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Abstract

Although COVID-19 has spread almost all over the world, social isolation is still a controversial public
health policy and governments of many countries still doubt its level of effectiveness. This situation
can create deadlocks in places where there is a discrepancy among municipal, state and federal policies.
The exponential increase of the number of infectious people and deaths in the last days shows that the
COVID-19 epidemics is still at its early stage in Brazil and such political disarray can lead to very
serious results. In this work, we study the COVID-19 epidemics in Brazilian cities using early-time
approximations of the SIR model in networks. Different from other works, the underlying network
is constructed by feeding real-world data on local COVID-19 cases reported by Brazilian cities to a
regularized vector autoregressive model, which estimates directional COVID-19 transmission channels
(links) of every pair of cities (vertices) using spectral network analysis. Our results reveal that social
isolation and, especially, the use of masks can effectively reduce the transmission rate of COVID-19
in Brazil. We also build counterfactual scenarios to measure the human impact of these public health
measures in terms of reducing the number of COVID-19 cases at the epidemics peak. We find that the
efficiency of social isolation and of using of masks differs significantly across cities. For instance, we
find that they would potentially decrease the COVID-19 epidemics peak in São Paulo (SP) and Brası́lia
(DF) by 15% and 25%, respectively. We hope our study can support the design of further public health
measures.
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1. Introduction

The quick spread of the COVID-19 across countries has evidenced the high degree of interconnected-
ness worldwide. In less than six months, the COVID-19 epicenter traveled around the globe, starting
in China, then moving to Italy, and to the US. The Coronavirus Resource Center at the John Hopkins
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University registers more than 4 million cases of the COVID-19 spread around 187 affected countries,
i.e., roughly 96% of all countries recognized by the United Nations. Factors of such a rapid spreading
include large flows of international air transportation, enabling cross-country jumps of the new coron-
avirus. Recently, the airline industry has been experiencing large drops in revenue mainly because of
international border closures implemented by governments worldwide to detain “imported transmis-
sions” of the virus. However, COVID-19 cases still substantially grow inside borders and represent
a serious health concern of several countries across the globe. In this scenario, we can say that con-
cerns about cross-country transmission have reduced and the understanding of the COVID-19 domestic
transmission has gained much relevance.

This paper focuses on the COVID-19 domestic transmission in Brazil, which already registers cases in
all 27 states as depicted in Figure 1a. We analyze the efficiency of public health measures—such as
social isolation/quarantine and use of masks—in mitigating the COVID-19 transmission in the country
using an innovative network-based approach that accounts for intra and intercity COVID-19 transmis-
sion channels. There are several unique features that make Brazil an important case study. First, there
is a political confusion about the effectiveness of social isolation by the Brazilian federal and state
governments [1]. The exponential increase in the number of infectious people and deaths in the last
days indicates that such political disarray can lead to very serious results. Second, Brazil contains
the 6th largest population in the world. Thus, the human impact of the COVID-19 can be substantial
if not properly mitigated and a second wave of cross-country spillovers could be potentially sizable
in the future.1 Third, Brazil has significant socioeconomic and cultural disparities across its 5,570
cities. Therefore, COVID-19 transmission and mortality rates may largely differ across cities, such as
evidenced in Figures 1a–1b. The model proposed in this paper is able to estimate these city-specific
COVID-19 transmission rates, thus accounting for their distinctive aspects. Fourth, WHO reports show
that Latin America will most probably be the next epicenter of the COVID-19 outbreak. Since Brazil is
the largest Latin American country and borders 83% of all South American countries, an understanding
of the regional aspects of the COVID-19 transmission is crucial for designing public health measures.

Most countries in the Americas are still facing the early stages of the COVID-19 and Brazil is no
different. While it is important to have a full picture of the pandemic in each country to better design
government policies aimed at mitigating the COVID-19 spread considering their local particularities,
the omission of the government in taking effective measures at the onset of the epidemics can have
large human and economic effects in the long term. Some eastern countries, such as China, South
Korea and Singapore, may be an indication that having previous organized policies and mask usage
culture are key to successfully mitigate the death toll. In this work, we consider only the availability of
early-time data on the COVID-19 dynamics, thus better reflecting the real-world conditions that most
governments are facing.

The dynamic of the COVID-19 epidemics is not only determined by the local aspects of cities. There
is a continuous flow of persons from and to different cities either through roadways, domestic airlines,
or sea routes that could transport the disease. However, these intercity transmission spillovers are not
limited to biological risk factors. For instance, economic activities could also be related to the propen-
sity of acquiring the virus from other places, such as when households or firms buy supplies abroad
that are conditioned on surfaces that the virus is viable for long periods without proper sanitation.2

1In [2], the authors projects recurrent wintertime outbreaks of SARS-CoV-2 will occur after the initial pandemic wave.
They argue that prolonged or intermittent social distancing could be necessary up to 2022. Even with apparent elimination,
the authors state that the resurgence in contagion could be possible as late as 2024.

2Studies have show that the virus is more stable on smooth surfaces, such as plastic and stainless steel (detectable up
to 7 days), and is very sensitive to temperature (the inactivation time is reduced to 5 mins at 70 degrees Celsius)[3]. The
aerosol and surface stability of SARS-CoV-2 is similar to SARS-CoV-1, with a half-life of about 1hr in the form of aerosol
and up to 7hrs on plastic surfaces. Other surfaces, such as copper, cardboard and stainless steel have also long half-life
values, ranging from 1 to 6 hours [4].
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Figure 1: COVID-19 geographical spreading pattern in Brazil in terms of (a) COVID-19 cases at the city level and (b)
mortality rate at the state level as of May 8, 2020. Gray areas represent cities that have not reported any COVID-19
epidemiologcal bulletin. We evaluate mortality rates by taking the ratio of the number of deaths due to COVID-19 to
the number of infectious persons. Mortality rates are probably upward biased because the number of observed infectious
persons is likely to be underestimated, as the COVID-19 may pass unnoticed for some cases (mild or no adverse conditions
at all). We report mortality rates at the state rather than city level because there are many cities with few COVID-19 cases
and deaths, which would distort the estimated mortality rates.

This transmission dynamic renders each city subject not only to its inherent “COVID-19 natural trans-
mission rate” dictated by the local aspects of the city itself—such as demography, culture, law, and
weather—but also from outside the city. Our model permits to estimate transmission rates of each city
while accounting for infectious factors from the outside using the Susceptible-Infectious-Recovered
(SIR) model in a special type of transmission network among cities.

We take an innovative approach to construct the underlying COVID-19 transmission network among
cities. Even though we apply the model for the COVID-19 propagation inside Brazil, the model is
general and could be applied for any networked environment, such as in cross-country studies or even
more granular approaches than at the city level. We model such network using a weighted directed
graph. Vertices are cities and links represent potential COVID-19 contagion/spillovers from one city
to another. To estimate the links, we consider a panel-format data 3 composed of city-specific COVID-
19 infectious counts of locals over time. We then use a vector autoregressive (VAR) model to find
directional COVID-19 transmissions of every pair of cities in the network. Since the seminal paper of
[5], VARs have provided key empirical input into substantive economic and financial aspects. Despite
the robustness of the model, their use in epidemiology is still a new topic. Here, we design a VAR
model that explicitly considers the temporal ordering of the disease spreading. We let every city-
specific infectious count be dependent not only on its own past value but also from all other cities.
The weights of past values of each city j that influence the current city i’s infectious local count are
the links in our network. Such links are estimated by fitting the entire network structure to temporal

3A panel data is composed of n multivariate time series, each representing the evolution of COVID-19 cases of a
specific city. It is a mixture of cross-sectional data—in which we observe n cities all in a specific time point—and time
series data—in which we observe a single individual over time.
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city-specific infectious count data. We mitigate concerns with parameter overfitting by using an elastic
net regularization scheme during training time4 and one-step ahead rolling validation methodologies
borrowed from the machine learning literature.5

An interesting property of the early-time dynamics of a SIR model is that it still enables us to esti-
mate the transmission rate β of the model. Given the recovery rate γ of infectious persons,6 then the
model can be completely described [11], including late-time dynamics and infectious peak. It is worth
mentioning that the rate γ can be divided into two parts, the time from onset to death and the time
from onset to recovery. Both can vary from country to country, since they are highly correlated to
demographics, health care system and the treatments available. The onset to recovery time is, however,
invariant to the topological structure of the system and, therefore, we use an average value of 14 days
in all scenarios of our study

In early-time dynamics, the effective transmission rate β of an isolated SIR and a networked SIR model
differs by the spectrum of the estimated COVID-19 transmission network. When we do not consider
the network environment, we are effectively supposing the existence of a single large city composed of
all cities in the model. In this way, the susceptibility of being infected depends on the total number of
infected (all cities). The introduction of multiple cities effectively reduces this propensity by imposing
that the likelihood of being infected is higher inside cities rather than across cities. The network
spectrum corresponds to the largest eigenvalue of the network adjacency matrix. If the isolated SIR has
a transmission rate β , then the networked SIR will have an effective transmission rate of βeff = λmaxβ ,
in which λmax is the largest eigenvalue of the network. The network spectrum encodes all the graph
structure in terms of its ability of spreading and amplifying intercity contagion at early time.

In this paper, we also analyze the efficiency of health policy measures implemented by the Brazilian
government to mitigate the COVID-19 propagation. Social isolation and quarantine measures were
adopted by several states at different time scales. Following that, the Brazilian Health Ministry recom-
mended the use of masks at the federal level. Political disagreements on the effectiveness of quarantine
measures by the federal and state governments were on display and may have lead the population into
confusion, thus affecting the efficacy of such measures. Our work contributes to this discussion by
estimating the joint efficacy of these measures.

We find that the quarantine and use of masks measures decreased the growth rate of the spectrum
of the COVID-19 transmission network over time, suggesting that the measures were effective. To
get a sense, Figure 2 portrays the average COVID-19 growth rate of cities in the state of São Paulo
segregated in terms of their average social distancing index in the period.7 First, after the use of masks
recommendation, the COVID-19 growth rate, in general, decreased. However, it decreased more in
cities of São Paulo with low social distancing measures. This may be due to the fact that these cities

4The elastic net is composed of a convex combination of the Lasso (L1) and Ridge (L2 norm) regularization. We refer
the reader to the seminal work of [6] for further details.

5Parameter overfitting becomes a serious concern when we have several cities in the model. For instance, we apply our
method to Brazilian data, which is a country with vast territorial dimensions and with more 5,570 cities (end of 2019). In
this case, we would have to estimate 5,570×5,570≈ 31 million parameters with only a few time points (because we only
have early-time data). Ensuring regularization is vital to have reasonable out-of-sample estimates. See [7] for more details
on regularization of VAR models.

6The recovery rate can be estimated from the timeline between the appearance of symptoms and the case resolution.
Several ongoing studies report estimates for the recovery rate. For instance, the authors in [8] assumes that the duration of
the infection ranges from 15 to 20 days. Data from the outbreak in Wuhan show an onset-to-death time of 17.8 days and an
onset-to-recovery time of 24.7 days [9]. This results are, however, biased to higher values due to the overwhelmed health
care system in Wuhan in the early days of the outbreak and the sub-notification of the outcome of mild-cases. Reports from
WHO indicate a recovery time of 14 days for mild cases and 21-42 days for severe cases. Among those who die the onset
to outcome ranges from 14 to 56 days [10]. Since the mild cases account for most of the cases, we set gamma to 14 days in
this study.

