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Abstract  58 
 59 
Objective 60 
Functional networks derived from resting-state scalp EEG from people with idiopathic (genetic) 61 
generalized epilepsy (IGE) have been shown to have an inherent higher propensity to generate 62 
seizures than those from healthy controls when assessed using the concept of brain network 63 
ictogenicity (BNI). Herein we test whether the BNI framework is applicable to resting-state MEG and 64 
whether it may achieve higher classification accuracy relative to previous studies using EEG.  65 
 66 
Methods 67 
The BNI framework consists in deriving a functional network from apparently normal brain activity, 68 
placing a mathematical model of ictogenicity into the network and then computing how often such 69 
network generates seizures in silico. We consider data from 26 people with juvenile myoclonic 70 
epilepsy (JME) and 26 healthy controls.  71 
 72 
Results 73 
We find that resting-state MEG functional networks from people with JME are characterized by a 74 
higher propensity to generate seizures (i.e. BNI) than those from healthy controls. We found a 75 
classification accuracy of 73%. 76 
 77 
Conclusions  78 
The BNI framework is applicable to MEG and capable of differentiating people with epilepsy from 79 
healthy controls. The observed classification accuracy is similar to previously achieved in scalp EEG.  80 
 81 
Significance 82 
The BNI framework may be applied to resting-state MEG to aid in epilepsy diagnosis.  83 
 84 
 85 
 86 
Highlights  87 

• Computational modelling is combined with MEG to differentiate people with juvenile 88 
myoclonic epilepsy from healthy controls.  89 

• Brain network ictogenicity (BNI) was found higher in people with juvenile myoclonic epilepsy 90 
relative to healthy controls. 91 

