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Abstract 

COVID-19 can exponentially precipitate life-threatening emergencies as witnessed 

during the recent spreading of a novel coronavirus infection which can rapidly evolve 

into lung collapse and respiratory distress (among other various severe clinical 

conditions). Our study evaluates the performance of a tailor-designed deep 

convolutional network on the tasks of early detection and localization of radiological 

signs associated to COVID-19 on frontal chest X-rays. We also asses the framework’s 

capacity in differentiating the above-mentioned signs, which are usually confused with 

the more usual common bacterial and viral pneumonias. Open-source chest X-ray 

images categorized as Normal, Non-COVID-19 and COVID-19 pneumonias were 

downloaded from the NIH (n=2,259), RSNA (n=600) and HM Hospitales (n=2,307). 

Our algorithmic framework was able to precisely detect the images with COVID19-

related radiological findings (mean Accuracy: 90.5%; Sensitivity: 80.6%; Specificity: 

98.0%), whilst correctly categorizing images deemed as Non-COVID-19 pneumonias 

(mean Accuracy: 88.4%; Sensitivity: 93.3%; Specificity: 92.0%) and normal chest X-

rays (mean Accuracy 92.1%; Sensitivity: 91.8%; Specificity: 94.3%). The associated 

results show that our AI framework is able to classify COVID-19 accurately, making of 

it a potential tool to improve the diagnostic performance across primary-care centres 

and, to grant priority to a subset of algorithmic selected images for urgent follow-on 

expert review. This would sensibly accelerate diagnosis in remote locations, reduce 

the bottleneck on specialized centres, and/or help to alleviate the needs on situations 

of scarcity in the availability of molecular tests. 
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INTRODUCTION 

    Reverse-transcription polymerase chain reaction (rt-PCR) tests remain the gold-

standard for COVID-19 diagnosis in the acute phase of infection 1, 2. However, this 

molecular diagnostic tool has some limitations: (i) its false negative rate is relatively 

high (20-60%); (ii) obtention of results varies from 4-6 hours to, sometimes, a few days; 

(iii) it requires to be performed by certified laboratories with trained personnel, 

expensive equipment and availability of reagents; (iv) a large demand can easily 

overcome supply, particularly at times when its needed the most 3, 4. The situation is 

even more complicated in remote areas affected by the pandemic or in those with 

access only to low complexity healthcare centres. These, generally, have difficulties 

in accessing the rt-PCR tests forcing non-specialized practitioners to diagnose the 

COVID-19 condition based solely on clinical and/or radiological data. Drawbacks like 

these, have lately driven the debate on using chest imaging as a primary diagnostic 

tool. Indeed, two studies have reported high sensitivity of non-contrast chest CT 

compared to rt-PCR 5, 6. However, because of the associated operational costs and 

limited equipment availability, chest CT can hardly be relied upon for initial diagnosis 

in mass. As a consequence, most clinical guidelines only recommend it when an 

alternative diagnosis is paramount and/or when COVID-19 testing kits are scarcely 

available. Similar attempts were recently performed, all based on chest x-rays which 

are widely available and less expensive to perform than CT equivalents. However, 

chest x-rays taken in patients with confirmed and symptomatic COVID-19 condition 

can induce to confusion in cases associated to other lung infections or pathologies 

(including the absence of them) making it difficult for non-trained physicians to 

differentiate among these patterns. Even in the case of expert radiologists, it has 

proven challenging to be precise on diagnosis (particularly with early stage patients). 
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The described scenario is what motivated us to design, code and optimize a robust 

COVID-19 classification network as a complementary tool to the current professional 

and equipment available resources. 

