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ABSTRACT

High-resolution computed tomography radiology is a critical tool in the diagnosis and management of COVID-19 infection;
however, in smaller clinics around the world, there is a shortage of radiologists available to analyze these images. In this paper,
we compare the performance of 16 available deep learning algorithms to help identify COVID19. We utilize an already existing
diagnostic technology (X-ray) and an already existing neural network (ResNet-50) to diagnose COVID-19. Our approach
eliminates the extra time and resources needed to develop new technology and associated algorithm, thus aiding the front-line
in the race against the COVID-19 pandemic. Results show that ResNet-50 is the optimal pretrained neural network for the
detection of COVID-19, using three different cross-validation ratios, based on training time, accuracy, and network size. We
also present a custom visualization of the results that can be used to highlight important visual biomarkers of the disease and
disease progression.

Introduction

On March 11, 2020, the World Health Organization declared the COVID-19 virus as an international pandemic.1 The virus
spreads between people who are in close contact with one another through respiratory droplets produced by coughing or
sneezing.2 The current gold standard for COVID-19 detection is real time reverse transcription-polymerase chain reaction
(RT-PCR). The test itself takes about 4 hours, however, the process before and after running the test, such as transporting the
sample and sending the results, requires a significant amount of time. More importantly, the RT-PCR average turnaround time
is 3–6 days, in addition to being relatively costly at an average of CA$4,000 per test3. The need for a faster and relatively
inexpensive technology for detecting COVID-19 is thus crucial to expedite universal testing.

While the clinical presentation of COVID-19 is very diverse, a critical need is to identify the 20% of patients in which the
virus has spread to the type II cells of the alveoli and bronchioles, which lead to hypoxia, organ failure, and death.4 In order
to meet this need, high-resolution computed tomography (HRCT) X-ray is commonly available worldwide, and the unique
pattern of COVID-19 infection progression in the lungs has been identified.5 However, despite the widespread availability of
X-ray imaging, there is unfortunately a shortage of radiologist in most low-resource clinics and developing countries to help
analyze and process these images. For this reason, computer algorithms, such as deep learning, that can automate the process of
radiology have begun to attract great interest.6 Note that X-ray costs about CA$40 per test3, making the use of it as a testing
tool more feasible.

Since the initial outbreak of the COVID-19, a few attempts have been made to apply deep learning to detect COVID-19.
Narin et al.7 reported an accuracy of 98% on a balanced dataset for detecting COVID-19 after investigating three pretrained
neural networks. Sethy and Behera8 explored 10 different pretrained neural networks, reporting an accuracy of 93% on a
balanced dataset, for detecting COVID-19 on X-ray images. Zhang et al.9 utilized only one pretrained neural network, scoring
93% on an unbalanced dataset. Hemdan et al.10 looked into seven pretrained networks, reporting an accuracy of 90% on a
balanced dataset. Apostolopoulos and Bessiana11 evaluated five pretrained neural networks, scoring 98% of accuracy on an
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Figure 1. COVID-19 detection framework using pretrained neural networks.

unbalanced dataset.
However, these attempts did not make clear which existing deep learning method would be the most efficient and robust for

COVID-19 compared to many others. Moreover, some of these studies were carried out on unbalanced datasets. Our study
aims to determine the optimal learning method, by investigating different types of pretrained networks on a balanced dataset,
for COVID-19 testing. Additionally, we attempt to visualize the ResNet-50’s weights, which were used for decision making,
on-top of the original X-ray image to visually represent the output of the network.

Main
To determine the optimal existing pretrained neural network for the detection of COVID-19, we used the CoronaHack -Chest
X-Ray-Dataset. The chest X-ray images dataset contains 85 images from patients diagnosed with COVID-19 and 1,576 images
from healthy subjects. Five x-ray images collected from the Lateral position were deleted for consistency. Then, we balanced
the dataset to include 53 COVID-19 and 53 healthy subjects. After creating a balanced dataset, which is important for producing
solid findings, 16 pretrained networks were analyzed following the framework shown in Figure 1.

The 16 pretrained neural networks were trained on more than a million images to classify images into 1000 object categories,
such as keyboard, mouse, pencil, and many animals. Each network has learned rich feature representations from a large
spectrum of images. By replacing the last fully connect layer, as shown in Figure 1, and retrain (fine-tune deeper layers) the
neural network with the new dataset (53 COVID-19 and 53 healthy), the neural network can detect COVID-19 and healthy
subjects.

The performance of 16 pretrained neural networks using the same dataset (53 COVID-19 and 53 healthy), with different
cross validation ratios, is shown in Table1. Interestingly, we found that the following five pretrained neural networks achieved a
validation accuracy of 100% using 80-20% cross validation: ResNet-50, DarkNet-53, VGG-19, DenseNet-201, ResNet-18,
ResNet-101, and GoogLeNet. The most consistent pretrained neural network in detecting COVID-19, regardless of the cross
validation ratio, was ResNet-50, followed by DarkNet-53, followed by VGG-19.