• BNI’s classification accuracy was 73%, similar to previously observed using scalp EEG. 92 
 93 
 94 
 95 
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Epilepsy is one of the most common neurological disorders with an estimated 5 million new diagnosis 118 
each year (WHO, 2019). The diagnosis of epilepsy is based on clinical history and supported by 119 
clinical electroencephalography (EEG). The presence of interictal spikes in the routine scalp EEG 120 
recordings is one of the most valuable biomarkers of epilepsy (Pillai and Sperling, 2006). However, 121 
the presence of interictal epileptiform discharges (IED) in a routine EEG is low, ranging between 25 122 
and 56% (Smith, 2005; Benbadis et al., 2020). Furthermore, about 10% of people with epilepsy do not 123 
show IEDs even after repeated or prolonged EEG (Smith, 2005; Benbadis et al., 2020). On the other 124 
hand, specificity is also suboptimal, ranging between 78 and 98% (Smith, 2005), which, for example, 125 
may delay the diagnosis of psychogenic nonepileptic attacks by 7 to 10 years (Benbadis, 2009). 126 
 127 
The low sensitivity of IEDs results from IEDs being typically rare events. This may be a consequence 128 
of their sources being deep in the brain and/or the extent of cortex involved in epileptic activity being 129 
undetectable at the scalp surface (Pillai and Sperling, 2006). Consequently, much of the routine 130 
clinical EEG recording consists of brain activity that appears normal to visual inspection, which 131 
without other visible disturbances in background rhythms is considered non-informative. However, 132 
growing evidence suggests that such sections of interictal EEG without IEDs may be used to inform 133 
epilepsy diagnosis (e.g. Larsson and Kostov, 2005; Schmidt et al., 2016; Verhoeven et al., 2008). 134 
Larsson and Kostov (2005) showed that there is a shift in the peak of the alpha power towards lower 135 
frequencies in interictal EEG from people with both focal and generalized epilepsy. More recently, 136 
Abela et al. (2019) found that a slower alpha rhythm may be an indicator of seizure liability. Other 137 
studies have used graph theory to test whether functional networks derived from interictal EEG differ 138 
from EEG obtained from healthy controls. It has been found that functional networks from people with 139 
epilepsy are more “regular” (i.e. higher path lengths between nodes) and deviate more from small-140 
world structures than those found in healthy controls (Horstmann et al., 2010; Quraan et al., 2013). 141 
Functional network alterations inferred from resting-state EEG have also been used to differentiate 142 
children with focal epilepsy from healthy children (van Diessen et al., 2013, 2016). Furthermore, 143 
resting-state EEG functional networks from people with IGE were shown to have more functional 144 
connections than healthy controls (Chowdhury et al., 2014). Functional networks inferred from 145 
interictal EEG from people with temporal lobe epilepsy have also been shown to differ from those 146 
from healthy controls (Coito et al., 2016).  147 
 148 
All these studies show that functional networks based on apparently normal EEG may aid in the 149 
diagnosis of epilepsy. However, these studies lack mechanistic insights as to why such differences 150 
may be related to epilepsy. To build such understanding, we and others have proposed to use 151 
mathematical models of epilepsy to assess the functional networks and elucidate as to why a brain 152 
may be prone to generate seizures (Schmidt et al., 2014, 2016; Petkov et al., 2014; Lopes et al., 153 
2019). In particular, we showed that resting-state EEG functional networks from people with IGE are 154 
more prone to support synchronization phenomena and the emergence of seizure-like activity than 155 
those from controls (Schmidt et al., 2014; Petkov et al., 2014). To quantify the differences, we 156 
introduced the concept of brain network ictogenicity (BNI), i.e. a measure of how likely a functional 157 
network is of generating seizures in silico (Petkov et al., 2014).  158 
 159 
For the BNI to be useful for diagnosing people with epilepsy from apparently normal brain activity, we 160 
relied on the assumption that the ability of a brain to generate seizures is an enduring feature that 161 
should be identifiable during interictal periods. We further assumed that such underlying closeness to 162 
seizures is captured by the properties of functional networks. We then assess the capacity of a given 163 
functional network to generate seizures by estimating BNI through computer simulations that produce 164 
long-term activity from which the volume of epileptiform activity can be evaluated. People with 165 
epilepsy were therefore assumed to have resting-state functional networks that were more ictogenic, 166 
i.e. that had a higher propensity to generate seizures as estimated by the BNI, compared to healthy 167 
people. Using this framework on a dataset comprising 30 people with IGE and 38 healthy controls it 168 
was found 100% specificity at 56.7% sensitivity, and 100% sensitivity at 65.8% specificity (Schmidt et 169 
al., 2016). 170 
 171 
In the current study, we aim to test whether the BNI concept may be equally useful when applied to 172 
resting-state MEG data (i.e. its generalizability to a different data modality), and whether it may yield 173 
superior diagnostic power of epilepsy relative to previous applications of BNI to resting-state EEG 174 
data. In particular, we aim to find whether BNI may be capable of differentiating juvenile myoclonic 175 
epilepsy (JME) from healthy controls, using MEG data, and observe how classification accuracy 176 
compares to previous studies of BNI on scalp EEG (Schmidt et al., 2014, 2016). Since MEG has the 177 
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advantage, relative to EEG, of neuromagnetic fields being minimally perturbed by brain tissue, skull 178 
and scalp (Supek and Aine, 2016), one may expect that MEG-derived functional networks may be 179 
more reliable than those from EEG, which in turn may enhance the BNI’s ability to differentiate people 180 
with generalized epilepsy from healthy controls.  181 
 182 
 183 

2. Methods 184 
 185 

2.1. Participants  186 
 187 
We used resting-state MEG data obtained from 26 people with JME and 26 healthy controls. The 188 
individuals with epilepsy were recruited from a specialist clinic for epilepsy at University Hospital of 189 
Wales in Cardiff, and the healthy individuals were volunteers who had no history of significant 190 
neurological or psychiatric disorders. The healthy group was age and gender matched to the epilepsy 191 
group. The age range in the epilepsy group was 17 to 47, median 27 years, and in the control group 192 
was 18 to 48, median 27 years. There were 7 males in the epilepsy group and 7 males in the control 193 
group. Individuals in the epilepsy group had a number of different seizure types and were taking anti-194 
epileptic drugs (see Krzemiński et al. (2020) and Routley et al. (2020) for more details about this 195 
dataset). Table 1 summarizes the clinical characteristics of the individuals with epilepsy. This study 196 
was approved by the South East Wales NHS ethics committee, Cardiff and Vale Research and 197 
Development committees, and Cardiff University School of Psychology Research Ethics Committee. 198 
Written informed consent was obtained from all participants. 199 
 200 
 201 