    Artificial intelligence (AI) tools aim to reproduce human cognition and processes 

involved in the analysis of complex data 7. Their use in assisting physicians has 

recently made inroads in various medical fields. Specifically, in the context of 

radiology, image recognition using a set of deep neural networks (“DNNs”) has proven 

to be a valuable aid to physicians diagnosing among many different pathologies. In 

radiology, these complex algorithms achieve accuracy rates comparable (or, in some 

instances, beyond) to those related to the ones by radiologists in most of the specific 

fields 8. Thus, AI-based analytical tools help securing increased precision along the 

entire spectrum of diagnostic radiology and, improving workflow prioritization in the 

case of large-scale screenings. Since the beginning of the current pandemic a few 

studies have been published proving the use of AI systems in diagnosing COVID-19 

condition using radiological images 9-13. In differentiation to the existing research on 

the field, ours focuses on achieving improved measures of generalisation and stability 

across the different type of images provided by varied sources and equipment through 

a series of innovative algorithmic design features (details of which are beyond the 

scope of this work). These features also facilitate the accurate classification when 

images to be used for interpretation are gathered using an ordinary mobile phone 

camera exposed to chest X-rays projected by a negatoscope. 

 

MATERIAL AND METHODS 

Chest X-ray datasets 
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    Our study is based on an aggregated pool of images sourced from HM Hospitales 

(n=2,307), the National Institute of Health (“NIH”; n=2,259) and the Radiological 

Society of North America (“RSNA”; n=600). In all cases, the files include anonymous 

frontal chest X-rays, whilst the dataset provided by HM Hospitales contains 

anonymized records related to the 2,307 patients admitted with a confirmed (n=2,075) 

or pending (n=232) of COVID-19 diagnosis performed by rt-PCR. All relevant ethical 

guidelines have been followed for the use of this material. The NIH dataset was 

downloaded from https://nihcc.app.box.com/v/ChestXray-NIHCC and the RSNA 

dataset was downloaded from https://www.rsna.org/en/education/ai-resources-and-

training/ai-image-challenge/RSNA-Pneumonia-Detection-Challenge-2018 14, 15. In the 

case of the images sourced from both the NIH and RSNA databases, only a subset of 

records was randomly selected. Figure 1 presents an example image for each of the 

labels found on the master dataset. Once aggregated to the files obtained from HM 

Hospitales, the resulting pool (n=5,166) was split into training (n=3,472), validation 

(n=1,051) and test (n=643) sets in a completely disjoint manner. In all instances, 

images contained across every bucket included a representative collection of the three 

classification categories: Normal, Non-COVID (including bacterial and other viral 

pneumonias) and COVID-19 pneumonias. The final composition for each dataset is 

detailed in Table 1.  

 

Network architecture 

    A Dense Convolutional Network architecture (“DenseNet”) has been the one 

accomplishing the most out of a comprehensive architectural network search initially 

performed. Such a design is known for delivering significant performance 

improvements over most of the alternative constructions, whilst requiring less memory  
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Figure 1. Examples of chest X-ray images from the master dataset. 

 

(A) normal; (B) bacterial pneumonia; (C) COVID-19. 

 

and computational support. As described in previous publications, the DenseNet 

configuration is one where each layer is connected to every other layer through a feed-

forward linkage 16. At every level, feature-maps from all preceding layers are used as 

inputs, whilst its output feeds all subsequent deeper layers. The framework is 

composed by 4 dense blocks of 6, 12, and 24 layers each. In order to improve the 

performance and to optimize training, we have run calibration routines a total of 5 

times (folds), each consisting on 200 epochs. Overall, training using the curated image 

patches took 55 h and 156k iterations to complete, using a 4 GeForce GTX 1080 GPU 

configuration. Maximum accuracy (100%) was reached after 125 epochs, whereas the 

pretrained version took 32 epochs for convergence to begin. The network was trained, 

validated and tested using images adjusted to 1024x1024x1 pixels/channel. 

 

Image pre-processing 

    When a deep convolutional neural network overfits, it performs extremely well on a 

training set but poorly on data outside of the calibration spectrum. In our design, two 

steps were taken to address this issue: (i) a dropout layer was added (set to 0.25) 
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Table 1. Description of the training, validation and test datasets. 