DenseNet-201, ResNet-18 and GoogLeNet achieved a validation accuracy below 90% for 50-50% cross validation
suggesting that these neural networks are not robust enough for detecting COVID-19 compared to, for example, ResNet-50.
In addition, ResNet-101 achieved 87.5% validation accuracy using 70-30% cross validation, suggesting that it is not robust
for detecting COVID-19. Despite that the Inception-ReNet-v2 was pretrained on trained on more than a million images from
the ImageNet database,23 it was ranked the lowest in terms of the overall performance, suggesting it is not suitable to use for
detecting COVID-19.

Each pretrained network has a structure that is different from others, e.g., number of layers and size of input. The most
important characteristics of a pretrained neural network are as follows: accuracy , speed, and size.24 Greater accuracy increases
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Table 1. Performance of 16 pretrained neural networks for detecting COVID-19. The neural networks are ranked in
descending order based on the over all performance using three different cross validation ratios.

80%-20% CV 70%-30% CV 50%-%50 CV
Network Validation Accuracy (%) Training Time (s) Validation Accuracy (%) Training Time (s) Validation Accuracy (%) Training Time (s) Overall Accuracy (%)

ResNet-5012 100 427 93.75 420 98.08 296 97.28
DarkNet-5313 100 763 93.75 792 94.23 540 95.99

VGG-1914 100 1014 93.75 869 92.31 678 95.35
DenseNet-20115 100 889 96.88 958 88.46 607 95.11

ResNet-1812 100 197 100 224 82.69 129 94.23
DarkNet-1913 95.45 349 90.63 340 96.15 257 94.08
SqueezeNet16 95.45 99 93.75 95 92.31 76 93.84
ResNet-10112 100 732 78.13 623 96.15 537 91.43
GoogLeNet17 100 273 87.5 181 84.62 134 90.71
ShuffleNet18 95.45 169 84.38 163 90.38 116 90.07

MobileNet-v219 95.45 306 93.75 341 75 189 88.07
Place365-GoogLeNet17 81.82 235 90.63 230 84.62 125 85.69

Inception-v320 95.45 620 68.75 502 76.92 429 80.37
Xception21 90.91 1830 65.63 1512 67.31 893 74.62

NasNet-Mobile22 81.82 702 62.5 684 76.92 458 73.75
Inception-ReNet-v2823 90.91 1187 62.5 981 65.38 788 72.93

Figure 2. Overall performance of 16 pretrained neural networks for detecting COVID-19.

the specificity and sensitivity for COVID-19 detection. Increased speed allows for faster processing. Smaller sized networks
can be deployed on systems with less computational resources. Therefore, the optimal network is the network that increases
accuracy, utilizes less training time, and that is relatively small in size. Typically, there is a tradeoff between the three
characteristics, and not all can be satisfied at once. However, our results show that it is possible to satisfy all three requirements.
ResNet-50 outperformed all other networks, while having increased speed and increased accuracy in a relatively small-sized
network, as shown in Figure 2. A visual comparison between all investigated pretrained neural networks is presented, with
respect to the three characteristics. The x-axis is the training time (logarithmic scale) in seconds, the y-axis is the overall
validation accuracy using three different cross validation ratios and the bubble size represents the network size.

A comparison of optimal neural networks recommended in previous studies, along with the optimal neural network
suggested by this work, is shown in Table 2. Narin et al.7 used a balanced sample size of 100 subjects (50 COVID-19 and 50
healthy). They investigated three pretrained neural networks: ResNet50, InceptionV3 and InceptionResNetV2, with a cross
validation ratio of 80-20%. They found that ResNet50 outperformed the other two networks, scoring a validation accuracy of
98%.

Sethy and Behera8 used a balanced sample size of 50 subjects (25 COVID-19 and 25 healthy). They extracted features from
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Table 2. Comparison between optimal pretrained neural networks proposed for detecting COVID-19 to date. SVM refers to
Support Vector Machine while NC refers to not clear.

Study Optimal Network No. of COVID-19 No. of Healthy Cross Validation (%) Validation Accuracy (%)
This work ResNet-50 53 53 80-20 100

Narin et al.7 ResNet-50 50 50 80-20 98
Sethy and Behera8 ResNet-50 + SVM 25 25 80-20 95

Zhang et al.9 ResNet-50 70 30 NC 96
Hemdan et al.10 VGG19 and DenseNet201 25 25 80-20 90

Apostolopoulos and Bessiana11 VGG-19 224 504 90-10 98.75

pretrained neural networks and fed them to Support vector Machine (SVM) for classification. They explored the following
pretrained neural networks: AlexNet, DenseNet201, GoogleNet, Inceptionv3, ResNet18, ResNet50, ResNet101, VGG16,
VGG19, XceptionNet and Inceptionresnetv2, with a cross validation ratio of 80-20%. Again, ResNet50 in combination with
SVM outperformed the other networks, with a validation accuracy of 95%.

