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Abstract 35 

Studies have shown that rich-club may underlie brain function and be associated with many 36 

brain disorders. In this study, we aimed to investigate the relation between poststroke brain 37 

functions and functional recovery versus the rich-club organization of the structural brain 38 

network of patients after first-time acute ischemic stroke. A cohort of 16 first-time acute 39 

ischemic stroke patients (11 males; 5 females) was recruited. Structural brain networks were 40 

measured using diffusion tensor imaging within 1 week and at 1, 3 and 6 months after stroke. 41 

Motor impairment was assessed using the Upper-Extremity Fugl-Meyer motor scale and 42 

activities of daily living using the Barthel Index at the same time points as MRI. The rich-club 43 

regions that were stable over the course of stroke recovery included the bilateral dorsolateral 44 

superior frontal gyri, right supplementary motor area, and left median cingulate and 45 

paracingulate gyri. The network properties that correlated with poststroke brain functions were 46 

mainly the ratio between communication cost ratio and density ratio of rich-club, feeder and 47 

local connections. The recovery of both motor functions and activities of daily living were 48 

correlated with higher normalized rich club coefficients and shorter length of local connections 49 

within a week after stroke. The communication cost ratio of feeder connections, the length of 50 

rich-club and local connections, and normalized rich club coefficients were found to be 51 

potential prognostic indicators of stroke recovery. Our results provide additional support to the 52 

notion that different types of network connections play different roles in brain functions as well 53 

as functional recovery. 54 
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Introduction 56 

Approximately 80% of patients suffer from motor impairment after stroke.1,2 Brain plasticity 57 

mechanisms, including activity-dependent rewiring and synapse strengthening, may likely 58 

underlie the recovery of brain functions.3–6 Previous studies have investigated the relation 59 

between motor recovery after stroke and the structural connectivity of local pathways, such as 60 

corticospinal7–10, alternate corticofugal11,12 and corticocortical pathways13,14. The relation 61 

between motor recovery and structural connectivity in stroke patients has also been 62 

investigated by large-scale analysis of structural connectivity15. 63 

Neuroarchitecture can be understood not only at the local and global scales, as is usually 64 

performed, but also in specific groups of brain regions and the relationship among them, known 65 

as rich-club organization16. Rich-club organization is composed of brain regions that are 66 

closely connected, i.e., high centrality, and has been found to serve brain functions17. Rich-67 

club organization may dominate the entire brain network18, and has been regarded as the core 68 

of communication of the whole human brain19. The brain regions that form rich-club 69 

organization in healthy adults are bilateral frontoparietal and subcortical regions, including the 70 

precuneus, superior frontal cortex, parietal cortex, putamen, hippocampus and thalamus.20 71 

Neurological diseases and disorders, such as, schizophrenia21, Huntington’s disease22, multiple 72 

sclerosis23, traumatic brain injury24, and Alzheimer’s disease25, have been shown to impair 73 

rich-club organization.  74 

Two prior studies have investigated the relation between poststroke functional outcomes 75 

related to motor function and rich-club metrics, such as the number of rich-club nodes affected 76 

by stroke26, and path length and the average distance between regions27. Considering that there 77 

is a lack of understanding of the longitudinal changes in rich-club organization after stroke, 78 

and the relation between rich-club organization versus poststroke brain functions and 79 

functional recovery, we therefore aimed to investigate whether rich-club organization would 80 

change over the course of stroke recovery, association between network metrics and poststroke 81 

brain functions, and the network metrics that may predict functional recovery. 82 

Materials and methods 83 

Subjects and functional assessments 84 

Stroke patients (n = 16; 11 male; mean age 65.8 ± 11.0; infarct side: 50% left) with first-time 85 

acute ischemic stroke were recruited between September 2015 and July 2018 with informed 86 

consent. MRI and functional assessments were performed within 1 week (n = 12) and at 1 (n = 87 
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16), 3 (n = 13) and 6 (n = 9) months after acute ischemic stroke. Functional assessments 88 

included the Upper-Extremity Fugl-Meyer motor scale (UE-FM) and Barthel index (BI). The 89 

UE-FM was developed to quantitatively assess the severity of motor impairment of the upper 90 

extremity due to hemiplegic stroke and is based on the well-defined stages of motor recovery28. 91 