7Such index represents the extent of compliance of the population to the quarantine measures.
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Figure 2: Average COVID-19 growth rate in cities of the state of São Paulo, Brazil, with low, medium, and high social-
distancing indices. Available data goes until May 8, 2020. The first vertical line is the beginning of SP quarantine, while
the second represents the use of mask recommendation by the federal government. Data from social distancing is public
and comes from the São Paulo State Government (in Portuguese). To alleviate week seasonality, we use 7-day moving
averages to construct the average growth rates. The low, medium, and high social-distancing indices represent the bottom,
middle, and upper terciles of the corresponding distribution. Data from the number of infectious persons per each city is
discussed in Section 4.1.

could have more potential close human-to-human contact and therefore the use of masks is crucial
to detain the COVID-19 transmission. To get a sense of the human impact of such measures, we
build counterfactual scenarios in which we consider that none of these measures were taken by the
government. By running the SIR model in networks, we find that the quarantine and the use of masks
recommendation reduced the peak of the COVID-19 epidemics, on average, in 15% in São Paulo (SP)
and almost 25% in Brası́lia (DF), when we look at the average effect in the last week of available data
(May 2 to 8, 2020). This reduction is explained by the flattening of the epidemics curve: São Paulo
(SP) and Brası́lia (DF) have peak date shifts from July 7 to July 24 and August 29 to September 28,
respectively.

Our results show the increasing trend of infectious cases in the last days, which is confirmed by the up-
dated official data in Brazil. This situation is consistent with the decreasing social isolation rate shown
by Figure 2, which, in turn, probably caused by the political discrepancy in public health measure
application.

2. Related background and literature

In this section, we present relevant background on SIR models in networks and the related literature
about our work.

2.1. Relevant background: early-time dynamic of SIR models in networks
In this section, we present relevant background on the Susceptible-Infectious-Recovered (SIR) model
in networks. We refer the reader to [11] for a comprehensive analysis on epidemiological models and
to [12] for the seminal paper on the original SIR model. Since we focus on the early-time dynamics
of the SIR models, we can assume that the number of births and deaths are much smaller than the
population, in a way that the closed population hypothesis holds.

Define as si(t), xi(t), and ri(t) the share of susceptible, infectious, and recovery persons of city i rela-
tive to the local population at time t. In a closed population, the SIR model in networks is government
by the following differential equations:

5

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 18, 2020. ; https://doi.org/10.1101/2020.05.15.20102988doi: medRxiv preprint 

https://www.saopaulo.sp.gov.br/coronavirus/isolamento/
https://doi.org/10.1101/2020.05.15.20102988
http://creativecommons.org/licenses/by-nc-nd/4.0/


d
dt
si(t +1) =−β ·si(t) · ∑

j∈V
Ai jx j(t) (1)

d
dt
xi(t +1) = β ·si(t) · ∑

j∈V
Ai jx j(t)− γ ·xi(t) (2)

d
dt
ri(t +1) = γ ·xi(t) (3)

1 = si(t)+xi(t)+ri(t) (4)

∀i ∈ V and t ≥ 0. We can substitute (4) into (2), yielding:

d
dt
xi(t +1) = β · (1−xi(t)−ri(t)) · ∑

j∈V
Ai jx j(t)− γ ·xi(t) (5)

In early time, i.e., we can assume that xi(t)� 1 and ri(t) ≈ 0, ∀i ∈ V . Therefore, we can ignore
second-order xi(t) terms and effectively set ri(t) to 0. With these modifications, Equation (5) becomes:

d
dt
xi(t +1) = β · ∑

j∈V
Ai jx j(t)− γ ·xi(t)

= β · ∑
j∈V

(
Ai j−

γ

β
δi j

)
x j(t),

= β

(
A−

(
γ

β

)
I

)
x(t)

= βMx(t) (6)

in which I is the identity matrix, M = A−
(

γ

β

)
I is the adjacency matrix A with a homogeneous

perturbation of γ

β
in the main diagonal, and δi j = 1 if i = j, and δi j = 0 otherwise. Equation (6) is a

standard differential linear system whose solution can be written in terms of the eigenvector basis of
the adjacency matrixA:

xi(t) =
V

∑
k=1
ai,k(0)e(λkβ−γ)tvi,k, (7)

in which A ·vk = λkvk holds ∀k ∈ {1, . . . ,V}. The term λk is the k-th eigenvalue of A, vi,k is the i-th
entry of the eigenvector associated with the k-th eigenvalue. The parameter ai,k(0) in (7) is a scaling
constant that depends on the initial condition of city i.

In early time, the growth rate of equation (7) is government by the exponent term with the largest eigen-
value λ1 = λmax of matrixA, which is a well-known measure from spectral graph theory denominated
graph spectrum [13]. Therefore:
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xi(t)≈ vi,1e(λmaxβ−γ)t , (8)

i.e., the growth rate is λmaxβ − γ and the probability of contagion is proportional to the eigenvector
associate with the largest eigenvalue λmax, v1, which corresponds to the eigenvector centrality measure
of the graph, according to the spectral graph theory [13].

2.2. Relative literature
Basically, there are two strategies to prevent epidemic spreading in networks [14]. One is the efficient
immunization protocols and the other is to find out relevant spreaders and activation mechanisms.

Immunization strategies are methods for identification of nodes that shall be immunized, taking into
account the network structure. Immunized nodes and all the incident links can be removed from the
epidemic network. Immunization can not only protect immunized individuals, but can also reduce the
epidemic threshold, precluding the outbreak of the disease. Among various immunization strategies,
random immunization protocol is the simplest one, where a fraction of randomly selected nodes are
made immune. However, in this case, the immunization threshold tends to be 1 in heterogeneous
networks, indicating that almost the whole network must be immunized to suppress the disease [15].
Target immunization protocol considers special nodes to be immunized. In [16, 15], the authors show
that the immunization threshold can be exponentially small over a large range of the spreading rate if
considers the immunization of a fraction of nodes with the largest degree. Other approaches consider
not only the critical nodes, but also the entire prevalence curve (the so-called viral conductance) [17,
18].

Although immunization is a fundamental strategy in the epidemic study, the research community pays
also much attention to find out which nodes, links and local structures are most influential or effec-
tive in the spreading process [19, 20, 21, 22, 23, 24, 25, 26]. These findings aimed at understanding
network measures on nodes and links, such as degree, betweenness, K-core index, closeness, link prop-
erty on spreading dynamics. Besides of finding superspreaders, some researchers also worked on the
identification of how topological features influence global epidemics [27, 28, 29].

However, the above mentioned strategies require the discovery of vaccine or at least partial knowledge
on the epidemic network under consideration. With the mass and quick spreading of COVID-19,
neither of them is a practical method to prevent the outbreak. Therefore, global intervention methods,
like social isolation, even lockdown, have already been proven to be efficient. For this reason, we
study the effectiveness of public intervention methods. Our results provide strong evidence on the
effectiveness of public health measures, such as quarantine and use of masks, to reduce the increasing
rate of infection even without detailed information of the highly dynamical population network.

3. Methodology

This section discusses the underpinnings of our methodology. Our analysis consists of the following
stages:

1. Network construction: we construct the COVID-19 network transmission network by fitting the
network links to real data.

2. COVID-19 epidemics estimation using the SIR model: we use the network estimated in Step 1
and simulate the COVID-19 evolution in every city of the network.

3. Effectiveness evaluation of public health policy: we change the network structure so as to sim-
ulate the omission of public health policies and run our epidemics model in Step 2 without the
government intervention. We estimate the efficiency of the public health policies by inspecting
the change in the COVID-19 epidemics peak.

7
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3.1. Network construction using panel data
Consider the weighted directed graph G = 〈V ,E 〉 in which V is the set of vertices and E is the set of
links. There are V = |V | vertices and E = |E | links in the network. In our epidemiological application,
vertices can represent cities, states, countries, or any well-defined entity or geographical circumscrip-
tion (neighborhood, street, house etc.). For simplicity and with no loss of generality, we denominate
the vertices as cities. We assume as given the set of cities/vertices V . In contrast, links between cities i
and j connote potential COVID-19 transmission from i to j and are a priori unknown. In the context of
cities, city-to-city contagion could happen for a series of reasons, such as when infectious persons visit
or migrate or even from intercity transportation of supplies covered in surfaces that the SARS-CoV-2
is viable for long periods. Therefore, the network G encodes all potential transmission paths between
cities be through organic or non-organic media. The goal of this section is to estimate the set of links
E , i.e., the intercity COVID-19 transmission channels.

Let x(t) = [x1(t),x2(t), . . . ,xV (t)] denote the vector with shares of infectious persons relative to the
local population of every city i ∈ V in the network at discrete time t ≥ 0. Specifically, we denote as
xi(t) ∈ [0,1] the share of infectious persons within city i at time t. That is, we take the ratio between
the number of infectious persons to the total local population in the city. When xi(t) = 1, then all
population in the city is infectious. When xi(t) = 0, none is infectious. In-between values represent
partial shares of infectious population. Define the column vector xi = [xi(0),xi(1), . . . ,xi(T )]

′ as the
COVID-19 time series evolution in city i up to time T , in which the superscript ′ is the transpose
operator. Since we perform an early-time analysis of the epidemics, T is likely to not be large. Let
also the matrixX = [x1,x2, . . . ,xV ], dim(X) = T ×V , be all the cities’ time series with the shares of
infectious persons stacked in columns over all period with available data (panel data).

To construct the network, we consider the temporal ordering of the COVID-19 spread across different
cities. We attempt to describe the current share of infectious persons vector xt with the same vector
immediately at the previous time step, i.e., xt−1 as follows:

xt = κ+A ·xt−1 +εt , (9)

∀t ∈ {0,1, . . . ,T}. The term κ, dim(κ) =V ×1, is an intercept column vector;A, dim(A) =V ×V , is
the adjacency matrix encoding the set of links E of the graph; and εt ∼ (0,Σε) is the unobservable zero
mean white noise vector process (serially uncorrelated or independent) with time-invariant covariance
matrix Σε. Let Ai j be the (i, j)-entry of A, i, j ∈ V . When Ai j > 0, then city i can spillover COVID-
19 to city j. The larger Ai j is, the stronger is such contagion. Then, the set of links is given by
E = {i, j ∈ V :Ai j > 0}.

The terms κ, A in Equation (9) are unknown and are estimated using a fitting process to the observed
data X .Equation (9) describes a VAR(1) model. To ensure that the system is stable, the companion
matrix must have roots inside the complex unit circle. To guarantee such property, our variables xi, i ∈
V , must be stationary. Since they are lower- and upper-bounded—i.e., xi ∈ [0,1]—then they are
stationary by construction. Specifically, we minimize the following regularized loss function L [7]
using the coordinate descent algorithm [30]:

L = min
κ,A

T

∑
t=0
‖εt‖2

F +Regularization(A)

= min
κ,A

T

∑
t=0
‖yt− (κ+Axt−1)‖2

F +λ (α ‖A‖1 +(1−α)‖A‖2) , (10)
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in which λ ≥ 0 is the elastic net regularization term and α ∈ [0,1] is the tradeoff parameter between
Lasso (L1 norm) and Ridge (L2 norm) regularizations. We notate ‖.‖F , ‖.‖1, ‖.‖2 as the Frobenius, L1,
and L2 norms, respectively. Larger values of λ encourage sparser networks. The first term represents
minimization of the error term εt ,∀t ∈ 0,1, . . . ,T , and ensures that the estimated adjacency matrix A
better reflects the COVID-19 transmission dynamics over time. The second term is a regularization
term over the adjacency matrix A introduced to prevent overfitting and ensure that the estimation is
numerically tractable. We do not regularize the intercept vector κ because it conceptually adapts to the
city-specific average values of our data.

There is an empirical challenge in fitting the adjacency matrix A to the panel data X when we are
dealing with large-scale networks in which the number of cities V largely surpasses the number of
available time points T , i.e., when V � T . Such problem is aggravated when we only have early-time
information about the disease, i.e., T is small. In this case, we would incur in overparametrization and
overfitting is a concern. The regularization term in (10) mitigates such concern. We opt for an elastic
net regularization scheme because it is a robust regularizator that combines positive features of Lasso
and Ridge regularizations [30].

