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1 Abstract

COVID-19 has significantly changed our daily lives. Stay-at-home orders and
forced closings of all non-essential businesses has had a significant impact on
our economy. While it is important to ensure that the healthcare system is
not overwhelmed, there are many questions that remain about the efficacy of
extreme social distancing, and whether there are alternatives to mandatory
lockdowns. This paper analyzes the utility of various levels of social distancing,
and suggests an alternative approach using voluntary distancing informed by an
infectious load index or ‘infection weather report.’

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
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2 Introduction

The outbreak of SARS-CoV-2 has caused a lot of changes in our daily lives.
When policy makers around the world realized the threat of COVID-19, they
began crafting guidance, and eventually started issuing stay-at-home orders.
These orders have created significant economic disruption, and disruption to
peoples’ lives. And there has been a question of how long they can be main-
tained. Already, lock-down orders are being lifted, at least in part, in some
locations. But the question remains of what to do next, both in terms of deal-
ing with the spread of SARS-CoV-2, and handling any future outbreaks of this
nature.

Many of us are familiar with the catchphrase ”flatten the curve.” The idea is
that social distancing will reduce the rate at which the infection spreads, and
thus reduce the burden on the healthcare system. However, these lockdown
orders cannot be maintained indefinitely. One has to wonder how a premature
end to a lockdown might impact the spread of the infection, and if there are
any alternatives to such measures, and whether they might be more effective.

This paper has two goals. The first goal is to compare a number of modified
SEIR models, in order to identify possible outcomes associated with the current
lockdown efforts. The second goal is to identify potential ways to improve efforts
to reduce the spread of both SARS-CoV-2, and infectious disease overall. The
models in this paper rely on empirically estimated parameters, and take into
account a number of factors, including social distancing, stratification of risk
groups and hospital capacity. It then compares models in which a constant level
of social distancing for a fixed period of time with modulated social distancing
based on voluntary activity informed by disease surveillance.

3 Model Development

The core of these analysis is the SEIR compartmental model. Many alterations
to the basic model have been made. There are two copies of each compartment,
one for low risk individuals such as young people with minimal comorbidities,
and one for high risk individuals such as the elderly and people suffering from
various diseases or are otherwise in significantly poor health. For simplification,
the focus for risk was on age. Mortality rates were also considered.
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3.1 Base

The core model for each set of compartments is defined as follows:

S = —pBSI

E = pBSI —aFE
f:aE—’yI—MI
Rz'y[

M = pul
N=S+E+I+R+M

Here (3 is the product of the contact and transmission rates. « is the recip-
rocal of the incubation period, 7 is the reciprocal of the clearing period post
onset of symptoms, and p is the mortality rate. And p is the adjustment to the
contact rate, due to social distancing. Each of these cells are duplicated into a
low risk and high risk set. For social distancing, it is assumed that there will
be a greater amount of social distancing within the high risk population and
between the low and high risk populations.

3.2 Data Sources and Estimates
3.2.1 SEIR Parameters

Approximation of basic parameters comes from a number of sources. According
to Peng et al. 2020, the latent time period, or the time it takes for a person to
transition from exposed to infected, is approximately two days, giving o = 0.5[6].
The analysis also suggests that every contact is almost guaranteed to result in
an infection: § ~ 1. Because the model used in Peng et al. 2020 was complicated
and did not calculate the unaided clearing of the infection, approximations from
another source were used. D’Arienzo and Coniglio 2020 suggest that even in
Italy where there is a significant COVID-19 burden, the basic reproduction
number is between 2.43 and 3.10, which yields a range of 0.32 and 0.41 and for

v[3].

While § is approximated as 1, it is unlikely that the contact rates of individuals
within the same age group is equal to the contact rate of individuals between the
two groups. It is likely that within-group contact rate is higher than average, and
that the between-group contact rates are lower than average. People within the
high risk group are also more likely in general to maintain social distancing, and
so this idea is also considered in approximating 5 for each type of interaction.
Values were chosen s.t. the population weighted average summed to 1.
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3.2.2 Demographics

It was assumed that 84% of the population was in the low risk group and
16% was in the high risk group, and that there was one initial infection within
each sub-population. This assumption is based on the fraction of the United
States population aged 65 or older in 2018[7]. The United States population
was slightly under 330M in 2018, so 330M was chosen for NJ[8].

3.2.3 Hospital Capacity and Mortality Rates

Hospital bed capacity is estimated based on figures from COVIDACTNOW.
The model assumes that there are roughly enough hospital beds for 0.22% of
the population, with 60% capacity, and an emergency capacity build of roughly
200%[5]. As a conservative estimate, 0.1% was chosen for the capacity limit.

Infection and case fatality rates are highly dependent on a number of factors
and vary based on the quality of the health care system, the age of the patient,
and comorbidity. Mortality seems to be orders of magnitude higher in at risk
populations compared to low risk populations. COVIDACTNOW estimates a
case fatality rate of 1.1% with an additional 1% if hospitals are overburdened[5].
However, it does not stratify by risk group.