The BI was developed to quantitatively assess disability and functional outcomes29. All patients 92 

received rehabilitation at the Acute Stroke Unit of Queen Mary Hospital after admission due 93 

to acute stroke. After an average of 5 days after admission, patients were transferred to the 94 

Stroke Rehabilitation Ward of Tung Wah Hospital for more intensive rehabilitation. All 95 

patients underwent conventional occupational rehabilitation therapy sessions, including 96 

activities of daily living training, upper limb functional training, cognitive perceptual training 97 

and functional task training. All procedures were carried out following the operational 98 

guidelines of the Human Research Ethics Committee, and all protocols were approved by the 99 

Institutional Review Board of the University of Hong Kong/Hospital Authority Hong Kong 100 

West Cluster. 101 

Image acquisition 102 

All MRI scans were performed using a 3.0 T MRI scanner (Achieva TX, Philips Healthcare, 103 

Best, The Netherlands) with a body coil for excitation and an 8-channel head coil for reception. 104 

Diffusion tensor imaging (DTI) was performed using single-shot spin-echo echo planar 105 

imaging, consisting of non-diffusion-weighted images (b0) and diffusion-weighted images 106 

(DWIs) with b-values of 1000 s/mm2 along 32 gradient directions, with the following 107 

parameters: TR/TE = 4000/81 ms, field-of-view = 230 × 230 mm2, reconstructed 108 

resolution = 3 × 3 mm2, 33 contiguous slices with thickness of 3 mm, SENSE factor = 2, 109 

number of averaging = 2, total scan time ≈ 5 minutes. TI-weighted image were acquired using 110 

3D magnetization prepared-rapid gradient echo (MPRAGE) with the following parameters: 111 

TR/TE/TI = 7/3.17/800 ms, field-of-view = 240  ×  240 mm2, reconstruction resolution = 1  ×  112 

1  ×  1 mm3, 160 contiguous slices, scan time ≈ 6 min. 113 

Image pre-processing 114 

All of the pre-processing procedures were performed using SPM12 115 

(https://www.fil.ion.ucl.ac.uk/spm/). Head motion correction was performed by registering 116 

DWIs to b0 images30. MPRAGE images were first reoriented taking the anterior commissure31 117 

as the origin. The reoriented MPRAGE images were normalized to the MNI152 template to 118 

obtain a transformation matrix 𝑀. The MNI152 template was then inversely normalized to 119 
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MPRAGE images by the inverse of 𝑀, 𝑀!". The inverse normalized MNI152 template was 120 

non-linearly registered to DWIs, and a transformation matrix 𝑇 was obtained. In this way, an 121 

inverse warping transformation from the standard space to the native DTI space was obtained. 122 

Network construction 123 

Tractography: Diffusion tensor and diffusion metrics were obtained using the Diffusion 124 

Toolkit32. White matter tractography was obtained using TrackVis (http://trackvis.org) using 125 

Fibre Assignment by Continuous Tracking (FACT)33,34 with an angle threshold of 45° and 126 

random seed of 32. Spine filter was used to smooth the fibre tracks.  127 

Network node definition: The Automated Anatomical Labelling 2 (AAL2) atlas35 in the 128 

standard space was inversely wrapped to the individual DTI native space according to 𝑀!" 129 

and 𝑇. Ninety-four cortical regions (47 in each hemisphere) were obtained, and each region 130 

was regarded as a node. Of these, 10 regions were excluded, namely, the left and right inferior 131 

occipital gyrus, left and right fusiform gyrus, left and right superior temporal pole, left and 132 

right middle temporal pole and left and right inferior temporal pole, due to variations in brain 133 

coverage. 134 

Network link definition: The UCLA Multimodal Connectivity package was used to calculate 135 

the number and length of fibres between each pair of regions. Two regions were considered as 136 

connected when a fibre connected them. The link weight was defined as the fibre count between 137 

two regions. 138 

Network topology metrics 139 

MATLAB (2018b) and the Brain Connectivity Toolbox 140 

(https://sites.google.com/site/bctnet/)36 were used to calculate brain network topology metrics. 141 

The metrics included (1) node degree, the number of nodes that a given node is connected to; 142 