Due to the temporal dependency of the panel data, the usual k-fold cross-validation is not well-suited
for our model selection procedure. Following [7], we optimize the penalty parameters λ and α in (10)
using a h-step ahead mean-square forecast error (MSFE). Due to data availability, we keep h = 1 so as
to minimize further data losses. We divide the data into three equally-spaced and contiguous periods:
(i) initialization (t ∈ {0, . . . ,T1}), (ii) training (t ∈ {T1 + 1, . . . ,T2}), and (iii) forecast evaluation (t ∈
{T2+1, . . . ,T}), in which T1 =

⌊T
3

⌋
and T2 =

⌊2T
3

⌋
. We also use a rolling validation process as follows.

We first fit the model using all data up to time T1 and forecast x̂(λc,αc)
T1+1 , in which λc and αc are fixed

candidate penalty terms. We then sequentially add one observation at a time and repeat this process
until T2−1. Then, we choose the penalty terms λ and α that minimize the one-step ahead MSFE given
by:

MSFE(λ ,α) =
1

T2−T1

T2−1

∑
t=T1

∥∥∥x̂(λ ,α)
t+1 − x̂t+1

∥∥∥2

F
. (11)

Finally, we estimate the one-step ahead forecast accuracy using data points in t ∈ {T2, . . . ,T}, which
have not been used in the model selection procedure. To better assess the potentiality of the network
in amplifying contagion across different municipalities, we remove the self-loops in the estimated
network, which correspond to the influence of the local infectious population on its own future value.

3.2. Estimating transmission rate in early-time epidemics networks
In this section, we assume the network structure G = 〈V ,E 〉 as given, i.e., the set of vertices and
links are already established in accordance with the network construction described in Section 3.1. We
start from the results of the early-time dynamic of SIR models in networks described in Section 2.1.
Therein, we show that the growth rate at early time is determined by λmaxβ − γ (see Equation (8)).
Therefore, the graph spectrum λmax modulates the transmission rate parameter by either amplifying or
dampening the contagion speed.

If λmaxβ > γ , then Equation (8) grows exponentially, while it decays when λmaxβ < γ . Therefore, the
reproduction number (critical point) is R0 = λmaxβ

γ
. Recall that the reproduction number in the SIR

model without network is R0 =
β

γ
[12]. Therefore, the reproduction numbers of both models differ by

the graph spectrum ofA, λmax.

Equation (8) assumes that every city in the model has a single growth rate dynamics dictated by the term
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λmaxβ − γ . Changes in the epidemics spreading for each city would then be fully determined by their
eigenvector centralities, because growth rates are identical across cities (see Equation (8)). However,
studies show that the transmission rate parameter β is dependent on local aspects of cities [11]. In
contrast, the recovery rate parameter is much less variable across different places. As mentioned
earlier in this study, WHO indicates an average recovery time of 14 days for mild cases. Therefore, we
consider a different transmission rate for each city in the network βi while letting fixed the recovery rate
γ for all cities. We can still apply the classical framework of SIR in networks because, even though
transmission rates are city specific, they tend to be normally distributed around some mean natural
value. That is, large deviations are unusual. We empirically find this fact using our application to the
Brazilian case. Mathematically, we rewrite (8) as follows:

xi(t)≈ vi,1e(λ1βi−γ)t . (12)

We can linearize (12) by simply taking the log(.) at both sides of the equation for each city i in the
network:

log(xi(t)) = log(v1,i)+(λ1βi− γ) t, (13)

∀i ∈ V . The LHS and RHS are always non-negative, because x(0) ≥ 0 and is non-decreasing (early-
time assumption), e(λ1βi−γ)t ≥ 0 (asymptotically speaking), and v1,i ≥ 0 [13]. We can then apply the
log(.) without any restrictions. We can estimate (13) for all cities i at once by adding dummies for
the constant and time-dependent term for each city in the model (2 dummies per each city). We end
up with a set of 2n− 1 dummy variables, because the last one is the reference dummy. Since we
have a panel data with temporal dependencies (the same city appears multiple times), we use a linear
panel-data estimation model [31] as follows:

xi(t) = ∑
j∈V

δi j
[
α j +ρ j · t

]
+εi(t), (14)

∀i ∈ V , in which αi and ρi are the constant and time-variant dummy terms for city i, and εi(t) is the
residual from the least square estimation with dummies. We cluster the errors at the city level, such
as to mitigate concerns with heteroskedasticity and serial correlation, which could bias our coefficient
estimates. Equations (13) and (14) are linked by the following identities:

αi = log(v1,i)⇒ v1,i = eαi, (15)

ρi = λ1βi− γ ⇒ βi =
ρi + γ

λmax
.. (16)

Given the recovery rate γ—which is assumed to not change over time nor across cities—we can fully
identify the eigenvector centrality and the local transmission rate of every city i using (15) and (16),
respectively. We only take city-specific estimations of v1,i and βi that are statistically significant at the
10% level. Otherwise, we set the estimated coefficients to zero.
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3.3. Assessing efficiency of health policy measures in epidemics spreading
With our framework, we can analyze the speed of the epidemics spreading through the network at
early time by simply inspecting the graph spectrum λmax = λ1 for different time horizons using the
methodology described in Section 3.1. Since the reproduction number of the epidemics is proportional
to the graph spectrum, then large graph spectra indicate a higher speed of contagion. Any changes of
the graph spectrum can be attributed to a “net effect” of public policies of the government in the entire
network. Since we use the share of infectious persons of each Brazilian city, then this “net effect”
comprises not only federal policies, but also state- and even city-level policies.

Moreover, we can estimate the human impact of these policies in terms of changes in the number of
infectious persons at the peak by running the SIR model described in Section 3.2 for each estimated
city-specific transmission rate parameter βi defined in (16) and for different values of the graph spec-
trum. We use a conservative approach and compare the largest observed graph spectrum with the most
recent graph spectrum in our dataset. We assume that the largest graph spectrum occurs when public
policies were still latent and were not having effects in the epidemics spreading. Most recent values
of the graph spectrum are assumed to represent transmission dynamic after public policies were in, as
was the case in Brazil who adopted quarantine and recommended the use of masks in the period that
we have available data.

4. Application

In this section, we apply our model to Brazilian data at the city level.

4.1. Data
We use daily data on the number of infectious persons per each city in Brazil using COVID-19 epi-
demiological bulletins of 27 State Health Departments from February 25, 2020, to May 8, 2020.8 Each
Brazilian state compiles local reports from cities inside their geographical circumscription. We end
up with 60,021 city-time epidemiological bulletins comprising 2,754 (out of 5,570) cities affected by
COVID-19 in Brazil.

Our data is representative because local hospitals are required by law to register any COVID-19 events
to the local government while cities and states must notify the federal government. However, there
may be substantial sub-notifications due to persons that acquire the COVID-19 and recover unnoticed
or without hospitalization.

We also collect city-level population estimates in the Brazilian Institute of Geography and Statistics
(IBGE), which is the agency responsible for official collection of statistical, geographic, cartographic,
geodetic and environmental information in Brazil. We evaluate the share of infectious persons by
taking the ratio of COVID-19 cases reported in the local health bulletin and the local population size.
The use of shares in our estimation models is important because it is a stationary variable.

We apply a three-day smoothing filter on the number of infectious persons in each municipality to
alleviate concerns with late contamination reports or short-term rectifications by the local health gov-
ernment that could compromise our estimations. In our network construction procedure (see Section
3.1), we keep only cities that reported COVID-19 cases in at least 20% of the available time frame.
Our results remain qualitatively the same if we do not apply this filtering criterion. In our estimation
of the SIR parameters (see Section 3.2), we center all time points in relation to the occurrence of the
first death in the city.

8This data is scattered around a large quantity of state government sites. In general, the bulletins are not standardized
across different states and not even cities. We use the compiled dataset from Brasil.io for this task.

8Asymptomatic and mild-cases can represent up to 80% of the cases according to China reported numbers. This cases
tend not to be tested in Brazil.
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Figure 3: COVID-19 evolution in six of the most affected cities in Brazil (a) in absolute terms (number of infectious
persons) and (a) as a share of the local population size. Horizontal axis represent the relative day in terms of the first
observed death due to the COVID-19.

Figures 3a–3b portray the COVID-19 evolution in six of the most affected cities in Brazil relatively
to the first reported death in terms of the number of COVID-19 cases and as a share of the local
population size, respectively. São Paulo (SP) has the highest number of infectious persons. However,
there is strong size effect: São Paulo (SP) has almost 12.2 million residents while the second largest
city, Rio de Janeiro (RJ), has almost half of that (6.8 million). To get a sense of the local COVID-19
criticality, we can look at its evolution as a share of the local population. In this case, we note that
COVID-19 transmission speed is much larger in Manaus (AM) and Fortaleza (CE). Brası́lia (DF) and
Porto Alegre (RS) have smaller transmission rates and local COVID-19 criticality. However, mortality
rates may not follow such incidence criticality, because they correlate with local health quality and
demography characteristics.

4.2. Results
This section presents the main empirical results of the paper. We first build the COVID-19 intercity
transmission network and analyze its propensity of amplifying the COVID-19 in different cities. Then,
we analyze the net effectiveness of public health measures adopted by the Brazilian government.

4.2.1. Intercity COVID-19 transmission network in Brazil
Figure 4 shows the graph spectrum of the COVID-19 intercity transmission network of Brazil over
time. For each time point (horizontal axis), we run the network construction through the fitting process
in Section 3.1 with data from the beginning of the sample up to that specific time point. Even though
our sample starts in February 25, 2020, we start the fitting process from March 13, 2020, such as
to have enough data for the fitting process. That is, we start with 18 time points for each Brazilian
city. Therefore, we initially divide the panel data in three equally-sized groups with 6 time points for
model training, model selection (parameters and penalty terms), and model evaluation. These group
sizes increase as we add more time points. We perform the network construction estimation daily from
March 13 to May 8, 2020, in an independent manner.

In Figure 4, we add a shaded area indicating the timing window in which quarantine measures were
adopted by the most affected Brazilian states. Since São Paulo is the COVID-19 epicenter in Brazil
as it encloses 57.4% of all the COVID-19 infections in Brazil, we also add a vertical dashed red line
indicating the beginning of the quarantine adopted by the São Paulo State Government. We also draw
the use of masks recommendation beginning date by the Federal Health Ministry in Brazil as a dashed
blue line enacted. While quarantine measures are at the state level, the use of masks recommendations
goes at the federal level and encompasses all the 5,570 cities and 27 states in Brazil. São Paulo is the
most central city in the transmission network. Therefore, it practically shapes the graph spectrum of
the intercity transmission network.
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Figure 4: Graph spectrum of the COVID-19 intercity transmission network of Brazil (see Section 3.1). The shaded area
indicating the timing window in which quarantine measures were adopted by the most affected Brazilian states. The red
dashed line indices the beginning of the quarantine in São Paulo, the COVID-19 epicenter in Brazil. The blue dashed line
indices the beginning of the use of masks recommendation by the Federal Health Ministry. For each time point (horizontal
axis), we build the network with city-specific shares of infectious persons with data up to that point.

We observe a reduction in the growth rate of the graph spectrum after the quarantine measures precisely
two days after the measure. However, the growth rate still persisted at positive rates, indicating that
the COVID-19 transmission speed kept increasing after such measure, but with a slower pace. After
the incubation period following the use of masks recommendation, we observe a drastic change in the
graph spectrum. The growth rate changed sign and started to reduce, showing that the set of health
policy measures taken by the government was efficient. However, after April 23, 2020, the graph spec-
trum again started to increase. This can be due to several factors, such as social confusion in following
health guidelines in view of the political disarray that Brazil is facing, or even non-compliance with
quarantine and use of masks measures. Our model does not permit to have an isolated causal impact
of the use of masks recommendation nor of the quarantine measures. However, it enables us to under-
stand how the set of all policy measures affected the COVID-19 transmission rate across cities over
time. Combining Figures 2 and 4, it seems that the reduction in the COVID-19 growth rates after the
use of masks recommendation was more apparent in cities with relative low social distancing indices.
This may be due to the fact that these cities have more potential close human-to-human contact and
therefore the use of masks is crucial to detain the COVID-19 transmission.