2.2. MEG acquisition and pre-processing 202 
 203 
MEG data were acquired using a 275-channel CTF radial gradiometer system (CTF System, Canada) 204 
at a sampling rate of 600 Hz. We obtained approximately 5 minutes of MEG recordings per individual. 205 
The participants were instructed to sit steadily in the MEG chair with their eyes focused on a red dot 206 
on a grey background. Each individual also underwent a whole-brain T1-weighted MRI acquired using 207 
a General Electric HDx 3T MRI scanner and an 8-channel receiver head coil (GE Healthcare, 208 
Waukesha, WI) with an axial 3D fast spoiled gradient recalled sequence (echo time 3 ms; repetition 209 
time 8 ms; inversion time 450 ms; flip angle 20º; acquisition matrix 256×192×172; voxel size 1×1×1 210 
mm).  211 
 212 
To assess the presence of artefacts and interictal spike wave discharges, the MEG data was divided 213 
into 2 s segments and each segment was visually inspected. Artefact-free segments were identified 214 
and re-concatenated for each individual. We thus obtained concatenated recordings with a variable 215 
length ranging from 204 s to 300 s, and to avoid the potential impact of different recording lengths on 216 
our analysis, we only considered the first 200 s of each recording for every individual. The pre-217 
processed data were then filtered in the alpha band (8-13 Hz) and down-sampled to 250 Hz. We 218 
focused on the alpha band because it has been shown to be the most informative for differentiating 219 
people with epilepsy from healthy controls (Schmidt et al., 2014, 2016).  220 
 221 
  222 

2.3. Source mapping from MEG 223 
 224 
To infer functional networks from the MEG data, we first mapped the data from the sensor space to 225 
the source space. The MEG sensors were co-registered with the structural MRI using the locations of 226 
the fiducial coils in the CTF software (MRIViewer and MRIConverter), and we obtained a volume 227 
conduction model from the MRI scan using a semi-realistic model (Nolte, 2003). To reconstruct the 228 
source signals, we used a linear constrained minimum variance (LCMV) beamformer on a 6-mm 229 
template with a local-spheres forward model in Fieldtrip (Oostenveld et al., 2011; 230 
http://www.ru.nl/neuroimaging/fieldtrip). We mapped the source signals into the 90 brain regions of 231 
the Automated Anatomical Label (AAL) atlas (Hipp et al., 2012). For more details about these 232 
methods see our previous studies (Krzemiński et al., 2020, Routley et al., 2020). 233 
 234 
 235 

2.4. Functional networks 236 
 237 
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We divided the 200-s-long source reconstructed MEG recordings into 10, non-overlapping, 20 s 238 
segments. The choice of segment length was motivated by previous studies that aimed to distinguish 239 
people with epilepsy from controls using resting-state scalp EEG (Schmidt et al., 2014, 2016). For 240 
each segment, we computed a functional network using the amplitude envelope correlation (AEC) 241 
with orthogonalized signals (Hipp et al., 2012) (see Supplementary Material S1 for more details). We 242 
selected this method because it has been shown to be a reliable measure of functional connectivity 243 
(Colclough et al., 2016). To remove spurious connections, we generated 99 surrogates from the 244 
original MEG signals using the iterative amplitude-adjusted Fourier transform (IAAFT) with 10 245 
iterations (Schreiber and Schmitz, 1996, 2000) (surrogates are randomized time series comparable to 246 
the original time series). We excluded connections if their weights did not exceed the 95% 247 
significance level compared to the same connection weights as computed from the surrogates 248 
(Schmidt et al., 2014, 2016, Lopes et al., 2019). Using this method, we obtained 10 functional 249 
networks per individual. 250 
 251 
 252 

