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Abstract

In this study, we propose a novel statistical method to predict a long-term
epidemic evolution based on a on-going data. We developed a Bayesian
framework for the Susceptible-Infected-Removed model (Bayesian SIR), and
estimated its underlying parameters based on day-by-day timeseries of the
cumulative number of infectious individuals. The new Baysian framework
extends the deterministic SIR model to a probabilistic form, which provides
an accurate estimation of the underlying system by a short and noisy data.
We applied it to the data reported on the Coronavirus Disease 2019 (COVID-
19), and made a month long prediction on its evolution. Our simulated
test using past timeseries to predict the current data gives a reasonable
reliablity of the proposed method. Our analysis of the current data detected
and warned a rising trend in the countries in Central Asia, Middle East,
and South America, while United States or European countries, which have
already experienced large numbers of infected cases, are predicted to slow
down in the increase.

1 Background and aims

The pandemic of the Coronavirus Disease 2019 (COVID-19) has been an
unprecedent disaster and threat all over the world, since its first report in
Wuhan, China in December 2019. Many countries in Asia, Europe, and
North America have already experienced sharp increases in the number of
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infectious cases and deaths caused by COVID-19, and some of them ob-
served slow down in the increase of the infectious cases and deaths. Several
of the authorities of these countries have resorted lockdowns of major cities
or whole countries, and stopped major body of social activities except for
the minimum necessary one to keep citizens’ daily life. It is hypothetically
effective to reduce person-to-person interaction in order to lower the basic
production number, how many additional infected people on average each
infected person causes, and reduce the outbreak size in each country. A
powerful social resort such as lockdown, however, also causes a severe eco-
nomical damage in society, which may also cause other types of social and
economic crises. Thus, in this current situation, it is critical to estimate
or predict the final or a long-term order of outbreak size, in order for the
authority make to balance two distinct types of risks caused by COVID-19
and potential economic depression.

In this present study, we aim to develop a statistical model to predict
the evolution of the infectious population size in a middle-term (month or-
der) time scale using a given reported timeseries of cumulative number of
infectious cases. It has been considered difficult to accurately predict the
final outbreak size in general [Drake, 2005]. Perhaps, one of reason for this
problem is that we still miss a proper statistical re-formulation of a theoret-
ical model such as the Susceptible-Infected-Removed (SIR) epidemic model
[Kermack and McKendrick, 1927], which is, in the original form, not appro-
priate to directly apply to a noisy data subject to non-infectious/ social
impact taken by the human society.

There are a number of past attempts to give a quantitative prediction
for the cumulative number of infectious cases. Some attempts employed
a curve-fitting of theoretically assumed function such as logistic function
[Batista, 2020, Fokas et al., 2020], others employed a statistical model de-
signed to capture an epidemic dynamics, and provided a model-based analy-
sis of the data [Andersson and Britton, 2012, Clancy et al., 2008]. The for-
mer type of approach often takes a more generic curve-fitting method, but
has little theoretical justification for the fitted function, which the latter
has. In contrast, the latter type of approach has theoretical rational and
epidemiological background behind the model, but it is often too technically
restricted to apply an empirical, noisy and unknown type of disease.

In this study, we developed a statistical modification of the determin-
istic SIR (DSIR) model [Kermack and McKendrick, 1927], which we call
Bayesian SIR model (BSIR). BSIR is a probabilistic and generative model
in which the individuals in the Susceptible, Infected, and Removed state
stochastically transit one state to the other, as modeled in DSIR. In this
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sense, BSIR employed the theory-driven approach [Andersson and Britton, 2012,
Clancy et al., 2008], while it is also data-driven to readily apply to a noisy
empirical data. BSIR is essentially a probabilisstic, discrete-time and
discrete-variable modification of DSIR, and reformulate the original differ-
ential equations to a difference equations. With this reformulation, we dis-
covered a theretical relationship between an partially observed timeseries
and the latent system parameters in BSIR .