A similar study by Hemdan et al.10 used a balanced sample size of 50 subjects (25 COVID-19 and 25 healthy). The
following pretrained neural networks were evaluated: VGG19, DenseNet201, InceptionV3, ResNetV2, InceptionResNetV2,
Xception, and MobileNetV2, with a cross validation ratio of 80-20%. Both VGG19 and DenseNet201 scored the same validation
accuracy of 90%.

Two studies reported results based on unbalanced datasets: Zhang et al.9 and Apostolopoulos and Bessiana11. Zhang et al.9

created a deep learnig network based on ResNet-50, which achieved an accuracy of 96% with a dataset of 70 COVID-19 and 30
Healthy subjects. Apostolopoulos and Bessiana11 used a sample size of 224 COVID-19 and 504 healthy subjects. They tested
five pretrained neural networks: VGG19, InceptionV3, InceptionResNetV2, Xception, and MobileNetV2. They found that
VGG19 scored highest accuracy of 98.75% , with a cross validation ratio of 90-10%.

Interestingly, ResNet-50 network achieved a validation accuracy of 100%, outperforming other studies that also evaluated
ResNet-50 (note that these studies only compared ResNet-50 to a select few neural netowrks, whereas here we compared a total
of 16). One possible reason for the difference in performace is that the dataset in our study differed from the datasets in other
studies. Another reason is the network’s parameter settings (e.g., learning rate). Note that our finding confirms that ResNet-50
is able to capture COVID-19 from chest X-ray images.

While the ResNet-50 algorithm can distinguish COVID-19 patients from healthy individuals with 100% accuracy, we note
the following limitations:

1. The sample size was relatively small, at 58 images for COVID-19 images.

2. The images were not annotated, which is an essential aspect that distinguishes the measurement position of the X-ray
image. Thus, we were unable to differentiate between the measurement sites posteroanterior vs. anteroposterior of each
X-ray image. Lateral positions were easily identifiable.

3. Our investigation compared COVID-19 patients to healthy individuals. As a next step in our investigation, the X-ray data
from COVID-19 patients should also be compared against X-ray data from other respiratory infection patients in order to
improve the specificity of the algorithm for detection of COVID-19.

An important component to the automated analysis of the X-ray data is the visualization of the X-ray images, using colors
to identify the critical visual biomarkers as well as indication of disease progression. This step can make disease identification
more intuitive and easy to understand, especially for healthcare workers with minimal knowledge about COVID-19. The
visualization can also expedite the diagnosis process. As shown in Figure 3, COVID-19 and healthy subjects were identified
based on the activation images and weights.

In conclusion, fast, accurate and accessible tools are needed to help diagnose and manage COVID-19 testing infection.
The current gold standard laboratory tests are time consuming and costly, adding delays to the testing process. Chest X-ray
imaging for COVID-19 testing is widely available and computer-aided radiology can address existing shortages of radiologists.
In this paper, we have reviewed and compared many deep learning techniques currently available in the market for detecting
COVID-19 detection in chest X-ray images. After investigating 16 different pretrained neural networks, our results showed that
ResNet-50 is the optimal pretrained deep learning network for detection of COVID-19 in HRCT chest X-ray images. Work to
improve the specificity of these algorithms in the context of other respiratory infections is ongoing.
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Figure 3. Diagnosing by visualization using class activation mapping.

Method

We investigated 16 pretrained neural networks: SqueezeNet16, GoogleNet17, ResNet-5012, DarkNet-5313, DarkNet-1913, Shuf-
fleNet18, NasNet-Mobile22, Xception21, Place365-GoogLeNet17, MobileNet-v219, DenseNet-20115, ResNet-1812, Inception-
ResNet-v2823, Inception-v320, ResNet-10112, and VGG-1914.

All the experiments in our work were carried out in MATLAB 2020a on a PC with the following configuration: 3.70 GHz
Intel(R) Core(TM) i7-6500U CPU 2.59 GHz, and 16.00 GB RAM. The dataset was divided into three cross validation sets: 1)
70% training and 30% testing, 2) 80% training and 20% testing, 3) 50% training and 50% testing.

The last fully-connected layer was changed into the new task to classify two classes. The following parameters were fixed
for the 16 pretrained neural networks: 1) learning rate was set to 0.0001, validation frequency was set to 5, max epochs was set
to 8, and the min batch size was set to 64.

The class activation mapping was carried by multiplying the image activations from the last ReLU layer by the weights of
the last fully connected layer of the ResNet-50 network, called “activation49relu,′′ as f ollows :

C(x,y) = ∑Wl=175Fl=173(x,y) (1)

where C is the class activation map, l is the layer number, F is the image activations from ReLu layer (l = 173) with dimensions
of 7×7×2048. Here, W referes to the weights at l = 175 with dimensions of 1×2048. Thus, the dimensions of C is 7×7.
Then, we resized C to match the size of the original image and visualized it using a jet colormap.

Data availability
The CoronaHack -Chest X-Ray-Dataset can be downloaded from this link: https://www.kaggle.com/praveengovi/
coronahack-chest-xraydataset.
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