Class of chest X-ray Training set (n) Validation set (n) Test set (n) 

Normal 910 260 267 

Non-COVID191 910 260 252 

COVID-19 1,652 531 124 

Total 3,472 1,051 643 

1 Non-COVID-19: chest X-rays with diagnosis of non-COVID-19 pneumonia; COVID-

19: chest X-rays with diagnosis of COVID-19 disease. 

 

which results in 25% of the neurons to be randomly turned off during the training 

process, therefore reducing the likelihood of overfitting; (ii) a data augmentation 

process was performed where randomly selected data points were duplicated and 

modified to account for the variability found across different image capturing methods. 

To address variations related to grid location, size of the radiological finding and the 

image angle, all of the training images were altered using a combination of random 

rotation, zoom, shear, and flipping. The model was calibrated initially once just using 

dropout and, in a second occasion, both with data augmentation and dropout 

activated.  

 

Statistical analysis  

    Following the Training stage, a Validation process was performed in which images 

across the three different chest X-ray’s categories were used. Finally, a Test phase 

was run, which results were statistically analysed. A Confusion Matrix was constructed 

comparing the framework’s Classification Accuracy across each of the labels. 

Additionally, Accuracy, Error rate, Sensitivity, Specificity and Geometric Mean were  
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Figure 2. Examples of finding localization in radiographs using heatmaps. 

 

(A) and (C): Normal and COVID-19 input chest X-rays images, respectively; (B) and 

(D): heatmap of decision visualization on both Normal and COVID-19 chest X-rays 

 

estimated for each class 17. Accuracy defines the ratio between the correctly classified 

test samples (including each of the three labels) to the total number of test items 17. 

Error Rate was derived representing the complement of Accuracy. Sensitivity or True 

Positive Rate (“TPR”) represents correctly classified samples in relation to the total 

number of positive samples; Specificity or True Negative Rate (“TNR”) estimates the 

ratio of correctly classified negative samples with respect to the total universe within 

the same class. Geometric Mean (GM) was calculated by using the square root of the 

product of both TPR and TNR’s metrics. All these metrics are suitable standards to 

evaluate the classification performance on imbalanced data pools as the case is on 

this dataset. Finally, the above-mentioned estimates were calculated across each of 

the class labels documented in the corresponding original database archives. 

 

Results 

Patient population 

    We have had access to two basics demographic descriptors, gender and age, which 

were included on the original datasets. In the case of Normal X-rays, the data 

distribution related 43.7% to women and a 56.3% to men. The Non-COVID-19 split 

A DCB
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corresponded 40.6% to women and 59.4% to men, and in the case of COVID-19, 

40.3% and 59.7% to women and men respectively. In terms of age distribution, the 

mean/SD estimated (expressed in years) was 46.7±16.4, 45.0±17.2 and 67.8±16.0 for 

each of the corresponding classification classes. As expected, and due to the COVID-

19 suspected condition, the dataset originated on hospitalized patients shows a higher 

mean age when compared to the other two datasets.  

 

Classification metrics 

    Figure 2 presents examples of decision visualization on chest X-rays. Global 

Accuracy, Error Rate, TPR, TNR and GM for the predicted classification pool across 

all of the three categories are shown in Table 2. The overall Accuracy performance for 

the multi-classification task reached 90.4%. Our system was able to differentiate 

COVID-19 positive related chest X-ray images from the other two classes (common 

pneumonia and normal) with Accuracy, TPR and TNR of 90%, 80% and 98%, 

respectively. Of the 23 false negative patients, 9 were wrongly classified as Normal 

chest X-rays but, it is not clear whether these errors were a true misclassification or 

related to the fact that approximately 40% of COVID-19 positive tested patients are 

asymptomatic and do not usually show any observable radiological sign 

distinguishable by traditional screening methods. The remaining 14 cases were 

wrongly categorized as Non-COVID-19 pneumonia. In any case and, despite the 

minimal error in classification observed, when/if radiological signs of pneumonia are 

detected, a validation diagnosis should be performed by means of additional 

alternative tests. Finally, out of the 10 false positive cases, 5 were related to Normal 

chest X-rays and 5 corresponded to Non-COVID-19 pneumonia. For the Normal and 

Non-COVID19 classes, Accuracy rate reached 92% and 88%, respectively. In the  
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Table 2. Classification metrics.  