To understand the topological aspects of the COVID-19 intercity transmission network, Figure 5 plots
the PageRank centrality for the top 5 most central cities in each of the five regions in Brazil. We
normalize the PageRank with respect to the most central city: São Paulo (SP) on May 8, 2020. As
the city centrality becomes higher, the more it contributes to spreading the COVID-19 throughout
the network. The top 5 most central cities in the country are the following state capitals (in decreasing
order): (i) São Paulo (SP), (ii) Rio de Janeiro (RJ), (iii) Fortaleza (CE), (iv) Recife (PE), and (v) Manaus
(AM). These cities all have airports and are strongly interconnected to the remainder of cities in Brazil
through roadways and are likely to be the hubs for the COVID-19 spread to other nearby cities in Brazil,
especially countryside municipalities. The centrality of São Paulo (SP) in the Southeast monotonically
increases over the entire sample. The same roughly occurs with Manaus (AM) in the North, Fortaleza
(CE) in the Northeast. Porto Alegre (RS) in the South and Brası́lia (DF) in the Midwest have the highest
centralities in their region but with a negative growth rate in the last days of the sample. Overall, there
is a very heterogeneous profile of the city centralities over time, showing the underlying non-trivial
patterns in the COVID-19 transmission network.

4.2.2. Measuring the human impact of health policy measures to mitigate the COVID-19 propagation
In this section, we run the SIR in networks (see Equations (1)–(4)) with different transmission rate
parameters for each city in Brazil, in accordance with (16). We first estimate the city-specific ρi using
the panel-data information on counts of the share of infectious persons in each city in Brazil via (14).
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Figure 5: Evolution of the normalized PageRank centrality measure in the COVID-19 transmission network (see Section
3.1 for the network construction details). We only report the top 5 cities with highest PageRank at each Brazilian region.
For each time point (horizontal axis), we build the network with city-specific shares of infectious persons with temporal
data up to that point. Each label is composed of the city name followed by its state inside parentheses.
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Figure 6: Distribution of the efficiency of health policy measures along all affected cities in Brazil over time. We plot the
efficiency distribution as a function of (a) time and (b) the city’s distance to the capital within the same state it resides.
Since states in Brazil have substantial differences in their sizes, we normalize the city’s distance to the capital to the most
distant city within the state.

Then, we estimate the transmission rate parameter βi of each city i∈ V in Brazil by fixing the recovery
rate parameter as γ = 1/14. We use the remaining parameter λmax—the graph spectrum—to evaluate
the effectiveness of the set of health policy measures in detaining the COVID-19 in Brazil. We take as
baseline model the graph spectrum reached in April 10, 2020, which is the maximum observed value.
We assume that this graph spectrum would have not changed afterwards in case the set of health policy
measures were not taken.9 We then run several SIR models with the observed graph spectrum values
in Figure 4 after the graph spectrum maximum in April, 10, 2020.

Figure 6a shows a comparison of the infectious peaks of the baseline SIR model—i.e., the hypothetical
scenario in which health policy measures were not introduced—and the ones with graph spectrum val-
ues observed daily after that maximum. The vertical axis shows the relative change in these infectious
peaks of the baseline and the observed model day by day, which can be interpreted in terms of the
potential share of spared infections at the infectious peak due to the introduction of the set of health
policy measures. Since we have data from each city affected by the COVID-19, we plot the median,
percentiles 75% (0.25 distant from the median) and 90% (0.40) of this distribution. In the Supple-
mentary Material, we provide the effectiveness of public health policies for each affected municipality
in Brazil. In April 10, 2020, the share of spared infections in the epidemics peak is zero, because
the baseline model is compared with itself. Then, as we move forward in time and use smaller graph
spectrum values, as shown in Figure 4, the potential share of spared infectious increases. The share
of spared infectious persons in the epidemics peak reaches a median value 40% lower than that of the
baseline model when we use the graph spectrum in April, 24, 2020, suggesting high effectiveness of the
quarantine and use of masks health policies. After this point, the share of spared persons decreases—
reflecting the increase in the graph spectrum in Figure 4—giving more room for the spread of the
COVID-19. The effectiveness of the health policy measures, however, remains positive throughout the
entire sample.

The first case of the COVID-19 in Brazil was reported in São Paulo (SP) on February 25, 2020. After
that, it spread to several Brazilian state capitals probably through air transportation (most of the airports
in Brazil are in the state capitals and capitals are far from each other). The epidemics took some time
before reaching the first case in countryside cities. Figure 6b displays the distribution of the potential

9This is a conservative approach, because we can observe a positive momentum of the graph spectrum growth rate
prior to reaching April 10, 2020. However, we cannot be sure whether such graph spectrum would still increase if these
policies were not in place. Therefore, we keep the conservative approach and consider such point as the maximum.
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(b) Potential spared persons from acquiring the SARS-CoV-2 at the peak

Figure 7: Efficiency of public health measures over time as a function of (a) the share of the spared local population and
(b) the spared number of persons (in millions). We depict curves only for six capital cities that are being substantially
affected by the COVID-19: Belém (PA), Fortaleza (CE), Rio de Janeiro (RJ), Brası́lia (DF), Manaus (AM), and São Paulo
(SP).

share of spared infections in terms of the city distance to the state capital. Since Brazilian states are
very different in size, we normalize the distance to the most distant city within the state. We observe a
positive relationship between potential share of spared infectious and distance to the capital, suggesting
that health public policies are most effective in cities that are distant from the capital. This may reflect
not only the temporal delay of the COVID-19 in reaching the countryside, which puts the local COVID-
19 at very early time in these regions, but also demography aspects, such as lower population density,
and agricultural economic activities that do not require large conglomerates of persons.

Figure 7a shows the effectiveness of the set of public health measures for six of the most affected
Brazilian capitals. In particular, Brası́lia (DF) reaches a 50% lower share of infectious persons at the
peak when we compare peaks reached with the graph spectrum value on April 24, 2020 (against the
baseline in April 10, 2020). Figure 7b shows the number of potential spared infectious persons due to
the set of health policy measures. This figure is constructed by simply multiplying the share of spared
infectious with the local population size of each of the six cities. Since São Paulo (SP) is the largest
city, it would potentially spare more persons when the COVID-19 epidemics reach its peak.

5. Conclusions

At the current stage of the COVID-19 infection, many countries have stopped the entrance of foreign-
ers. Therefore, the study of virus transmission dynamics inside each country gains relevance. In the
last few days, Brazil has become one of the most infectious countries in the world. In this work, we
present a general epidemics transmission model and apply it to the Brazilian case. Our method has
three steps. First, we construct the COVID-19 transmission network by fitting city-specific COVID-19
cases over time to calibrate the network links, which represent intercity COVID-19 transmission. Sec-
ond, we gauge the network propensity of spreading COVID-19 throughout the cities using a spectral
graph analysis. Third, we propose a methodology to quantify the effectiveness of public health policies
using the dynamics of early-time SIR model and spectral network theory.

Our spectral network analysis indicates that social isolation and the use of masks can effectively reduce
the transmission rate of the COVID-19 in Brazil. The COVID-19 propagation dynamics seems to
decrease following these public health policies when we also consider an incubation period, which
lags the effect of any COVID-19 mitigation measure. Moreover, our empirical analysis supports the
view that use of masks seems to be more effective than social isolation, which is further corroborated
by what is being occurring in Austria [32]. With no vaccine up to date, public health intervention is
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still the main method of epidemic control. We hope our study can help the government make correct
decisions.
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Supplementary Material

This Supplementary Material presents additional results of our empirical application to Brazil.

Table A1: Estimated share of the local population with COVID-19 in Brazil at the peak and the corresponding month and
day in 2020. We report the peak date and share of infectious persons to the local population of the city with and without
health policy measures (see Section 4.2 for details). This simulation uses data up to May 8, 2020. We only report estimates
for cities in which the simulated infectious peak with policy is higher than 5% of the local population.

No Policy (Peak) With Policy (Peak)
Row Number Region State Name Date Infectious (%) Date Infectious (%) Reduction (%)

1 Southeast São Paulo Ourinhos Oct 17 10.42 Nov 30 7.03 36.57
2 Midwest Mato Grosso Mirassol d’Oeste Sep 29 10.96 Nov 06 7.49 35.10
3 South Paraná Santa Fé Oct 10 9.65 Nov 29 6.33 34.82
4 South Rio Grande do Sul Tio Hugo Sep 19 10.43 Oct 26 7.03 34.66
5 Southeast São Paulo Laranjal Paulista Oct 08 10.46 Nov 23 7.04 33.14
6 North Pará Cachoeira do Arari Sep 29 10.97 Nov 02 7.67 32.55
7 South Rio Grande do Sul Porto Alegre Oct 03 9.78 Nov 22 6.45 32.12
8 South Paraná Fazenda Rio Grande Oct 17 9.61 Nov 22 6.83 31.72
9 Northeast Ceará Acopiara Sep 20 14.79 Oct 21 11.03 31.70