2.5. Mathematical model 253 
 254 
To study the inherent propensity of a MEG functional network to generate seizures, we placed a 255 
canonical mathematical model of ictogenicity at each network node, i.e. at each of the 90 brain 256 
regions represented in the functional network (Lopes et al., 2017, 2018, 2019, 2020). The activity of a 257 
network node was described by a phase oscillator, which could transit between two states: a ‘resting 258 
state’ at which the oscillator fluctuated close to a fixed stable phase and a ‘seizure state’ represented 259 
by a rotating phase (see Supplementary Material S2 for more details about the model). This canonical 260 
model has been shown to approximate the interaction between neural masses (Lopes et al., 2017).  261 
 262 
 263 

2.6. Brain network ictogenicity  264 
 265 
The mathematical model allowed us to generate synthetic brain activity which fluctuated between the 266 
resting and the seizure states. To quantify this activity, we used the BNI (Chowdhury et al., 2014; 267 
Petkov et al., 2014; Lopes et al., 2017, 2018, 2019, 2020), which is the average fraction of time that 268 
the network spent in the seizure state (see Supplementary Material S3 for more details). We interpret 269 
higher values of BNI as representing a higher inherent propensity of the brain to generate seizure 270 
activity. Thus, although we use resting-state MEG data to infer the functional networks, we assume 271 
that the underlying brain states may differ in their inherent propensity to generate seizures and this 272 
may be captured by our computational framework. We expect that functional networks from JME 273 
individuals should be characterized by higher values of BNI than those from healthy individuals. 274 
 275 
The simulated synthetic activity depends on a model parameter, the global scaling coupling � (see 276 
Supplementary Material S2). Higher � values imply stronger neuronal interactions between 277 
connected nodes, which in turn leads to higher BNI values. Hence, for a fair comparison of BNI 278 
between different functional networks, � must be the same in all simulations. To avoid an arbitrary 279 
choice of �, we considered a redefinition of BNI (Lopes et al., 2018). This redefinition consists in 280 
computing BNI for a sufficiently large interval of � values in order to capture the full variation of BNI 281 
from 0 to 1. Then we calculated ����  as the integral of the BNI in this interval (see Supplementary 282 
Material S3). For a meaningful comparison between different functional networks, we used the same 283 
interval of � for all simulations. This procedure has been shown to be robust (Lopes et al., 2018). 284 
Analogously to the BNI, a higher ����  value corresponds to a higher propensity of a network to 285 
generate seizures. Figure 1 summarizes the key steps of our method. 286 
 287 
 288 

2.7. Statistical methods  289 
 290 
We computed 10 functional networks per individual and therefore we obtained 10 ����  values per 291 
individual. We then calculated ����� �, the average of the 10 ����  values. Finally, we used the Mann-292 
Whitney U test to assess whether the median of ����� � was higher in people with epilepsy than in the 293 
healthy controls.  294 
 295 
 296 

3. Results 297 
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 298 
We considered resting-state MEG recordings from 26 people with JME and 26 healthy controls. To 299 
test whether ����  was larger in individuals with JME than in healthy controls, we first built functional 300 
networks from MEG source reconstructed data, then we placed a mathematical model of ictogenicity 301 
into the network nodes and measured the networks’ propensity to generate seizures in silico. Figure 302 
2(a) shows the ����  for all individuals. Overall, individuals with JME had larger ����  values than 303 
healthy controls (� 	 0.0039, Mann-Whitney U test). This finding confirms our hypothesis that resting-304 
state functional networks from people with epilepsy have a higher propensity to generate seizures 305 
than those from healthy controls. Note also that for each individual, we observed that ����  had a small 306 
variance (i.e. the intraindividual BNI variability is smaller than the interindividual BNI variability), 307 
implying that ����  was consistent across the 10 different MEG resting-state functional networks of 308 
each individual. We then tested whether ����  could be used for individual classification as to whether 309 
individuals had epilepsy. Figure 2(b) shows the receiver operating characteristic (ROC) curve. The 310 
area under the curve (AUC) was 0.72, the sensitivity was 0.77, and the specificity was 0.58. The ���� ’s 311 
classification accuracy was 73%. 312 
 313 
The results in Fig. 2 may be confounded by a number of factors. Namely, epilepsy duration and 314 
seizure frequency may have an impact on the ����  values. Figure S1 shows the ����  versus these 315 
clinical characteristics in the JME group. From visual inspection, the figure suggests that while 316 
individuals with short epilepsy duration or low seizure frequency may exhibit both low and high ����  317 
values, individuals with relatively longer epilepsy duration (larger than 20 years) and higher seizure 318 
frequency (higher than 200 seizures per year) present high ����  values. 319 
 320 
 321 