(2) node strength, the sum of the weight of connected links of a node; (3) local clustering 143 

coefficient, the connection properties within the neighbourhood of a node; (4) global efficiency, 144 

the average inverse shortest path length in the network; (5) local efficiency, the global 145 

efficiency computed on node neighbourhoods; and (6) node betweenness centrality, the 146 

fraction of all shortest paths in the network that contain the node of interest. 147 

Rich-club organization 148 
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R (3.6.0) was used to estimate rich-club organization for each subject at each time point using 149 

a previously published method37. The weighted rich-club coefficient was calculated in 4 steps. 150 

First, for each node degree (k), a subnetwork was obtained by extracting the nodes with degree 151 

greater than k and the links among them. Second, for each subnetwork, the total number of 152 

links (n) and the sum of weights of the links (W) were calculated. Third, the n largest weights 153 

of the whole network were summed. Finally, the weighted rich-club coefficient of this 154 

subnetwork was subsequently calculated as follows:38 155 

𝜑#(k) = 	
𝑊$%

∑ 𝑤&'()%*+)
&,"

 156 

where 𝑊$%  represents total weights of the links of nodes with degree larger than k, and 157 

∑ 𝑤&'()%*+)
&,"  the sum of the n largest weights of the links. However, nodes with lower degree 158 

in a network have lower possibilities of sharing links with each other by coincidence, and even 159 

random networks generate increasing rich-club coefficients as a function of increasing degree 160 

threshold k. To circumvent this effect, 1,0000 random networks with the same size and same 161 

degree distribution of the network of interest were generated. The average of the rich-club 162 

coefficients of the 1,0000 random networks were calculated, 𝜑'()+-.. The normalized rich-163 

club coefficient of the network of interest was defined as follows:16,37 164 

𝜑)-'. =	
𝜑%

𝜑'()+-.
 165 

A subnetwork is considered a rich-club organization when 𝜑)-'.(𝑘) > 1.21,39 166 

A node can be evaluated as a rich-club node when k ={k1, k2, …, kn}, in which the highest k 167 

was called the highest rich-club level. Each node of a rich-club organization was given a score 168 

according to their highest rich-club level Then, after averaging the score of nodes from all 169 

participants at the same time point after stroke, the top 8 nodes (i.e., 10% of all nodes) were 170 

selected as rich-club nodes. 171 

Node and connection types 172 

There are two types of nodes in a brain network, namely, rich-club nodes and peripheral nodes. 173 

Furthermore, there are three types of connections in a rich-club organization (Figure 1), 174 

namely, rich-club connections (between rich-club nodes), feeder connections (between rich-175 

club nodes and non–rich-club nodes), and local connections (between non–rich-club nodes). 19  176 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 13, 2020. ; https://doi.org/10.1101/2020.05.26.20108563doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.26.20108563
http://creativecommons.org/licenses/by-nc-nd/4.0/


 177 

Figure 1 Illustration of different node and connection types. A communication path was 178 

indicated by blue arrows. 179 

Network communication 180 

The cost of a link was defined as the product between its length and density (the count of 181 

streamlines between two brain regions). Communication cost was defined as the product 182 

between length and density based on their topological distance19. To calculate the 183 

communication cost of the three kinds of connections in a rich-club organization, first, the 184 

shortest paths between 84 nodes were calculated. Then, each link of the shortest paths was 185 

divided into three categories (rich-club, feeder and local connections). Next, the 186 

communication cost of each link was calculated by multiplying its length and density. Finally, 187 

the communication cost of three kinds of connections was obtained by summing the 188 

communication cost for links of each kind. The metric ratio of a connection type was defined 189 

as the sum of metrics of this connection type divided by the total metric of the whole network. 190 

For example, density ratio of feeder connections was defined as total density of feeder 191 

connections divided by total density of all connections. The communication cost/density ratio 192 

was defined as the communication cost ratio divided by the density ratio, which was the weight 193 

of brain communication capacity19. 194 

Statistical analysis 195 

Statistical analyses were performed by R (version 3.6.0) with the functions lmer (https://cran.r-196 

project.org/web/packages/lme4/lme4.pdf) and blmer (https://cran.rproject.org/web/packages 197 