10 Southeast São Paulo Araçariguama Sep 26 13.25 Oct 31 9.56 31.48
11 South Paraná Pato Branco Oct 01 12.13 Nov 10 8.53 31.18
12 Northeast Rio Grande do Norte Nı́sia Floresta Sep 08 14.59 Oct 06 10.83 31.05
13 Southeast São Paulo São Roque Sep 12 14.30 Oct 13 10.56 31.04
14 South Rio Grande do Sul Vacaria Oct 31 10.45 Dec 21 7.04 30.44
15 South Santa Catarina Balneário Arroio do Silva Sep 27 10.18 Nov 06 6.80 30.44
16 Northeast Bahia Feira de Santana Oct 13 10.13 Nov 29 6.76 30.21
17 South Santa Catarina Pedras Grandes Sep 10 9.88 Oct 20 6.54 30.19
18 Northeast Paraı́ba Junco do Seridó Sep 07 11.71 Oct 13 8.15 30.02
19 Southeast Rio de Janeiro Barra do Piraı́ Sep 30 10.70 Nov 11 7.26 29.75
20 South Santa Catarina Balneário Camboriú Sep 07 10.25 Oct 12 6.87 29.54
21 South Rio Grande do Sul Canoas Oct 23 10.12 Dec 14 6.76 29.49
22 Southeast São Paulo Lavrinhas Aug 31 17.11 Sep 25 13.22 29.47
23 Southeast Minas Gerais Belo Horizonte Sep 25 10.59 Nov 10 7.17 28.79
24 Northeast Piauı́ Piracuruca Sep 12 12.03 Oct 18 8.44 28.63
25 Northeast Ceará Alto Santo Aug 23 16.80 Sep 16 12.91 28.07
26 Northeast Rio Grande do Norte Tenente Ananias Sep 15 11.61 Oct 24 8.08 28.06
27 Midwest Mato Grosso do Sul Campo Grande Sep 23 12.55 Oct 31 8.92 27.80
28 South Paraná Paranaguá Sep 26 12.47 Nov 06 8.84 27.79
29 Southeast São Paulo Angatuba Sep 20 14.95 Oct 23 11.13 27.76
30 South Paraná Araruna Aug 09 15.44 Aug 30 11.60 27.71
31 Southeast São Paulo Atibaia Sep 22 11.80 Oct 30 8.25 27.42
32 Northeast Pernambuco Lagoa dos Gatos Sep 16 13.36 Oct 21 9.66 27.06
33 South Paraná Campo Mourão Sep 07 12.32 Oct 14 8.72 26.93
34 Southeast São Paulo São José do Rio Preto Sep 23 11.69 Nov 04 8.15 26.89
35 Southeast São Paulo Jacareı́ Oct 05 11.12 Nov 16 7.65 26.72
36 South Santa Catarina Florianópolis Aug 26 12.78 Sep 28 9.13 26.70
37 Midwest Mato Grosso Rondonópolis Sep 12 12.88 Oct 17 9.22 26.66
38 Northeast Rio Grande do Norte Parnamirim Aug 31 13.00 Sep 28 9.33 26.41
39 Southeast São Paulo Taubaté Sep 11 15.38 Oct 09 11.55 26.39
40 Southeast São Paulo Barra Bonita Sep 09 14.92 Oct 05 11.30 26.22
41 Southeast São Paulo Peruı́be Sep 05 13.89 Sep 28 10.77 26.19
42 South Paraná Umuarama Sep 29 15.47 Oct 25 12.27 26.17
43 Southeast Rio de Janeiro Paraty Sep 19 12.63 Oct 24 9.00 26.04
44 South Rio Grande do Sul Novo Hamburgo Oct 04 13.51 Nov 16 9.79 25.84
45 Southeast São Paulo Marı́lia Oct 19 11.32 Dec 06 7.85 25.77
46 Southeast Minas Gerais Patos de Minas Sep 15 13.92 Oct 21 10.17 25.52
47 Southeast São Paulo Nazaré Paulista Aug 20 17.97 Sep 12 14.00 25.47
48 South Paraná Cascavel Sep 10 14.14 Oct 17 10.38 25.33
49 Southeast São Paulo São José dos Campos Sep 05 12.83 Oct 09 9.18 25.33
50 Northeast Bahia Itagibá Aug 25 12.90 Sep 25 9.25 25.27
51 Southeast Rio de Janeiro Nova Friburgo Sep 03 13.96 Oct 03 10.21 24.92
52 Southeast São Paulo Mococa Oct 24 10.49 Dec 15 7.04 24.88
53 Southeast São Paulo Araçatuba Aug 28 14.64 Sep 24 10.84 24.85
54 Southeast Minas Gerais Varginha Sep 18 13.44 Oct 25 9.74 24.80
55 Midwest Distrito Federal Brası́lia Aug 26 13.12 Sep 30 9.45 24.79
56 South Santa Catarina Itapema Aug 20 17.43 Sep 12 13.47 24.62
57 South Rio Grande do Sul Alvorada Sep 22 14.16 Oct 30 10.40 24.55
58 Southeast São Paulo Bragança Paulista Sep 01 13.45 Oct 04 9.75 24.32
59 Northeast Bahia Itapetinga Sep 19 14.78 Oct 27 10.97 24.20
60 Northeast Pernambuco Catende Sep 28 12.96 Nov 09 9.32 24.11
61 Northeast Bahia Uruçuca Aug 20 13.57 Sep 19 9.87 24.05
62 South Santa Catarina Itajaı́ Aug 29 13.50 Oct 01 9.80 24.01
63 Northeast Bahia Lauro de Freitas Sep 01 13.38 Oct 04 9.70 23.89
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Table A1 – continued from previous page

No Policy (Peak) With Policy (Peak)
Row Number Region State Name Date Infectious (%) Date Infectious (%) Reduction (%)

64 Southeast Minas Gerais Patrocı́nio Aug 24 16.43 Sep 20 12.51 23.82
65 Southeast Rio de Janeiro Mangaratiba Sep 17 12.50 Oct 26 8.91 23.79
66 Southeast Minas Gerais Juiz de Fora Sep 02 13.69 Oct 05 9.98 23.64
67 Southeast São Paulo Eldorado Sep 17 12.77 Oct 26 9.16 23.63
68 Northeast Bahia Camaçari Sep 17 13.30 Oct 21 9.64 23.62
69 Southeast Minas Gerais São Sebastião do Paraı́so Oct 26 12.13 Dec 14 8.58 23.59
70 Southeast Rio de Janeiro São Pedro da Aldeia Sep 03 14.94 Oct 03 11.12 23.55
71 Southeast São Paulo São Carlos Sep 16 15.65 Oct 20 11.78 23.44
72 Midwest Goiás Goiandira Aug 14 14.83 Sep 10 11.02 23.37
73 Southeast São Paulo Lençóis Paulista Oct 17 10.91 Dec 03 7.52 23.35
74 Southeast Minas Gerais Uberlândia Sep 05 14.41 Oct 10 10.64 23.11
75 South Paraná Guairaçá Oct 15 9.29 Aug 25 6.71 23.01
76 Midwest Mato Grosso Barra do Garças Nov 12 9.31 Jan 05 6.00 22.93
77 South Paraná Maringá Aug 30 15.89 Oct 02 12.01 22.91
78 Northeast Pernambuco Aliança Aug 24 15.34 Sep 20 11.50 22.88
79 Midwest Goiás Pires do Rio Sep 01 16.06 Oct 01 12.16 22.86
80 Southeast São Paulo Mineiros do Tietê Aug 19 15.97 Sep 13 12.08 22.82
81 Southeast São Paulo Ferraz de Vasconcelos Aug 20 14.72 Sep 16 10.92 22.81
82 Southeast Rio de Janeiro Bom Jardim Aug 30 14.24 Sep 29 10.49 22.80
83 Southeast São Paulo Leme Oct 01 14.99 Nov 09 11.17 22.79
84 Northeast Rio Grande do Norte Açu Aug 09 16.04 Sep 01 12.15 22.70
85 Northeast Rio Grande do Norte São Gonçalo do Amarante Aug 13 16.13 Sep 08 12.23 22.50
86 South Rio Grande do Sul São Leopoldo Aug 30 14.77 Sep 30 10.97 22.50
87 Southeast Minas Gerais Pouso Alegre Aug 31 14.81 Oct 02 11.01 22.48
88 Northeast Pernambuco Belo Jardim Aug 31 17.17 Sep 26 13.21 22.41
89 Northeast Pernambuco Carnaı́ba Aug 28 16.53 Sep 25 12.61 22.36
90 Southeast São Paulo Monte Alto Aug 22 17.17 Sep 17 13.20 22.29
91 South Santa Catarina Sombrio Aug 11 15.00 Sep 06 11.19 22.27
92 Southeast São Paulo Cravinhos Aug 24 16.85 Sep 21 12.91 22.25
93 Southeast Minas Gerais Uberaba Aug 25 16.58 Sep 21 12.66 22.24
94 South Santa Catarina Criciúma Aug 16 14.66 Sep 15 10.87 22.22
95 Southeast São Paulo Presidente Venceslau Aug 20 16.58 Sep 17 12.66 22.06
96 Southeast Minas Gerais Ouro Fino Sep 08 14.71 Oct 13 10.93 21.98
97 Northeast Sergipe Itabaianinha Aug 31 15.77 Sep 29 11.90 21.83
98 Southeast Minas Gerais Belmiro Braga Aug 29 12.74 Sep 30 9.18 21.79
99 Southeast São Paulo Vinhedo Aug 08 18.61 Aug 28 14.58 21.74
100 Northeast Bahia Gongogi Aug 02 18.52 Aug 23 14.50 21.74
101 Northeast Ceará Aquiraz Sep 19 11.44 Aug 17 8.69 21.65
102 Southeast São Paulo Vargem Grande Paulista Aug 20 16.77 Sep 19 12.84 21.60
103 Southeast Minas Gerais Divinópolis Aug 16 16.73 Sep 12 12.79 21.58
104 Southeast São Paulo Jaboticabal Aug 16 17.30 Sep 12 13.33 21.56
105 Southeast São Paulo Capão Bonito Aug 17 22.13 Sep 05 18.05 21.56
106 South Santa Catarina São Ludgero Aug 02 15.58 Aug 27 11.73 21.48
107 Midwest Goiás Valparaı́so de Goiás Sep 13 14.62 Oct 17 10.85 21.41
108 Southeast Minas Gerais Extrema Aug 09 15.33 Sep 01 11.51 21.40
109 Southeast São Paulo Caieiras Aug 06 16.60 Aug 31 12.67 21.35
110 Southeast São Paulo São Caetano do Sul Jul 26 16.58 Aug 19 12.66 21.17
111 Southeast São Paulo Ribeirão Pires Aug 04 17.85 Aug 24 13.85 21.02
112 Northeast Pernambuco Machados Aug 12 17.94 Sep 04 13.94 21.00
113 Southeast Rio de Janeiro Miguel Pereira Aug 03 16.94 Aug 31 12.99 20.94
114 Southeast São Paulo Tatuı́ Sep 03 16.11 Sep 28 12.44 20.86
115 Southeast São Paulo Rio Claro Aug 26 18.81 Sep 23 14.77 20.84
116 Southeast São Paulo Assis Sep 02 16.11 Oct 03 12.23 20.75
117 Northeast Pernambuco Salgueiro Aug 20 17.41 Sep 10 13.65 20.69
118 Southeast Rio de Janeiro Araruama Aug 11 18.87 Sep 03 14.83 20.65
119 Northeast Pernambuco Chã de Alegria Jul 26 20.66 Aug 10 16.59 20.60
120 Southeast Minas Gerais Poços de Caldas Aug 30 16.90 Sep 27 12.96 20.49
121 Northeast Maranhão Raposa Aug 14 17.14 Sep 06 13.19 20.40
122 Southeast Rio de Janeiro Bom Jesus do Itabapoana Aug 10 17.86 Sep 03 13.86 20.39
123 Southeast Rio de Janeiro Resende Aug 17 18.32 Sep 10 14.30 20.24
124 North Acre Plácido de Castro Jul 29 16.18 Aug 19 12.30 20.22
125 South Rio Grande do Sul Serafina Corrêa Aug 13 14.84 Sep 09 11.07 20.14
126 Southeast São Paulo Cotia Jul 29 18.26 Aug 22 14.24 19.91
127 South Santa Catarina Cocal do Sul Aug 18 19.55 Sep 09 15.48 19.89
128 Northeast Rio Grande do Norte Mossoró Aug 01 18.03 Aug 26 14.03 19.87
129 South Santa Catarina Balneário Gaivota Aug 06 17.14 Aug 31 13.19 19.84
130 South Santa Catarina Urussanga Aug 13 16.24 Sep 08 12.36 19.79
131 Northeast Pernambuco Frei Miguelinho Sep 07 12.72 Oct 10 9.18 19.72
132 Southeast Minas Gerais Novo Cruzeiro Aug 15 22.42 Sep 03 18.26 19.69
133 Northeast Sergipe Simão Dias Aug 11 19.56 Sep 01 15.48 19.60
134 Southeast São Paulo Miracatu Aug 13 18.82 Sep 03 14.78 19.56
135 Southeast Rio de Janeiro Barra Mansa Aug 18 17.47 Sep 12 13.51 19.55
136 Northeast Maranhão São José de Ribamar Jul 25 18.87 Aug 13 14.83 19.55
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Table A1 – continued from previous page

No Policy (Peak) With Policy (Peak)
Row Number Region State Name Date Infectious (%) Date Infectious (%) Reduction (%)