4. Discussion  322 
 323 
To date, the BNI framework has proved to be valuable for the diagnosis of IGE using scalp EEG 324 
(Schmidt et al., 2014, 2016; Petkov et al., 2014), assessment of epilepsy surgery using intracranial 325 
EEG (Goodfellow et al., 2016; Lopes et al., 2017, 2018, 2020; Laiou et al., 2019), and epilepsy 326 
classification using scalp EEG (Lopes et al., 2019). Here we aimed to test whether the concept of BNI 327 
could differentiate people with JME from age and gender matched healthy controls using resting-state 328 
MEG data. We found that the BNI is on average higher in the JME group than in the control group. 329 
We further found that, as a classifier, the BNI yields a sensitivity of 0.77, a specificity of 0.58, and an 330 
AUC of 0.72, which is similar to previous findings in IGE using scalp EEG (Schmidt et al., 2016). This 331 
result suggests that MEG and scalp EEG may yield similar diagnostic power despite MEG being 332 
considered superior to EEG in recording reliable brain signals (Supek and Aine, 2016). In other 333 
words, this suggests that the key functional network properties that characterize the underlying brain 334 
ictogenicity may be similarly captured by MEG and scalp EEG.  335 
 336 
Resting-state MEG functional networks have been previously shown to be altered in people with 337 
epilepsy relative to healthy controls (van Dellen et al., 2012; Niso et al., 2015; Hsiao et al., 2015; Wu 338 
et al., 2017; Routley et al., 2020). For example, Niso et al. (2015) used 15 graph-theoretic measures 339 
to quantify resting-state MEG functional networks from people with frontal focal epilepsy, generalized 340 
epilepsy and healthy individuals. They found that functional networks from generalized epilepsy had 341 
greater efficiency and lower eccentricity than those from controls, whereas functional networks from 342 
frontal focal epilepsy exhibited only reduced eccentricity over fronto-temporal and central sensors 343 
relative to networks from controls. Furthermore, machine learning has been used to also differentiate 344 
people with epilepsy from controls (Soriano et al., 2017). Our study distinguishes from these studies 345 
by not only searching for differences between functional networks in health and disease, but instead 346 
test a specific mechanistic hypothesis that justifies the difference. Thus, our approach is more readily 347 
interpretable and may offer insight into why altered functional networks underlie epilepsy.  348 
 349 
We acknowledge that our study has some limitations. First, in order to truly test how MEG-based 350 
predictions compare to scalp EEG-based predictions, we would need both MEG and EEG data 351 
collected from the same participants. Future work should assess whether predictions based on both 352 
data modalities would deliver equivalent individual classification. Second, people with JME were 353 
taking anti-epileptic medication, which may have potentially reduced the BNI in some JME individuals, 354 
making them indistinguishable from healthy individuals. Future studies should consider newly 355 
diagnosed drug-naïve individuals. This may be particularly important to also control for the effect of 356 
epilepsy duration and seizure frequency on BNI. Our results suggest that individuals with longer 357 
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epilepsy duration and higher seizure frequency were more likely to be characterized by high BNI. On 358 
one hand this is an expected observation, i.e. BNI should be higher for individuals more prone to 359 
seizures and also those for which a longer disease may have had an impact on resting-state 360 
functional connectivity. On the other hand, these were individuals for which diagnosis could be less 361 
challenging. Third, we focused our analysis on differentiation of people with JME from healthy 362 
controls. We therefore cannot exclude the possibility that our findings are specific to JME. More 363 
comprehensive datasets will be needed to explore whether our findings generalize to other types of 364 
epilepsy.     365 
 366 
 367 