The base model starts with the assumption that the case fatality rate is 0.1% for
low risk populations and 10% for high risk populations. Assuming that being
over-capacity increases the risk of death among the low risk population by 50%
and the high risk by 200%, that would yield a case fatality rate of 0.15% and
30% respectively. The 50% figure is still higher than the relative risk at 10 days,
for general ER visits, but within the 95% CI of 1.04-1.72[9].

However, not every infection meets the criteria of being a case. There are many
asymptomatic and subclinical infections for SARS-CoV-2. By one estimate, the
number of infections was 50 to 85 times higher than the reported number of
cases[1]. However, it’s quite possible that a number of those infections resulted
in deaths that were not reported. Furthermore, since it is more likely that high
risk individuals are more likely to show dangerous symptoms, and their status
as being high risk yields a greater rate of testing, the mortality rates of the high
risk group received a smaller adjustment. Low risk mortality rates were divided
by 20 and high risk mortality rates were divided by 5.
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3.3 Parameters

N = 330,000,000
a=0.5

B1 = 1.075 - The adjusted contact-transmission rate within the healthy pop-
ulation

B2 = 0.75 - The adjusted contact-transmission rate between both populations
B3 = 0.9 - The adjusted contact-transmission rate within the high risk popula-
tion

v = 0.37 - Average between the low and high bound estimates for the clearing
rate

p = [variable] - The base social distancing coefficient

p1 = p - Social distancing coefficient for low risk group

p2 = 0.8p - Social distancing coefficient between the low and high risk groups
p3 = 0.8p - Social distancing coefficient for high risk group

11 = 0.0005 - Mortality rate of low risk group under optimal conditions
to = 0.050 - Mortality rate of high risk group under optimal conditions
13 = - Mortality rate of low risk group under sub-optimal conditions
11 = - Mortality rate of high risk group under sub-optimal conditions

k = 0.001 - Percent of population infected before hospitals are over capacity

4 Models and Model Analysis

A number of analyses were performed. First, it seemed useful to simulate how
different levels of social distancing impacted the progression of the epidemic,
when social distancing is maintained for a fixed period time period of sixty days,
with initial onset 60 days after the first infection, representing lag between initial
discovery of the disease and decision to engage in mandatory social distancing.

4.1 Relative Mortality Across Social Distancing Parame-
ters

For social distancing parameters ranging from 0.1, representing extreme social
distancing, to 1, representing no social distancing, a social distancing parameter
of 0.65 appeared most effective, with an approximate reduction in mortality
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of 40%. A social distancing coefficient of less than 0.65 caused an uptick in
mortality rates from that low. The minimum estimated mortality rate, for the
entire progression of the epidemic was approximately 0.0062 or 620 per 100,000.
For the United States, that would imply a final death toll of approximately 2
million under moderate social distancing, and 3.3 million without any social
distancing.

Figure 1: Mortality Relative to Base Mortality

Looking at the progression of the epidemic, for p = 0.4 helps to understand why
values less than 0.7 result in higher mortality rates.

Figure 2: Epidemic Progression With p = 0.4

Each time step represents 0.1 days. At the start of the outbreak, there is a
significant reduction in infections and deaths, but there is a spike in both shortly
after the end of the social distancing effort. Rather than flattening the curve,
the more extreme social distancing measures appear to delay the peak, allowing
"pressure” to build up due to a high reserve of susceptible individuals. In order
for more extreme continuous social distancing measures to be effective, they
would therefore have to be maintained until an alternative, such as a vaccine,
is produced.

4.2 Cyclical Distancing

As early as the beginning of April, it became apparent that a one time social dis-
tancing effort may be not be enough to cope with the COVID-19 epidemicl4].
However Kissler et al. 2020, while recognizing this issue, did not seek to es-
tablish a specific protocol for when social distancing should be engaged and


https://doi.org/10.1101/2020.05.02.20084947
http://creativecommons.org/licenses/by/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2020.05.02.20084947; this version posted May 6, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY 4.0 International license .

disengaged[4]. Assuming that it is possible to obtain reasonably high resolution
data for a region, the public health community should be able to put out daily
and weekly advisories. These advisories can be used to promote voluntary social
distancing, during periods of high levels of infectious load.

Because the social distancing measures would be temporary, and because there
would be less uncertainty, because of the clear conditions for distancing recom-
mendations, a slightly more extreme level of social distancing should be possible,
so a p = 0.5 was chosen. A threshold of 0.0005 for the 7 day moving average
of infections was chosen, because it was half the estimated maximum safe load
that hospitals could handle. Furthermore, because reports of low infectious load
could yield a false sense of safety, p = 1.05 was chosen during periods when social
distancing was not engaged. The graphical results are detailed in the following
figure.

Figure 3: Application of Voluntary Cyclical Distancing

The results of the analysis are interesting. Voluntary cyclical social distancing,
using the parameters chosen, results in a significantly extended curve. It takes
around 1,200 days for the infection to fully burn itself out under this scenario.
However, mortality rates are also much lower under this scenario, with the final
mortality rate coming in at roughly 0.0047 or 470 per 100,000 people. In this
model, there was no fixed time at which social distancing was expected to start.
However, it took roughly 62 days for the infectious load to build enough to trig-
ger the first distancing event, which is on par with the first model. All together,
there were 39 periods of social distancing, with the last ending roughly 911 days
after the initial infection.