137 Northeast Bahia Ipiaú Sep 17 11.60 Nov 04 8.27 19.54
138 Midwest Goiás Paraúna Jul 30 20.78 Aug 18 16.67 19.45
139 Southeast São Paulo Cruzeiro Sep 01 16.77 Oct 01 12.85 19.44
140 Northeast Pernambuco Itapetim Sep 20 14.96 Sep 06 11.56 19.43
141 Southeast Minas Gerais São Romão Aug 01 22.90 Aug 16 18.97 19.36
142 Northeast Paraı́ba Marizópolis Jul 16 28.95 Jul 28 24.77 19.34
143 South Santa Catarina Palhoça Aug 14 20.13 Sep 08 16.03 19.34
144 Northeast Pernambuco Lagoa de Itaenga Aug 14 19.96 Sep 04 15.88 19.30
145 Southeast São Paulo São Manuel Aug 10 17.89 Sep 03 13.91 19.27
146 South Santa Catarina Gaspar Aug 06 18.11 Aug 30 14.11 19.25
147 Southeast São Paulo Águas de Lindóia Aug 05 19.40 Aug 28 15.33 19.21
148 Midwest Goiás Goiânia Aug 06 19.51 Aug 29 15.43 19.09
149 Southeast Minas Gerais Itabira Aug 15 21.14 Sep 07 17.00 19.00
150 North Pará Vigia Aug 13 16.46 Sep 06 12.59 18.84
151 Northeast Ceará Russas Aug 22 16.07 Sep 17 12.23 18.83
152 Southeast São Paulo Botucatu Aug 04 19.37 Aug 26 15.31 18.81
153 Midwest Mato Grosso Lucas do Rio Verde Sep 06 16.18 Oct 11 12.34 18.81
154 Southeast Minas Gerais Mariana Jul 31 20.33 Aug 22 16.23 18.66
155 Northeast Ceará Tianguá Aug 24 17.94 Sep 22 13.95 18.62
156 Southeast Espı́rito Santo Linhares Aug 01 20.61 Aug 22 16.50 18.61
157 Northeast Ceará Ipueiras Aug 13 19.66 Sep 05 15.58 18.59
158 Midwest Goiás Luziânia Aug 13 20.85 Sep 09 16.72 18.58
159 Southeast Espı́rito Santo São Mateus Aug 10 18.98 Sep 04 14.94 18.55
160 Northeast Ceará Sobral Jul 27 19.92 Aug 13 15.84 18.44
161 Northeast Ceará Jaguaribe Jul 31 21.01 Aug 22 16.88 18.43
162 Southeast São Paulo Mairiporã Aug 05 19.35 Aug 29 15.29 18.41
163 Southeast São Paulo Santo André Jul 23 20.00 Aug 13 15.91 18.33
164 Midwest Mato Grosso Cáceres Aug 15 19.85 Sep 08 15.77 18.23
165 Southeast São Paulo Santos Jul 15 20.55 Aug 03 16.44 18.23
166 Northeast Alagoas Murici Jul 27 19.40 Aug 10 16.02 18.21
167 South Paraná Guaı́ra Jul 21 23.31 Aug 07 19.11 18.09
168 Southeast São Paulo Monte Mor Nov 04 10.63 Aug 13 8.54 18.07
169 Northeast Ceará Santa Quitéria Aug 04 20.02 Aug 28 15.93 18.05
170 Southeast Espı́rito Santo Presidente Kennedy Jul 19 22.25 Aug 03 18.08 18.03
171 Southeast São Paulo Mirandópolis Aug 24 16.44 Sep 20 12.61 17.96
172 Northeast Rio Grande do Norte Natal Jul 23 20.83 Aug 12 16.70 17.89
173 Southeast Rio de Janeiro Arraial do Cabo Jul 28 20.80 Aug 19 16.68 17.88
174 Northeast Pernambuco Palmares Aug 14 19.91 Sep 08 15.83 17.85
175 Southeast São Paulo Itaquaquecetuba Jul 25 23.11 Aug 10 18.93 17.80
176 Southeast São Paulo Mauá Jul 26 21.31 Aug 13 17.17 17.78
177 North Pará São João do Araguaia Nov 13 10.15 Jul 20 8.28 17.58
178 Southeast Rio de Janeiro Teresópolis Jul 30 21.75 Aug 17 17.60 17.58
179 Northeast Alagoas Matriz de Camaragibe Nov 28 8.86 Jul 13 7.24 17.57
180 Southeast Rio de Janeiro Iguaba Grande Jul 17 21.89 Aug 04 17.73 17.54
181 Southeast São Paulo Indaiatuba Aug 03 23.92 Aug 20 19.72 17.52
182 Southeast São Paulo Paulı́nia Aug 06 21.31 Aug 24 17.17 17.51
183 Southeast Espı́rito Santo Fundão Jul 17 21.28 Jul 28 17.84 17.48
184 Southeast Rio de Janeiro Tanguá Jul 24 22.62 Aug 11 18.44 17.45
185 Southeast Rio de Janeiro Rio de Janeiro Jul 17 21.50 Aug 07 17.35 17.44
186 Northeast Ceará São Luı́s do Curu Aug 15 16.19 Sep 10 12.41 17.41
187 Northeast Rio Grande do Norte Canguaretama Jul 26 21.25 Aug 13 17.12 17.40
188 Northeast Piauı́ Pedro II Aug 09 22.84 Aug 29 18.66 17.39
189 Southeast São Paulo Santana de Parnaı́ba Jul 17 21.57 Aug 01 17.43 17.39
190 South Santa Catarina Concórdia Jul 20 20.82 Jul 31 17.39 17.37
191 Southeast São Paulo Valinhos Aug 01 22.04 Aug 21 17.88 17.37
192 Northeast Pernambuco Caruaru Aug 12 21.24 Sep 04 17.10 17.33
193 Southeast Rio de Janeiro Maricá Jul 24 21.85 Aug 12 17.70 17.32
194 Southeast São Paulo Mogi Guaçu Aug 08 22.24 Aug 30 18.07 17.32
195 Southeast São Paulo Avaré Aug 06 21.66 Aug 27 17.51 17.29
196 Northeast Maranhão Zé Doca Aug 15 18.99 Sep 06 14.97 17.23
197 Northeast Ceará Crateús Aug 12 19.08 Sep 02 15.06 17.23
198 South Santa Catarina Joinville Jul 24 22.19 Aug 13 18.03 17.22
199 Southeast São Paulo Embu das Artes Aug 02 21.86 Aug 25 17.70 17.17
200 Southeast Rio de Janeiro Niterói Jul 18 22.20 Aug 09 18.03 17.07
201 Northeast Ceará Ocara Aug 17 16.51 Sep 11 12.71 17.07
202 Southeast São Paulo Araraquara Jul 28 23.39 Aug 15 19.19 16.99
203 Southeast Rio de Janeiro Nilópolis Jul 21 22.72 Aug 05 18.54 16.94
204 Southeast São Paulo São Bernardo do Campo Jul 17 22.39 Aug 06 18.22 16.91
205 Southeast São Paulo Votorantim Aug 06 22.26 Aug 26 18.09 16.91
206 Northeast Pernambuco Abreu e Lima Jul 13 24.35 Jul 27 20.14 16.89
207 Southeast São Paulo Catanduva Aug 13 22.05 Sep 06 17.89 16.85
208 Midwest Mato Grosso do Sul Três Lagoas Jul 20 24.26 Aug 04 20.04 16.78
209 South Santa Catarina Braço do Norte Jul 01 22.61 Jul 14 18.43 16.64
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210 Northeast Pernambuco Araçoiaba Jul 18 25.23 Jul 31 21.02 16.54
211 Southeast Rio de Janeiro Cabo Frio Jul 22 25.16 Aug 06 20.93 16.47
212 Southeast Rio de Janeiro Volta Redonda Jul 12 23.30 Jul 31 19.11 16.45
213 Southeast São Paulo Itanhaém Jul 23 25.53 Aug 08 21.29 16.43
214 Southeast Espı́rito Santo Guarapari Jul 21 25.70 Aug 03 21.71 16.42
215 Southeast Rio de Janeiro Magé Jul 21 23.12 Aug 07 18.92 16.40
216 Northeast Pernambuco Macaparana Jul 19 24.02 Aug 06 19.81 16.28
217 Northeast Pernambuco Arcoverde Jul 26 22.97 Aug 14 18.78 16.27
218 North Pará Óbidos Aug 03 24.36 Aug 21 20.14 16.22
219 Southeast Rio de Janeiro Queimados Jul 18 24.11 Aug 03 19.89 16.20
220 Southeast Espı́rito Santo Aracruz Jul 22 25.14 Aug 06 20.91 16.20
221 North Pará Igarapé-Açu Jul 18 25.25 Jul 28 21.73 16.18
222 Northeast Pernambuco Ribeirão Jul 25 26.77 Aug 08 22.56 16.16
223 Northeast Bahia Salvador Jul 13 23.39 Aug 01 19.19 16.13
224 Southeast São Paulo Nova Odessa Jul 31 22.32 Aug 22 18.16 16.10
225 Northeast Rio Grande do Norte Encanto Jul 04 25.53 Jul 16 21.29 15.99
226 Southeast Espı́rito Santo Vitória Jul 05 24.08 Jul 20 19.87 15.99
227 Southeast São Paulo Diadema Jul 13 23.97 Jul 31 19.75 15.95
228 Southeast Minas Gerais Governador Valadares Aug 01 24.07 Aug 21 19.85 15.94
229 Northeast Maranhão Davinópolis Aug 08 20.75 Aug 29 16.72 15.94
230 Northeast Ceará Fortaleza Jun 30 23.92 Jul 16 19.71 15.89
231 Northeast Ceará Iguatu Jul 23 24.35 Aug 10 20.13 15.86
232 Southeast São Paulo Itapetininga Aug 02 23.22 Aug 22 19.03 15.85
233 Northeast Alagoas São Miguel dos Milagres Aug 08 18.78 Aug 31 14.79 15.84
234 Southeast Rio de Janeiro Rio Bonito Jul 12 24.15 Jul 30 19.94 15.83
235 Northeast Pernambuco Ipojuca Jul 19 24.52 Aug 04 20.30 15.80
236 Southeast São Paulo Franca Aug 09 24.26 Aug 29 20.04 15.74
237 Southeast São Paulo Arujá Jul 12 24.18 Jul 29 19.96 15.74
238 Southeast São Paulo Itapecerica da Serra Jul 15 24.50 Aug 01 20.27 15.72
239 Northeast Pernambuco Panelas Aug 01 25.63 Aug 17 21.40 15.65
240 Southeast Rio de Janeiro Macaé Jul 19 26.10 Aug 04 21.85 15.63
241 Southeast Rio de Janeiro Nova Iguaçu Jul 16 25.32 Aug 03 21.09 15.61
242 Southeast São Paulo Campinas Jul 20 24.86 Aug 08 20.63 15.58
243 North Pará Santa Cruz do Arari Jul 21 21.63 Aug 05 17.52 15.56
244 South Santa Catarina Indaial Jul 22 24.37 Aug 08 20.15 15.56
245 Northeast Bahia Ilhéus Jul 04 25.29 Jul 18 21.05 15.55
246 Southeast São Paulo Dracena Jul 23 23.75 Aug 11 19.54 15.53
247 Northeast Pernambuco Limoeiro Jul 20 25.51 Aug 05 21.27 15.52
248 Southeast São Paulo Poá Jul 12 25.12 Jul 29 20.89 15.51
249 North Amazonas Manaus Jul 03 24.79 Jul 20 20.56 15.50
250 Northeast Ceará Amontada Sep 18 16.62 Sep 04 13.32 15.50
251 Southeast São Paulo Mogi das Cruzes Jul 13 24.83 Jul 30 20.60 15.50
252 Southeast Minas Gerais Araxá Nov 04 12.40 Jul 28 10.28 15.48
253 Southeast São Paulo Francisco Morato Jul 20 24.64 Aug 07 20.41 15.47
254 Southeast São Paulo Várzea Paulista Jul 28 25.13 Aug 13 20.89 15.46