2 SIR Model and its extension

The SIR model [Kermack and McKendrick, 1927] is one of the earliest mod-
els in the form of a set of differential equations as follows, which captures
irreversible transition of population, from/to the three types of population,
Susceptible (S), Infected (I), and Recovered (R), S + I +R = N .

dS
dt = − β

N IS
dI
dt = β

N IS − γI
dR
dt = −γI

, (1)

In a typical initial setting, vast majority of the whole population of interest
is at Susceptible to the disease, and introduces a small portion of infected
population in it (i.e., large S and small I). In the form of differential equa-
tion, the increase rate in the infected population is characterized by the
proportion of the infected population to the whole population, and thus
β I
N S of people move from susceptible to infected state at every unit time

with a certain rate constant β. Some portion of the infected population
is recovered (sometime removed is more preferred as “death” also count as
“recovered”) and immune from the infected population by γI with a certain
rate γ every unit time. Thus, the standard SIR model has three parameters
dominating the dynamics, the (initial susceptible) population size N , the in-
creasing rate of recovery γ, and the increasing rate of infectious population
size β.

There are many past theoretical and technical attempts to model various
types of epidemic and developed statistical analysis for them. Andersson and
Britton [Andersson and Britton, 2012] covered basic stochastic models such
as the Reed-Frost model [Abbey, 1952], SIR model [Kermack and McKendrick, 1927],
and their extension and variations, as well as their statistical analysis for a
partially observed data. However, most of these models are formulated as
an analogue of the original differential equations, in a form of continuous-
time stochastic process [Andersson and Britton, 2012], and they are often
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technically difficult to adopt for increasing timeseries with unknown ini-
tial and terminal condition (but some may have a closed-form estimator
[Clancy et al., 2008]).

The philosophy behind these existing theoretical work is more or less
“post-epidemic analysis” with near-complete data and findings on well-
known epidemic, rather than practical analysis of on-going data to pre-
dict evolution of an unknown type of epidemic. That is, the major body
of theoretical analysis is dedicated for analysis of vaccination efficacy and
proposal for the vaccination policy, after an epidemic has been experienced
fully (see also Chapter 12 of [Andersson and Britton, 2012]). For instance,
Clancy and O’Neill [Clancy et al., 2008] have derived a closed-form estima-
tor of the basic production number for a given complete data following a
stochastic SIR model. This is of course quite important by its own right, in
order to prevent the next epidemic and reduce causalities. It is, however,
less useful, when we are going through little known epidemic and had no
vaccine against it for time being.

Given this background of the related theoretical literature, the new
model is designed to estimate the latent nature of outbreak such as the ba-
sic reproduction number and the initial susceptible population size, which
are hypothetically assumed in the DSIR model, using a short and on-going
timeseries of the cumulative number of infectious individuals. Although our
probabilistic model is inspired by DSIR model in the philosophy level, its
computatoinal architecture is quite different from the existing ones. First,
many of the existing statistical SIR models is formulated in continuous-time
(but not all), but our model is discrete time, which is also considered a
sophistication of the Reed-Frost “chain of binoamial” model [Abbey, 1952],
in order to incorporate empirical data typically reported daily. Second, the
new model is designed to produce a relatively easily computable estimator,
rather than being faithful to the original SIR model. Thirdly, the model is
fully data-driven – neither system parameters nor latent variables need to be
pre-specified, but all of governing parameters are estimated from partially
observed data. These three design principles are in our mind, we chose
Bayesian statistical framework, in which the observed and latent infected
population size and SIR-like characteristic parameters, as random variables,
are analyzed over discrete time.

Comparable with the differential equation (1) of the state variables
(S(t), I(t), R(t)) ∈ R3, Baysian SIR model has the three discrete state vari-
ables (St, It, Rt) ∈ Z3 over discrete time t = 0, 1, . . .. The Baysian SIR
model is designed to capture the essential nature of the differential equation
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(1) by the difference equations for any t = 1, 2, . . .
St − St−1 = − β

N
St−1 It−1

It − It−1 = β

N
St−1 It−1 − γIt−1

Rt −Rt−1 = γIt−1

, (2)

where each variable X indicates the expected value of the random variable
X.
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Figure 1: The cumulative number of infected individuals F (t) = N − S(t)
and the number of infected individuals I(t) in DSIR and BSIR model.