5 Discussion

Feasibility depends on a number of factors, including the ability to collect suffi-
cient data to generate infectious load indices for a desired geographic scale, and
the ability to actually engage in social distancing on a voluntary basis. One
question is whether we can collect enough information to create such an infec-
tious disease index. While it would take a number of years to create a robust
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index that can be used in general cases, there should be no issue with creating
an index specific to COVID-19. While it is true that a lot of countries, espe-
cially the United States, are unable to test anywhere close to every individual,
random sampling can give us a significant amount of information on infectious
load. Such random sampling requires a fraction of the number of tests that are
needed to identify and isolate every infection.

With random sampling, integrated with other data gathering techniques, it is
possible to have a fairly reasonable understanding of the progression of this epi-
demic. Much of the determination of cost effectiveness and ability to report will
depend on the level of resolution we wish to have. If the goal is to have a com-
posite state-wide infection index, fewer tests will be needed per day. Creating
a county level index would be significantly more expensive.

By reporting information to the population, we can alter behavior so that vol-
untary social distancing can be modulated as infection dynamics change. This
modulation while extending the duration of the infection, significantly flattens
the curve, without mandatory stay-at-home orders. This flattening significantly
extends the duration of the pandemic, but reduces the burden on the health-
care system and reduces the overall mortality rate. Additionally, given the level
to which the epidemic period is lengthened, such measures would give time to
produce treatments and prophylactics.

In this analysis, the initial length of time to bring the infection rate below
threshold, and thus end the first social distancing event was slightly greater
than 90 days, which is significantly longer than the 60 day social distancing
measure used in the first simulation, and likely a bit longer than the length of
time for which social distancing measures will be in place for COVID-19, at
least during the initial wave. However, current lockdown measures are driving
the social distancing coefficient, p, well below 0.5, which is far more extreme,
and which cannot be maintained for as long a period of time.

Regarding the model which uses a single level of social distancing for a fixed
period of time, it is concerning that the optimal social distancing coefficient
is 0.65, which is likely far below the current level of social distancing, caused
by the forced shutdown of all "non-essential” operations. While such extreme
social distancing may be useful if limited to those within the at risk group, and
between low and high risk groups, it does not seem appropriate for the general
population.

There are a number of assumptions about parameter estimates that were made
to test these models. In particular, the mortality rates for low and high risk
populations are rough estimates. However, while they will alter the specific
values in terms out fatality outcome, they should have little impact on the
progression of the infection itself. Still, additional research into the case, and
infection mortality rates, and greater stratification of risk levels would help
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give a better picture of potential outcomes and efficacy of existing and future
solutions.

Improvements to this model however could be made. Additional stratification is
possible, and empirical estimates of actual contact rates could be calculated with
future research. Research by Chitnis et al. 2013 may be of interest, as it looks
at a highly stratified population and uses empirical estimation of heterogeneous
mixing between age groups[2]. Guesses in this area is likely to have some effect
on the optimal social distancing level. But again, it should not impact the
comparison between the fixed and cyclical distancing models to any significant
extent.

While elements of this model are specific to SARS-CoV-2, the general dynamics
would still apply to other infections. With a little bit of time and resources
applied to the problem, a general reporting system for infectious disease could
be implemented. This system could be used to help reduce the severity of flu
seasons, and during future epidemics. Such infection weather reports, so to
speak, could become part of the new normal. Moreover, this system could be
especially useful if the COVID-19 epidemic enters a seasonal pattern due to
limited generation of immunity, which is a concern that has been voiced[4].

Regarding the ability to actually engage in voluntary social distancing, a major
concern is the ability to take off from work. If social distancing efforts needed
to be extreme and extended for a long period of time, this issue would be more
problematic. Given the reliance on our job, and the general inability to take off
of work for extended periods of time to recover, this issue applies to situations
outside of COVID-19 as well. Anyone who feels sick, especially if they have
a fever, cough, or other symptoms of a potentially infectious disease, should
engage in social distancing. However, financial needs often override wisdom and
public safety guidelines.

However, given that simply reducing the average contact rate by 50% is enough
to significantly reduce the rate of spread of the infection, a few minor decisions
are all it would take. Moderately reducing frequency and lengths of outings,
and being increasingly aware of one’s surroundings are all it would take to
significantly reduce average contact rate. It is also likely that during periods
where there are reports of high levels of infectious load, employers would be
more willing to let an employee stay home and or cut back services.

Finally, research should be conducted into creating a composite index rather
than trying to produce an index for a single pathogen. Analyzing the utility
and efficacy of such a composite index will be far more complicated, as it would
require the incorporation of numerous pathogens. However, because the public
health system would not be seeking to limit a single infection but rather the
bulk of infections, it might actually be easier to produce an effective index for
an aggregate.
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