255 Southeast São Paulo Ribeirão Preto Aug 03 25.12 Aug 26 20.89 15.43
256 North Amazonas Itapiranga Jul 01 27.65 Jul 09 24.12 15.41
257 Southeast São Paulo Sumaré Sep 29 15.18 Aug 17 12.65 15.40
258 Southeast São Paulo Itu Jul 20 28.21 Aug 03 23.95 15.39
259 Southeast Rio de Janeiro Petrópolis Jul 10 25.49 Jul 28 21.25 15.39
260 Northeast Ceará Limoeiro do Norte Jul 19 24.45 Aug 05 20.24 15.38
261 North Tocantins Palmas Jul 26 23.06 Aug 13 18.88 15.34
262 Southeast São Paulo Barueri Jul 03 24.90 Jul 18 20.67 15.33
263 North Pará Marituba Jul 14 26.54 Jul 28 22.28 15.32
264 Northeast Pernambuco Bom Jardim Jul 17 25.93 Aug 03 21.68 15.28
265 Northeast Pernambuco Bonito Jul 23 27.46 Aug 06 23.19 15.28
266 Northeast Pernambuco Garanhuns Jul 30 25.83 Aug 18 21.58 15.20
267 Northeast Pernambuco São Lourenço da Mata Jul 07 26.14 Jul 22 21.89 15.17
268 South Paraná Paranavaı́ Jul 18 24.02 Aug 03 19.81 15.12
269 Southeast Espı́rito Santo Vila Velha Jun 30 25.87 Jul 15 21.62 15.06
270 North Roraima Alto Alegre Jul 17 24.05 Aug 03 19.84 15.04
271 North Amazonas Manicoré Jul 28 24.17 Aug 16 19.96 15.04
272 North Pará Curionópolis Sep 13 16.94 Aug 29 13.49 15.03
273 Northeast Piauı́ Buriti dos Lopes Sep 04 20.18 Aug 17 16.61 15.02
274 North Pará Santarém Jul 31 25.23 Aug 22 20.99 15.00
275 Southeast São Paulo São Paulo Jul 02 25.84 Jul 20 21.60 15.00
276 Southeast São Paulo Santa Bárbara d’Oeste Aug 07 25.38 Aug 25 21.14 14.96
277 North Amazonas Novo Airão Jul 27 21.65 Aug 17 17.54 14.88
278 Northeast Pernambuco Paudalho Jul 11 26.22 Jul 27 21.97 14.78
279 Northeast Pernambuco Lagoa do Carro Jul 17 23.35 Aug 05 19.17 14.76
280 Northeast Rio Grande do Norte Apodi Jul 14 24.46 Jul 30 20.25 14.75
281 Southeast Minas Gerais Santos Dumont Aug 09 21.85 Aug 29 17.72 14.74
282 Northeast Ceará Pacatuba Jul 19 23.00 Aug 03 18.83 14.71
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283 Southeast São Paulo Presidente Prudente Jul 24 25.90 Aug 11 21.65 14.65
284 Southeast São Paulo Mongaguá Jul 15 28.05 Jul 29 23.78 14.64
285 Northeast Ceará Horizonte Jul 08 25.44 Jul 22 21.20 14.64
286 Southeast São Paulo Guarujá Jul 09 28.02 Jul 22 23.75 14.60
287 North Roraima Boa Vista Jun 30 26.40 Jul 15 22.14 14.58
288 Southeast São Paulo Taboão da Serra Jul 16 27.36 Aug 03 23.09 14.55
289 Northeast Ceará Capistrano Jul 19 24.87 Aug 05 20.64 14.54
290 Southeast Rio de Janeiro Rio das Ostras Jul 09 26.91 Jul 25 22.65 14.52
291 Southeast São Paulo Araras Jul 30 24.63 Aug 14 20.65 14.46
292 Southeast São Paulo Itapevi Jul 09 26.83 Jul 24 22.57 14.46
293 Northeast Bahia Itabuna Jul 03 28.64 Jul 15 24.36 14.40
294 Northeast Maranhão Paço do Lumiar Jul 03 27.30 Jul 17 23.03 14.36
295 Northeast Pernambuco Paulista Jun 29 27.43 Jul 11 23.16 14.34
296 Northeast Ceará Maracanaú Jul 03 27.05 Jul 17 22.78 14.34
297 Northeast Ceará Massapê Aug 19 17.96 Sep 14 14.11 14.32
298 Northeast Piauı́ Canto do Buriti Aug 15 22.75 Sep 06 18.93 14.29
299 Southeast São Paulo Praia Grande Jul 08 27.67 Jul 23 23.40 14.26
300 Southeast São Paulo Limeira Jul 20 27.26 Aug 05 23.00 14.24
301 Southeast São Paulo Franco da Rocha Jul 02 27.80 Jul 17 23.53 14.22
302 Southeast São Paulo Campo Limpo Paulista Jul 11 28.92 Jul 25 24.65 14.18
303 Southeast São Paulo Embu-Guaçu Jul 07 29.87 Jul 18 25.59 14.15
304 South Rio Grande do Sul Marau Jun 25 27.43 Jul 07 23.16 14.15
305 Southeast Rio de Janeiro Belford Roxo Jul 16 28.10 Aug 02 23.83 14.15
306 Southeast Rio de Janeiro Guapimirim Jul 17 28.81 Jul 29 24.79 14.14
307 Southeast São Paulo São Lourenço da Serra Jul 07 30.04 Jul 19 25.77 14.13
308 North Acre Rio Branco Jul 02 26.11 Jul 17 21.86 14.10
309 Southeast São Paulo Agudos Jul 07 28.88 Jul 21 24.60 14.10
310 Northeast Alagoas Maragogi Jul 15 28.37 Jul 25 24.82 14.10
311 Southeast Espı́rito Santo Cariacica Jul 05 27.50 Jul 19 23.23 14.09
312 Southeast Rio de Janeiro Duque de Caxias Jul 10 28.26 Jul 26 23.98 14.03
313 South Rio Grande do Sul Garibaldi Jul 04 29.01 Jul 14 24.74 14.03
314 South Santa Catarina Penha Jul 19 27.59 Aug 03 23.32 14.01
315 Southeast Rio de Janeiro Itaboraı́ Jul 03 27.09 Jul 17 22.83 13.98
316 Southeast Rio de Janeiro Paracambi Jul 10 27.46 Jul 22 23.19 13.95
317 Northeast Sergipe Aracaju Jul 12 25.35 Jul 28 21.12 13.95
318 Southeast São Paulo Suzano Jul 08 28.35 Jul 23 24.07 13.95
319 Southeast Rio de Janeiro São Gonçalo Jul 11 28.09 Jul 27 23.82 13.94
320 Southeast São Paulo Pindamonhangaba Jul 20 28.63 Aug 04 24.35 13.89
321 Northeast Rio Grande do Norte Ipanguaçu Jul 01 32.44 Jul 11 28.18 13.85
322 North Pará Castanhal Jul 07 28.51 Jul 18 24.23 13.83
323 North Pará Marapanim Jul 15 26.37 Jul 25 22.83 13.82
324 Southeast São Paulo Piracicaba Jul 14 27.43 Jul 29 23.16 13.82
325 Southeast Espı́rito Santo Serra Jun 28 28.66 Jul 11 24.38 13.82
326 Northeast Pernambuco Tabira Jul 31 25.28 Aug 17 21.07 13.80
327 Northeast Pernambuco Moreno Jul 03 29.51 Jul 15 25.22 13.77
328 Southeast Rio de Janeiro Cachoeiras de Macacu Jul 11 28.30 Jul 25 24.02 13.75
329 Southeast São Paulo Piracaia Jul 13 30.11 Jul 25 25.83 13.69
330 Southeast São Paulo Carapicuı́ba Jul 02 28.38 Jul 17 24.10 13.69
331 Southeast São Paulo Itatiba Jul 18 28.04 Aug 04 23.77 13.69
332 North Pará Parauapebas Jul 06 29.87 Jul 18 25.59 13.61
333 Northeast Pernambuco Glória do Goitá Jul 04 31.22 Jul 15 26.94 13.60
334 Northeast Paraı́ba Cabedelo Jul 10 27.49 Jul 26 23.22 13.59
335 Northeast Paraı́ba Patos Jul 12 27.61 Jul 29 23.34 13.59
336 Southeast São Paulo Jandira Jul 08 28.37 Jul 22 24.09 13.57
337 North Pará Canaã dos Carajás Jul 15 28.22 Jul 30 23.94 13.56
338 South Rio Grande do Sul Passo Fundo Jun 29 28.71 Jul 12 24.44 13.54
339 Southeast São Paulo Sorocaba Jul 13 28.91 Jul 29 24.62 13.52
340 Southeast São Paulo Registro Jul 25 27.18 Aug 10 22.92 13.51
341 Southeast São Paulo Osasco Jul 08 28.88 Jul 25 24.60 13.50
342 Southeast Minas Gerais Nova Serrana Aug 06 25.82 Aug 25 21.59 13.50
343 North Amapá Macapá Jun 27 28.81 Jul 11 24.52 13.50
344 Northeast Pernambuco Cabo de Santo Agostinho Jul 12 28.30 Jul 28 24.03 13.49
345 North Pará Santo Antônio do Tauá Jun 28 29.17 Jul 07 24.89 13.45
346 Northeast Pernambuco Carpina Jul 08 33.15 Jul 18 28.89 13.43
347 Northeast Rio Grande do Norte São José de Mipibu Jul 02 32.22 Jul 11 27.95 13.32
348 Northeast Pernambuco Nazaré da Mata Jul 08 31.08 Jul 18 27.05 13.30
349 Southeast Rio de Janeiro São João de Meriti Jul 10 30.06 Jul 25 25.77 13.25
350 North Amazonas Manacapuru Jun 19 29.70 Jul 01 25.42 13.21
351 Northeast Piauı́ Teresina Jun 30 28.95 Jul 15 24.68 13.16
352 Southeast São Paulo Guarulhos Jul 06 29.89 Jul 22 25.60 13.13
353 Southeast São Paulo Jundiaı́ Jul 04 29.90 Jul 18 25.61 13.12
354 Southeast São Paulo Americana Jul 04 30.70 Jul 18 26.41 13.12
355 Northeast Paraı́ba João Pessoa Jun 30 29.48 Jul 13 25.20 13.10
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356 Northeast Pernambuco Timbaúba Jul 11 30.69 Jul 24 26.41 13.10
357 North Rondônia Ji-Paraná Jul 03 31.99 Jul 14 27.70 13.07
358 Northeast Pernambuco Camaragibe Jun 26 30.48 Jul 09 26.19 13.06
359 Southeast São Paulo Bauru Jul 09 30.51 Jul 23 26.22 13.06
360 North Pará Santa Izabel do Pará Jun 25 32.94 Jul 04 28.67 13.03
361 Southeast São Paulo São Sebastião Jun 30 28.18 Jul 15 23.91 13.03
362 Northeast Paraı́ba Campina Grande Jul 11 31.34 Jul 23 27.06 12.99
363 Southeast Espı́rito Santo Santa Maria de Jetibá Jul 10 30.19 Jul 22 25.91 12.99
364 Southeast Rio de Janeiro Japeri Jul 04 31.67 Jul 16 27.39 12.99
365 Northeast Pernambuco Goiana Jul 03 29.37 Jul 17 25.09 12.94
366 Southeast São Paulo Barretos Jul 03 31.74 Jul 14 27.46 12.93
367 North Amapá Oiapoque Jun 30 30.19 Jul 10 25.93 12.91
368 Southeast Rio de Janeiro Mesquita Jul 08 31.20 Jul 23 26.91 12.90
369 North Amazonas Itacoatiara Jun 24 32.06 Jul 04 27.78 12.89
370 South Rio Grande do Sul Lajeado Jun 24 31.45 Jul 03 27.16 12.84