DNN Accuracy Error rate TPR1 TNR GM 

Normal 0.921 0.078 0.918 0.943 0.930 

Non-COVID192 0.884 0.115 0.933 0.920 0.926 

COVID-19 0.905 0.094 0.806 0.980 0.889 

1 TPR: true positive rate; TNR: true negative rate; GM: geometric mean 

2 Non-COVID-19: chest X-rays with diagnosis of non-COVID-19 pneumonia; COVID-

19: chest X-rays with diagnosis of COVID-19 disease. 

 

case of Normal chest X-rays, estimated TPR and TNR were of 91% and 94%. As for 

the Non-COVID19 pneumonia instances, calculated TPR and TNR measurements 

were 93% and 92%.  

 

Discussion 

    Our results demonstrate that a deep learning framework trained on a diverse set of 

images can achieve classification Accuracy Rates in line (or beyond) the ones by 

specialized radiologists. The robust multi-class classification system presented has 

proven to be accurate across each and all of the three main classes (Normal, Non-

COVID-19 and COVID-19). The use of AI applications as a diagnostic aiding tool is a 

growing trend in radiology providing a significative help among specialized 

professionals as well as general practitioners inducing the shortening of diagnostic 

workflow time and, an increase in diagnosis precision. These tools can also ease the 

exponential demand for diagnostic expertise during pandemic periods, letting 

radiologists to focus on the most urgent flow whilst allowing suspected patients within 

remote areas to get an immediate preliminary diagnosis. In addition, our system is 
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designed to be able to process images obtained by standard mobile devices and non-

professional cameras on chest X-rays projected on the negatoscope. Additionally, the 

framework could be also integrated into any existing teleradiology platform.  

    The advent of machine learning algorithms has made automated classification of 

radiological signs on chest X-rays an achievable target milestone. For example, 

CheXNet is a 121-layer CNN trained with ChestX-ray14, a large publicly available 

chest X-ray dataset containing over 110,000 frontal view X-ray images from 14 

different diseases 8. Not only did CheXNet performed better than radiologists at 

diagnosing pneumonia, but it also overperformed when identifying other 13 diseases 

including cancer, pleura thickening and tuberculosis 8. Different machine learning 

systems have demonstrated their potential for diagnosing pediatric pneumonia using 

chest X-rays as well 18. In the case of COVID-19, previous studies demonstrated that 

deep learning architectures were able to detect positive cases accurately. Wang et al. 

showed that COVID-Net, an open-source deep convolutional neural network, 

achieved 92.6% accuracy in classifying normal, bacterial pneumonia, non-COVID viral 

pneumonia and COVID-19 viral pneumonia on 13,725 frontal chest radiographs. This 

study though included just 183 images out of 129 COVID-19 positive patients (COVIDx 

dataset) 13. Abbas et al. have used the DeTraC system achieving a 95% accuracy on 

a dataset of 196 chest X-rays including 105 patients COVID-19 positive patients 9. 

Using a pre-trained ResNet-50, Bukhari et al. demonstrated a 98% accuracy on a 278-

image dataset including 89 COVID-19 positive patients whilst, on a modified version 

of the COVIDx dataset including 259 COVID-19 positive images, Karim et al reported 

94% and 88% accuracy rates for DenseNet-161 balanced and imbalanced datasets, 

respectively 11, 12. Our results showing a 93% accuracy with a DenseNet on a dataset 

including 2,307 COVID-19 positive images are in line with the described antecedents, 
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with the additional assurances provided by the disproportionally higher number of 

positive cases. 