/blme/blme.pdf). To simplify the statistical analyses on the local structural brain networks, the 198 

left and right hemispheres were flipped so that the left hemisphere always corresponded to the 199 

ipsilesional hemisphere. Due to attrition, some of the behavioural data and imaging data were 200 

not obtained. Imputation was thus performed on the behavioural data to increase the effective 201 

sample size for subsequent statistical analyses of prediction model. For patients no. 2, 13 and 202 

15, the behavioural data at 6 months after stroke were imputed from those at 3 months. Since 203 

patient nos. 11 and 16 had already made full recovery at the last follow-up, full behavioural 204 
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scores were assumed for the missing time points. After imputation, the 10 patients had 205 

behavioural data for all 4 time points. The imputed behavioural data are underlined in Table 1. 206 

To handle data with an unequal number of longitudinal measures, a Bayesian linear mixed 207 

model40,41 was used as the main model in the current study so that a posteriori estimation could 208 

be maximized in a Bayesian setting. When necessary, linear mixed models were followed by 209 

post hoc tests with Bonferroni corrections for multiple comparisons at p < 0.05. This study 210 

mainly investigated three aspects: (1) to test whether functional assessments and network 211 

metrics changed with time. Models were established with the functional assessments and 212 

network metrics as responses, time as fixed variable, each subject as random variable, and age 213 

and gender as covariates. (2) To test the correlations between network metrics and functional 214 

assessments, models were established with the functional assessment data as responses, 215 

network metrics as fixed variables, each subject as random variable, and age and gender as 216 

covariates. (3) To identify biomarkers that may predict poststroke functional recovery, models 217 

were established with poststroke functional recovery (change in functional assessment from 218 

baseline) as responses, each subject as random variable, metrics at baseline as fixed variables, 219 

and time, age and gender as covariates. After selecting the metrics that may be predictors of 220 

responses, a linear mixed regression model was established by the stepwise method. In the 221 

whole study, a best fitting model was chosen by comparing models using the likelihood ratio 222 

test with the principle that the smaller the AIC was, the better the model was42. Additionally, 223 

the simpler model was chosen when the gap in AIC values and likelihood ratio test results was 224 

small. 225 

Table 1. The baseline demographics and assessment of motor impairment (Upper-Extremity 226 
Fugl-Meyer motor scale) and performance in activities of daily living (Barthel Index) of n = 227 
16 patients. 228 

   
Upper-Extremity Fugl-Meyer Motor 

Scale (0–66) 
 Barthel Index (0–100) 

Patient 
Side of 

lesion* 
 

< 1 

week 

1 

month 

3 

months 

6 

months 
 

< 1 

week 

1 

month 

3 

months 

6 

months 

1 R  33 64 66 66  55 90 100 100 

2 L  N.A. 63 63 63  N.A. 95 100 100 

3 L  N.A. 5 14 18  N.A. 65 85 100 

4 R  0 2 N.A. N.A.  0 40 N.A. N.A. 

5 L  N.A. 31 40 49  N.A. 65 80 85 

6 R  N.A. 48 62 63  N.A. 25 75 95 

7 L  0 7 13 20  35 40 45 70 

8 R  0 5 5 5  30 50 50 50 

9 L  56 64 66 66  55 60 100 100 

10 L  54 59 64 64  55 85 95 100 
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11 R  60 66 66 66  65 100 100 100 

12 L  0 3 30 45  45 30 75 90 

13 L  0 60 66 66  0 70 95 95 

14 R  2 33 N.A. N.A.  30 40 N.A. N.A. 

15 R  0 4 4 4  0 50 60 60 

16 R  64 66 66 66  80 100 100 100 

R: right; L: left; N.A.: not available 229 
*Left hemisphere was assigned as the ipsilesional hemisphere and right contralesional hemisphere. 230 
Note that functional assessments that were underlined were obtained from data imputation.  231 

Results 232 

Patient demographics 233 

MRI and functional assessments were performed on 12, 16, 13 and 9 patients within 1 week 234 

and at 1, 3 and 6 months after first-time acute ischemic stroke, respectively, as shown in Figure 235 

2. A linear mixed model was used to test the fixed effect of time on functional assessments. 236 

UE-FM (𝛽/0.* = 3.47;	𝜒"1 = 13.68, p < 0.001) and BI (𝛽/0.* = 7.94, 𝜒"1 = 28.31, p < 0.001) 237 

significantly increased with time. Post hoc tests showed that UE-FM scores at 1 (p = 0.01), 3 238 