5. Conclusions 368 
 369 
Our results demonstrate that the BNI framework generalizes from scalp EEG to MEG. We showed 370 
that resting-state MEG from people with JME is characterized by higher BNI than that from healthy 371 
controls. The achieved classification accuracy is similar to previously obtained from scalp EEG, 372 
suggesting that the two data modalities may capture similar underlying ictogenic features. 373 
 374 
 375 
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 519 
 520 
 521 

ID Age Gender Epilepsy 
duration 

Seizure frequency 
MJ ABS GTCS 

JME1 17.8 f 2.8 12 365 3 
JME2 31.3 f 18.3 12 12 1 
JME3 27 f 19.0 104 0 1 
JME4 20.1 f 3.1 0 0 4 
JME5 20.7 f 3.7 4 4 4 
JME6 20.4 f 5.4 12 0 104 
JME7 19.2 f 4.2 12 12 12 
JME8 20.9 f 12.9 104 36 4 
JME9 35.3 f 23.3 2920 0 1 

JME10 30.2 m 16.2 52 52 4 
JME11 23.7 m 8.7 365 2 2 
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JME12 38.8 f 21.8 365 365 104 
JME13 22.2 m 4.2 104 0 52 
JME14 33.1 f 21.1 12 1 12 
JME15 29.7 m 14.7 12 0 0 
JME16 25.7 f 10.7 6 12 1 
JME17 36 f 27.0 0 365 12 
JME18 38.6 f 28.6 2 0 1 
JME19 44.3 m 29.3 365 365 2 
JME20 47.7 f 40.7 52 52 1 
JME21 26.8 m 8.8 1 0 0 
JME22 22.3 f 10.3 6 0 1 
JME23 38.7 f 24.7 0 0 1 
JME24 18.9 f 3.9 0 0 1 
JME25 31.1 f 18.1 1 0 0.2 
JME26 22.7 m 10.7 1 1 0.2 

Table 1: Clinical characteristics of the individuals with JME. Age and epilepsy duration are in years, m 522 
= male, f = female, seizure frequency is in number of seizures per year and is divided in three types of 523 
epileptiform activity: MJ = myoclonic jerks, ABS = absence seizures, and GTCS = generalized tonic-524 
clonic seizures. Seizure frequency was based on self-reporting at the time of scan and extrapolated to 525 
a number of seizures per year. 526 
 527 
 528 
Figure Legends 529 
 530 
Figure 1  531 
Scheme of the data analysis procedure to compute ���� . (a) We select a MEG source reconstructed 532 
data segment and by measuring the AEC we obtain (b) a functional network. To assess the 533 
propensity of the network to generate seizures, we then use (c) the theta model to simulate (d) 534 
synthetic brain activity. We then calculate (e) the BNI, i.e. the average fraction of time that network 535 
nodes spend in seizure-like activity. To avoid an arbitrary choice of �, we compute (f) BNI as a 536 
function of �. (g) ����  is then the integral of BNI in the interval ���, ���, i.e. the area under the BNI 537 
curve.  538 
 539 
 540 
Figure 2  541 
Brain network ictogenicity (���� ) in healthy individuals and people with JME. Each marker in panel (a) 542 
represents the average ����  (i.e. ����� �) of a single individual and the error bars their standard error 543 
computed from 10 MEG resting-state functional networks. Blue markers correspond to healthy 544 
individuals, whereas red markers correspond to individuals with epilepsy. The epilepsy group has a 545 
larger ����� � than the healthy group (� 	 0.0039, Mann-Whitney U test). Panel (b) shows the receiver 546 
operating characteristic (ROC) curve for one group versus the other using the ����� � as a classifier. 547 
The area under the curve (AUC) is 0.72 and the circle identifies the optimal operating point of the 548 
ROC curve, for which the sensitivity is 0.77, and the specificity is 0.58. 549 
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