (D) 

TMPRSS2 gene expression. n=14 tumor types shown for both genes in normal tissues. n=34 

tumor types shown for ACE2 in tumor, and n=33 tumor types shown for TMPRSS2 in tumor. 

The full correlation statistics are provided as Supplementary Tables 7 and 8. Spearman’s 

correlation was used in A to D.  
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Figure 4. ACE2 and TMPRSS2 expression are correlated with distinct microbiota 

communities. (A and B) Correlation of 75 bacteria taxa with (A) ACE2 and (B) TMPRSS2 gene 

expression. Within each plot, the left panel shows normal tissues, and the right panel shows 

tumor samples. Seventy-five taxa were selected by correlation coefficient ρ > 0.5 or < -0.5 and 

FDR-adjusted P<0.05 in at least one pairwise correlation (Supplementary Table 10). For both 

genes, n=14 and n=33 tumor types are shown in normal and tumor samples, respectively. 

LAML does not have data available for microbiota abundance, hence excluded from analysis for 

both genes. Spearman’s correlation was used in A and B.  

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 30, 2020. ; https://doi.org/10.1101/2020.04.29.20082867doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.29.20082867
http://creativecommons.org/licenses/by-nc-nd/4.0/


39 
 

 

Figure 5. Variable importance of multi-dimensional correlates in predicting ACE2 and 

TMPRSS2 expression. (A and B) Clinical, immune, and microbiota features in association with 

ACE2 gene expression in (A) normal and (B) tumor samples. (C and D) Clinical, immune, and 

microbiota features in association with TMPRSS2 gene expression in (C) normal and (D) tumor 

samples. For each gene, an analysis was performed in normal (n=708) and tumor samples 

(n=10,024) separately, with workflow illustrated in Supplementary Figure 2. Variable 

importance scaled to 0-100 is shown on the x-axis. Vertical red dashed line labels score = 20. 

Features are shown on the y-axis colored by clinical, immune, non-immune, microbiota, and 

tissue type. Top 20 features ranked by variable importance higher to lower are shown, and the 
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full list is provided in Supplementary Table 11. LASSO regression was used in A to D with 10-

fold cross-validation. 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 30, 2020. ; https://doi.org/10.1101/2020.04.29.20082867doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.29.20082867
http://creativecommons.org/licenses/by-nc-nd/4.0/