371 Southeast Rio de Janeiro Itaguaı́ Jul 03 30.80 Jul 15 26.51 12.83
372 Southeast Minas Gerais Montes Claros Jul 18 30.59 Aug 03 26.30 12.78
373 Northeast Rio Grande do Norte Alexandria Jun 26 37.70 Jul 04 33.51 12.73
374 Southeast Rio de Janeiro Sapucaia Jun 26 30.32 Jul 07 26.03 12.73
375 Northeast Ceará Quixeramobim Jul 03 29.12 Jul 17 24.84 12.72
376 Northeast Paraı́ba Taperoá Aug 01 22.21 Aug 23 18.16 12.72
377 North Pará Ananindeua Jun 29 30.87 Jul 10 26.58 12.70
378 Southeast São Paulo Hortolândia Jul 20 27.43 Aug 03 23.20 12.70
379 Northeast Sergipe Itaporanga d’Ajuda Jul 21 27.16 Aug 05 22.91 12.69
380 Northeast Pernambuco Sertânia Jul 06 30.20 Jul 19 25.91 12.69
381 Midwest Goiás Aparecida de Goiânia Jul 13 31.02 Jul 27 26.73 12.61
382 Southeast São Paulo Cajamar Jun 29 30.01 Jul 11 25.72 12.60
383 North Pará Belém Jun 24 31.08 Jul 06 26.80 12.55
384 Northeast Ceará Bela Cruz Jul 14 26.71 Jul 25 22.71 12.52
385 Northeast Paraı́ba Santa Rita Jun 30 30.23 Jul 12 25.94 12.51
386 South Rio Grande do Sul Venâncio Aires Jul 03 35.03 Jul 13 30.78 12.50
387 North Pará Paragominas Jul 01 35.46 Jul 10 31.23 12.49
388 Northeast Pernambuco Amaraji Jul 04 31.59 Jul 15 27.30 12.49
389 Northeast Maranhão Bacabal Jul 01 34.43 Jul 11 30.18 12.48
390 North Amapá Santana Jun 30 30.79 Jul 13 26.50 12.47
391 Southeast São Paulo São Vicente Jun 30 32.44 Jul 13 28.16 12.41
392 Southeast Rio de Janeiro São Francisco de Itabapoana Jul 04 31.61 Jul 16 27.32 12.32
393 Southeast São Paulo Lins Jul 04 34.21 Jul 16 29.95 12.31
394 Southeast São Paulo Juquitiba Jul 05 32.36 Jul 17 28.07 12.27
395 North Amazonas São Paulo de Olivença Jun 25 30.06 Jul 07 25.77 12.23
396 Northeast Pernambuco Jaboatão dos Guararapes Jun 27 32.38 Jul 09 28.10 12.21
397 Northeast Maranhão São Luı́s Jun 19 32.59 Jul 01 28.31 12.09
398 Northeast Rio Grande do Norte São Rafael Jun 23 33.99 Jul 02 29.70 12.09
399 Southeast São Paulo Salesópolis Jul 16 28.92 Jul 29 24.65 12.07
400 Northeast Paraı́ba Cajazeiras Jul 07 33.28 Jul 18 29.00 11.92
401 Northeast Ceará Caucaia Jun 23 32.69 Jul 04 28.41 11.90
402 Southeast São Paulo Santa Isabel Jul 05 33.08 Jul 16 28.80 11.89
403 Northeast Alagoas Paripueira Sep 21 18.12 Jul 24 15.24 11.84
404 Southeast Espı́rito Santo Viana Jun 25 32.14 Jul 06 27.86 11.83
405 Southeast São Paulo Caraguatatuba Jun 27 33.21 Jul 10 28.93 11.82
406 Northeast Pernambuco Itapissuma Jul 16 26.95 Jul 29 22.96 11.78
407 Southeast São Paulo Lucélia Jul 08 30.50 Jul 19 26.21 11.75
408 Northeast Pernambuco Vitória de Santo Antão Jun 24 34.38 Jul 05 30.12 11.73
409 Southeast Minas Gerais Três Pontas Jul 02 35.96 Jul 12 31.71 11.71
410 North Pará Capanema Jun 27 33.88 Jul 05 29.63 11.70
411 North Amazonas Iranduba Jun 13 34.15 Jun 21 29.88 11.65
412 North Amazonas Parintins Jun 16 32.17 Jun 28 27.88 11.63
413 North Pará São Miguel do Guamá Jun 28 33.16 Jul 07 28.87 11.58
414 Northeast Piauı́ Parnaı́ba Jun 27 32.56 Jul 11 28.28 11.55
415 Northeast Pernambuco Recife Jun 12 33.78 Jun 24 29.50 11.54
416 Northeast Maranhão Cururupu Jul 03 34.12 Jul 14 29.85 11.49
417 Northeast Ceará Itaitinga Jun 21 33.93 Jul 03 29.65 11.48
418 Northeast Alagoas Marechal Deodoro Jun 25 34.17 Jul 05 29.89 11.48
419 North Amazonas Autazes Jun 13 39.32 Jun 19 35.17 11.45
420 Northeast Ceará Pedra Branca Jun 30 33.41 Jul 11 29.13 11.45
421 North Amazonas Borba Jul 07 33.62 Jul 14 30.07 11.42
422 Northeast Ceará Maranguape Jun 23 35.27 Jul 03 31.00 11.38
423 Northeast Paraı́ba Bayeux Jul 02 34.23 Jul 14 29.96 11.36
424 North Amazonas Maués Jun 24 35.68 Jul 04 31.42 11.35
425 Northeast Maranhão Imperatriz Jun 23 34.44 Jul 03 30.17 11.22
426 North Pará Benevides Jun 21 37.73 Jun 28 33.51 11.19
427 North Rondônia Porto Velho Jun 19 34.43 Jul 01 30.16 11.18
428 North Pará Cametá Jul 04 32.31 Jul 18 28.02 11.18
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429 Northeast Pernambuco Pombos Jun 18 35.87 Jun 27 31.62 11.14
430 Northeast Ceará Cascavel Jun 27 34.50 Jul 07 30.23 11.14
431 South Paraná São João do Caiuá Jun 08 38.46 Jun 13 34.24 11.06
432 South Rio Grande do Sul Tunas Jun 21 39.07 Jun 28 35.13 11.05
433 Northeast Ceará Pindoretama Jun 25 36.54 Jul 04 32.31 11.00
434 Northeast Paraı́ba Conde Jun 18 39.68 Jun 25 35.50 10.97
435 Northeast Pernambuco Itaquitinga Jun 28 37.43 Jul 07 33.20 10.79
436 North Amazonas Beruri Jun 22 39.10 Jun 30 34.91 10.76
437 North Pará Barcarena Jun 26 38.44 Jul 05 34.22 10.75
438 Northeast Pernambuco Igarassu Jun 21 36.99 Jul 01 32.74 10.75
439 North Pará Marabá Jun 28 37.72 Jul 07 33.50 10.67
440 Southeast São Paulo Guararema Jul 26 25.91 Aug 12 22.02 10.66
441 Northeast Alagoas Maceió Jun 15 36.01 Jun 26 31.75 10.60
442 North Tocantins Paraı́so do Tocantins Jul 10 33.05 Jul 23 28.76 10.50
443 Northeast Ceará Eusébio Jun 11 37.05 Jun 21 32.80 10.47
444 North Amazonas Barcelos Jul 07 33.37 Jul 18 29.08 10.46
445 North Amapá Laranjal do Jari Jun 17 37.99 Jun 24 33.79 10.45
446 Northeast Pernambuco Olinda Jun 13 37.55 Jun 23 33.31 10.41
447 Northeast Sergipe Rosário do Catete Jun 27 37.67 Jul 05 33.46 10.40
448 North Pará Viseu Sep 20 21.82 Jul 22 18.90 10.38
449 Northeast Pernambuco Água Preta Jun 26 38.68 Jul 04 34.50 10.37
450 North Amazonas Manaquiri Jun 19 42.75 Jun 26 38.65 10.27
451 Southeast Espı́rito Santo Afonso Cláudio Jun 18 40.63 Jun 26 36.47 10.20
452 Northeast Pernambuco São José da Coroa Grande Jun 15 38.38 Jun 24 34.15 10.13
453 Northeast Maranhão Mirinzal Jun 18 42.98 Jun 25 38.88 10.13
454 North Amazonas Coari Jun 10 41.64 Jun 16 37.49 10.08
455 North Pará Bragança Jun 22 38.53 Jun 29 34.31 10.06
456 Northeast Maranhão Anajatuba Jun 23 38.13 Jul 02 33.89 9.95
457 Northeast Pernambuco Trindade Jun 24 41.12 Jul 02 36.95 9.92
458 Northeast Maranhão Santa Rita Jun 18 36.87 Jun 24 33.34 9.76
459 Southeast São Paulo Pariquera-Açu Jun 11 41.34 Jun 17 37.17 9.74
460 North Amazonas Presidente Figueiredo Jun 11 38.84 Jun 19 34.62 9.74
461 Midwest Goiás Planaltina Jun 26 41.66 Jul 05 37.49 9.54
462 Northeast Ceará Pacajus Jun 22 38.11 Jun 28 34.59 9.48
463 Northeast Ceará Trairi Jun 26 38.38 Jul 05 34.15 9.36
464 Northeast Ceará Umirim Jul 02 35.27 Jul 13 31.00 9.29
465 North Pará Limoeiro do Ajuru Jun 24 38.19 Jul 03 33.96 9.29
466 Southeast Rio de Janeiro Campos dos Goytacazes Jun 20 42.22 Jun 28 38.07 9.27
467 South Paraná Santo Antônio do Caiuá Jun 02 44.72 Jun 06 40.64 9.16
468 Northeast Maranhão Arari Jun 12 43.74 Jun 19 39.62 9.14
469 Northeast Ceará São Gonçalo do Amarante Jun 11 43.73 Jun 18 39.61 8.68
470 Southeast São Paulo Serrana Jun 25 39.36 Jul 04 35.13 8.67
471 North Amazonas Tabatinga Jun 05 42.88 Jun 12 38.75 8.65
472 North Pará Ponta de Pedras Jun 13 44.19 Jun 19 40.09 8.61
473 North Amazonas Careiro Jun 06 44.39 Jun 13 40.27 8.57
474 Northeast Pernambuco Custódia Jun 15 46.14 Jun 22 42.08 8.53
475 South Rio Grande do Sul Bento Gonçalves Jun 11 47.34 Jun 16 43.59 8.47
476 Northeast Ceará Solonópole Jun 08 49.18 Jun 13 45.26 8.30
477 Northeast Maranhão Lago da Pedra Jun 18 45.01 Jun 25 40.92 8.29
478 Northeast Paraı́ba Sapé Jun 09 45.89 Jun 16 41.84 8.25
479 Southeast Minas Gerais São Francisco Jun 12 48.72 Jun 18 44.75 8.23
480 Southeast Minas Gerais Mário Campos Aug 07 31.06 Jun 25 28.08 8.20
481 Northeast Maranhão Morros Jun 19 42.01 Jun 24 38.55 8.18
482 Northeast Piauı́ Picos Jun 09 46.83 Jun 15 42.82 8.17
483 North Amazonas Tefé Jun 08 44.59 Jun 15 40.49 8.11
484 North Amazonas Urucará Jun 07 45.59 Jun 12 41.53 7.93
485 North Amazonas Rio Preto da Eva May 29 50.58 Jun 02 46.70 7.74
486 North Pará Breves Jun 08 48.58 Jun 13 44.60 7.65
487 North Pará São Caetano de Odivelas Jun 10 46.87 Jun 16 42.81 7.60
488 Northeast Ceará Acaraú Jun 02 52.90 Jun 08 49.04 7.04
489 North Amazonas Carauari May 20 56.60 May 24 52.91 6.40
490 Northeast Ceará Viçosa do Ceará Jun 01 58.12 Jun 05 54.51 5.91
491 Northeast Paraı́ba Mari May 29 62.13 Jun 01 58.73 5.57
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