    Also, based on the above, it is clear that an AI-based tool like ours can be of 

particular utility during stress and pandemic periods. This relies on the fact that COVID-

19 condition exhibits particular radiological signatures and image patterns which can 

be observed in medical imagery and used for differential diagnosis from other 

pathologies 19, 20. Additionally, chest X-rays are the most widely utilised imaging 

method to establish the diagnosis of patients with respiratory problems, especially in 

rural and isolated areas with limited access to molecular tests or advanced medical 

equipment (such as CT scanners). Finally, in addition to the difficulties described, the 

demand overflow and workload pressure on expert radiologists usually witnessed 

during pandemic periods could potentially induce to perceptual and cognitive biases, 

all of which leads to random diagnostic errors 21. Besides, in hospitals and general 

healthcare centres lacking resident specialized radiologists, AI systems could prove 

useful in delivering an initial real-time diagnosis in any suspected patient just relying 

on X-ray equipment, a mobile application and access to a tele-radiology platform 22. 

    Our framework was bound to only three different classes, which does not reflect the 

clinical reality of the many more conditions to be taken into account when diagnosing 

respiratory diseases on a chest X-ray. As a consequence, the use of our classification 

system should be regarded as an assisting tool for radiologists and/or general 

practitioners, aiming at improving accuracy within a limited context but, not as a 

replacement of qualified physicians diagnosis (when and if available). On the other 

hand, deep learning models are powerful “black box” models which remain relatively 

uninterpretable compared to the statistical kind traditionally used in medical practice. 

Computer vision models combine pixel-based visual information in a highly intricated 
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way, making it difficult to trace the model output back to the observable input. In this 

sense, the use of heat maps highlighting critical regions on the chest (used as class-

discriminating areas within the lungs) serve as a reassuring measure to both non-

expert physicians and practising radiologists. Another limitation is the fact that 

although the test dataset was disjunct from the training dataset, all the COVID-19 

positive images belonged to the same original database (HM Hospitales), raising 

concerns about the framework ability to generalize on exogenous test sets coming 

from different image banks. It is known that the efficacy of DNNs varies based on the 

set of images with which they are trained. Each model may have different sensitivities 

and specificities and may be subject to a unique set of biases and shortcomings in 

prediction introduced by the image training set. Finally, not all COVID-19 cases are 

associated with chest pathology. In fact, approximately half of patients imaged 0-2 

days after symptom onset had a normal chest CT 10. We intend to address these 

limitations in future editions of this work. 

 

Conclusions 

    In summary, the results exposed show that AI-based tools can be used to 

discriminate between COVID-19 positive patients and the ones with other (or no) 

pulmonary infections. The system is designed to equally process images obtained by 

photographing X-rays using mobile devices (cell phones or tablets) or, scanning chest 

radiographs. Additionally, the framework could be integrated into tele-radiology 

systems via an automated-programming interface (API). In any case, the presented 

technology probes to be of extreme help in the context of accelerating the initial and 

preliminary detection of COVID-19-related pulmonary conditions when traditional 

molecular methods are temporally or permanently unavailable. Furthermore, the 
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system can be adapted to assess the future evolution of the disease, that is to estimate 

probability that any given patient will aggravate from an initial diagnosed clinical 

condition potentially demanding a future admittance into specialized care units. 

Though a secondary feature, this could substantially ease the pressure on existing 

limited healthcare infrastructure by allowing practitioners to objectively filter through 

(for admittance) only patients whose condition is predicted to worsen. Ultimately, 

systems based on DNNs will allow general practitioners across undeserved and/or 

demand overflown regions, to act as a first point of diagnosis with expected accuracy 

rates similar, or in some instances better, to those achieved by specialized 

professionals and/or by means of utilising dedicated test kits. 
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