As an empirical dataset of the on-going epidemic evolution, we do not
know the system parameters N, β, γ as well as St, It, Rt exactly, but we can
only access (sub-sample of) the cumulative number of infected individuals
Ft = N − St. Suppose that we are given a g timeseries of the cumulative
number of infectious cases Ft at day t = 0, 1, . . . , T

F = (F0, F1, . . . , FT ),

and BSIR predicts the continued hypothetical time series up to a specified
time T + T̂ in future

F̂ = (FT+1, FT+2, . . . FT+T̂ ).
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An input timeseries F is typically very short (≈ 30 by discarding early
fluctuated timeseries) for make any generic method to give a sufficiently
accurate prediction. As an example, Figure 1 shows a generated timeseries
of F (t) of DSIR and Ft of BSIR with the same parameter N = 106, β =
0.5, γ = 0.2. These two models produce quite similar timeseries, although
their time constant or lag may be slightly different between them due to
randomness due to early stage of the development in BSIR.

It seems challenging to find all parameters only with this timeseries alone
by existing techniques, since it seems insufficient to decide SIR model with
two independent variables in the three state variable S, I,R. In BSIR ,
the timeseries of cumulative number of infected individuals F gives a crucial
statistics to estimate the parameter N, β, γ, as the expected values of these
random variables always hold the identity for any t = 2, 3, . . . (see also
Lemma 1 in the Supplement)

Ft+1 − Ft =
β

N

(
N − Ft

)
gt−1(γ, F ), (3)

where gt−1 = Ft−1 − γ
∑t−2

s=0(1− γ)t−2−sFs.
Identity (3) motivates us to plot this relationship between timeseries

F , which we call cumulative-to-difference plot (CD plot), to characterize

a BSIR by the series of points
(
Ft,

Ft+1−Ft

Ft−1

)
on the plane R2. Figure 2

shows CD plot. In the CD plot, there is an asymptotic line drawn by letting
gt−1 in (3) be constant, and it hits the latent cumulative number of infected
individuals N on the X-axis in the limit t → ∞. Thus, it suggest that a
naive way to predict the evolution of epidemic is to extrapolate an existing
data to an asymptotic line on the CD plot. However, this simple method
is not effective in practice – a noisy empirical timeseries does not allow to
estimate the asymptotic line unless the sample size is large enough (see also
Section ?? for the numrical simulation and more discussion on this point).
Accordingly, we developed a Bayesian estimator of the parameters N, β, γ
and other latent variables to extract full information underlying the series
F .

3 Prediction with empirical data

Therefore, on behave of just a simple linear-regression based approach, we
incorporated a domain knowledge on epidemic mechanism, embodied as the
DSIR model, to design BSIR applicable to the empirical report on daily
timeseries of infectious cases (see also Section ?? for the detail of BSIR ).
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Figure 2: The increase ratio Ft−Ft−1

Ft
as a function of the cumulative number

of infected individuals F (t) = N − S(t) in DSIR and BSIR model.

BSIR is a fully automated statistical analyzer and predictor of evolution of
epidemic timeseries. We provided a series of analyses with both simulated
and empirical data in Supplement (Section 4 and 5). This analyses suggest
that our method gives a reliable prediction up to a month long future.

To demonstrate its effitiveness in predicting epidemic dynamics, we ap-
plied BSIR to the dataset of United States collected and published by Johns
Hopkins University Center for System Science and Engineering [for Systems Science and at Johns Hopkins University, 2020],
accessed on April 27th, 2020 (data up to April 26th). These two countries at
the present point have reported two largest cumulative number of infectious
cases. To see the prediction accuracy, we applied BSIR to the data upto
March 12th (1.5 month ago from the date of analysis), and every 14 days
up to April 23rd. Figure 3 to 6 show the snapshots of prediction to these
datasets. In Figure 3 to 6, the median prediction and the credible interval
in dark color points and region, and the reported timeseries (but not used
for prdiction) is in light color. The data used for prediction is in dark color.
As the prediction with early date showed a large credible interval, the log-
arithm scale on Y axis was shown. The descriptive and predictive statistics
are summarized in Table 1. On March 12th, 26th, April 9th, 23rd, and 26th,
it has reported 1663, 83836, 462780, 869,170 and 965,785 cumulative number
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of infected individuals, respectively. As early as 1.5 month before over 900
hundreds count or 523 times of increase, BSIR can predict its potential risk
by the median estimate 2,289,986 at the point of April 26th (965,785) and a
large 95% credible interval from 23,905 to 86,808,211 (see also Section ?? for
the detail and discussion about BSIR estimates). Two weeks later, BSIR
made a generally consistent prediction, the median 1,237,030 (to the actual
965,785) with a smaller 95% credible interval from 637,004 to 55,303,162.
Prediction made using the dataset up to April 9th underestimated it, but
this may reflect a potential effect of lockdown, which started March 19th
(Calfornia) and onward (other states started on the latest date March 24th).
As the current model does not assume external effect on an epidemic dy-
namics, prediction may be affected by such social/ political action in the
community.