(p < 0.001) and 6 (p < 0.001) months were significantly higher than those within 1 week after 239 

stroke. BI scores at 1, 3 and 6 (p < 0.001, all) months were significantly higher than those 240 

within 1 week after stroke, and BI scores at 3 and 6 (p < 0.001, all) months were significantly 241 

higher than 1 month after stroke. 242 

 243 

Figure 2. Bar chart with error bars (standard deviations) of the (A) Upper-Extremity Fugl-244 

Meyer motor scale and (B) Barthel index scores within 1 week (n = 12), and at 1 (n = 16), 3 (n 245 

= 13) and 6 (n = 9) months after first-time acute ischemic stroke. Post hoc tests with Bonferroni 246 

corrections for multiple comparisons across different time points were performed (*p <0.05, 247 

**p<0.01, ***p<0.001). 248 
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Rich-club organizational changes after stroke 249 

Rich-club organization was found from the structural brain network of patients within 1 week, 250 

and at 1, 3 and 6 months after first-time acute ischemic stroke (Figure 3). Not every patient 251 

(grey lines) had a normalized rich-club coefficient larger than 1 except at 6 months after stroke. 252 

Linear mixed model was used to test the effect of time after stroke on normalized rich-club 253 

coefficients with age and gender as covariates. Significant time effect on the normalized rich-254 

club coefficients at k = 20 (𝜒"1 = 6.39, p = 0.011, 𝛽/0.* = 0.16), 21 (𝜒"1 = 5.89, p = 0.015, 255 

𝛽/0.* = 0.15), k = 22 (𝜒"1 = 5.92, p = 0.015, 𝛽/0.* = 0.16), and k = 23 (𝜒"1 = 6.02, p = 0.014, 256 

𝛽/0.* = 0.16) were observed.The brain regions that were rich-club regions at each time point 257 

after stroke were listed in Table 2 and shown in Figure 4. Notice that bilateral dorsolateral 258 

superior frontal gyrus, right supplementary motor area, and left median cingulate and 259 

paracingulate gyri remained as rich-club regions at all 4 time points.  260 

 261 

Figure 3. Normalized rich-club coefficient of the structural brain network of patient within (A) 262 

1 week and at (B) 1, (C) 3 and (D) 6 months after first-time acute ischemic stroke. Grey lines: 263 

individual patient; Colored lines: average of all patients.  264 

 265 
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 266 

Figure 4. Rich-club regions at each time point after first-time acute ischemic stroke. 267 

Table 2 Rich-club regions at each time point after first-time acute ischemic stroke. 268 

Rich-club regions Side* 
Time after acute ischemic stroke 

< 1 week 1 month 3 months 6 months 

Dorsolateral superior frontal gyrus 
Left Ö Ö Ö Ö 

Right Ö Ö Ö Ö 

Supplementary motor area 
Left Ö Ö   

Right Ö Ö Ö Ö 

Insular 
Left Ö  Ö Ö 

Right Ö Ö   

Anterior cingulate and paracingulate gyri 
Left  Ö Ö Ö 

Right Ö    

Median cingulate and paracingulate gyri 
Left Ö Ö Ö Ö 

Right  Ö Ö Ö 

Precuneus Right   Ö  

Putamen Left    Ö 
*Left hemisphere was assigned as the ipsilesional hemisphere and right contralesional hemisphere. 269 

Longitudinal changes in network metrics after first-time acute ischemic stroke 270 

The structural brain networks at local and rich-club scales over the course of stroke recovery 271 

were examined. Metrics of the network at local scale pertain to the network metrics of each 272 

brain region; rich-club scale to the mean link metrics of rich-club, feeder and local connections. 273 

A linear mixed model was used to test the fixed effect of time after stroke on these network 274 

metrics with age and gender as covariates, and subject as random variable. For the local scale, 275 

the node degree, node strength, local clustering coefficient, local efficiency and nodal 276 

betweenness centrality of a number of nodes changed with time after stroke (Figure 5). For 277 

the rich-club scale (Table 3), significant negative time effect on the length of feeder 278 
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connections (𝛽/0.* = −0.13, 𝜒"1 = 5.38, 𝑝 = 0.020) and communication cost ratio/density 279 

ratio of local connections (𝛽/0.* = −0.16, 𝜒"1 = 7.23, 𝑝 = 0.007) were observed. Significant 280 

positive time effect on the density ratio of rich club connections (𝛽/0.* = 0.15, 𝜒"1 = 5.10, 𝑝 =281 