The cumulative-difference plot with the data of US up to April 26th and
prediction was shown in Figure 7. The empirical data points in the CD
plot has a certain level of noise, but the BSIR captures a general trend of
the empirical data and extrapolate to the estimated asymptotic line. Based
on this point of prediction (data available on April 26th), the predicted
cumulative number of infected individuals is 1,408,566 (the 95% credible
interval is 1383435 ≤ F (t) ≤ 1435755) on August 4th, which is supposed
the near final outbreak size, if the current socio-political status in US was
kept.

Next, we also the other countries by particularly focusing on a predicted
increasing trend in future. In this analysis, we used the data up to April
26th, and picked up all thirty one countries with 10,000 or more cumula-
tive number of infected individuals (United States with the largest number
to Romainia with the smallest number). Most of European countries have
already stable state with relatively smaller increasing trend, but Spain and
Belrus among the European countries more than 10,000 infectious cases on
April 26th, we analyzed. These two countries are still prdicted to show a
sharp increasing trend, perhaps these authority needs to be warned with
this predictive analysis. Our eyes were catched on the several countries in
Central Asia (India and Pakistan), Middle East (Saudi Arabia, United Arab
Emirates, and Qatar), and South America (Brazil and Chile). These coun-
tries reported relative smaller cumulative number of infected individuals,
but our prediction warns the increasing trend in near future is close to ex-
ponential. We hope this warning would changed the time course of epidemic
dynamics with socio-political action against it.
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Table 1: Prediction of the cumulative number of infected cases in US on
April 26th made by BSIR model using the past data (1.5 month ago and
every 14 days).

Data up to Reported Median Credible Interval

Mar. 12th 1,663 2,289,986 (23905, 86808211)
Mar. 26th 83,836 1,237,030 (637004, 55303162)
Apr. 9th 462,780 743634 (732700, 756243)
Apr. 23rd 869,170 933800 (935749, 931797)
Apr. 26rd 965,785 - -

Prediction on

Aug. 4th - 1,408,566 (1383435, 1435755)

4 Concluding Remark

This research project is on-going and actively improved as long as there
is any society under threat of COVID-19, and we believe that the active
prediction should publicly contribute to anyone who wishs to consult. Ac-
cordingly, we launched the website “Prepidemics” [Hidaka and Torii, 2020],
which offers an interactive visualization of the prediction and the predicted
results. As a future work, we extend BSIR to mixture model with multiple
clusters of system parameters to detect the change of epidemic dynamics
due to socio-political action. With this extention, we can assess the effect of
social action such as lockdown, more systematically. This kind of quantifa-
tion of the social effect would be important to gain and share the effective
means against COVID-19.
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Figure 5: Prediction of the cumulative number of individuals in United
States, estimated using the data up to April 9th.
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Figure 6: Prediction of the cumulative number of individuals in United
States, estimated using the data up to April 23rd.
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Figure 7: Prediction of the cumulative number of individuals in United
States in the form of cumulative-difference plot, estimated using the data
up to April 26th.
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Figure 8: Prediction of the cumulative number of individuals in European
countries, estimated with the data up to April 26th.
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Figure 9: Prediction of the cumulative number of individuals in the coun-
tries (Brazil, India, Saudi Arabia, Chile, Pakistan, United Arab Emirates,
Belarus, and Qatar, in the descending order at the data analyzed) with
predicted increase, estimated with the data up to April 26th.
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