0.024) and communication cost ratio/density ratio of feeder connections (𝛽/0.* = 0.13, 𝜒"1 =282 

3.89, 𝑝 = 0.049) were observed. 283 

 284 

Figure 5. The effect of time after first-time acute ischemic stroke on the metrics of brain 285 

network at local scale: (A) node degree, (B) node strength, (C) local clustering coefficient, (D) 286 

local efficiency and (E) nodal betweenness centrality. Only regions showing statistical 287 

significance were displayed. *p<0.05, **p<0.01, ***p<0.001. Rich-club regions were 288 

annotated with a red *. 289 

Table 3. The effect of time after first-time acute ischemic stroke on the metrics of brain 290 
network at rich-club scale. Only metrics showing statistical significance were shown. 291 

Connection Type Network metric β0 βtime 𝝌𝟐  Df 
Pr (> 

𝝌𝟐 ) 

Rich-club Density ratio 0.18 0.15 5.10 1 0.024 

Feeder 

Length 0.06 -0.13 5.38 1 0.020 

Communication cost 

ratio/density ratio 
-1.30 0.13 3.89 1 0.049 

Local 
Communication cost 

ratio/density ratio 
2.60 -0.16 7.23 1 0.007 
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β0 and βtime are the fixed effects coefficients: β0 is the intercept, βtime is the linear slope; Df: degrees of freedom 292 
for the chi-square test. 293 

Relation between poststroke brain functions and network metrics 294 

A linear mixed model was used to test the relation between functional assessments and the 295 

metrics of brain network at rich-club scale with age and gender as covariates, and subject as 296 

random variable. The length (𝛽" = −6.09, 𝜒"1 = 4.55, 𝑝 = 0.033) and cost (𝛽" = −6.77, 𝜒"1 =297 

4.34, 𝑝 = 0.037) of feeder connections, and the communication cost ratio/density ratio of rich 298 

club conections ( 𝛽" = 4.54, 𝜒"1 = 4.25, 𝑝 = 0.039 ) were correlated with UE-FM. The 299 

communication cost ratio/density ratio of local (𝛽" = −10.05, 𝜒"1 = 7.42, 𝑝 = 0.006), feeder 300 

( 𝛽" = 7.47, 𝜒"1 = 4.86, 𝑝 = 0.028 ), rich-club connections ( 𝛽" = 11.60, 𝜒"1 = 11.66, 𝑝 =301 

0.001), and the density ratio of rich-club connections (𝛽" = 9.24, 𝜒"1 = 6.91, 𝑝 = 0.009) were 302 

correlated with BI. All statistical results were summarized in Table 4. 303 

Table 4. Correlation between poststroke brain functions versus rich-club metrics. 304 
Poststroke 
brain 
functions 

Node/Connection 
type Network metric β0 β1 𝝌𝟐  Df Pr (> 𝝌𝟐 ) 

UE-FM 

Feeder 
connections 

Cost 67.83 -6.77 4.34 1 0.037 

Length 78.69 -6.09 4.55 1 0.033 

Rich-club 
connections 

Communication cost 
ratio/density ratio 85.82 4.54 4.25 1 0.039 

BI 

Feeder conections Communication cost 
ratio/density ratio 163.76 7.47 4.86 1 0.028 

Local connections Communication cost 
ratio/density ratio 178.83 -10.05 7.42 1 0.006 

Rich-club 
connections 

Communication cost 
ratio/density ratio 172.24 11.60 11.66 1 0.001 

Density ratio 151.82 9.24 6.91 1 0.009 

UE-FM: upper-extremity Fugl-Meyer motor scale; BI: Barthel index. 305 

Prediction of poststroke functional recovery using metrics of brain network at rich-club 306 

scale 307 

Linear mixed models were used to investigate the relation between changes in poststroke brain 308 

functions from baseline (i.e., poststroke functional recovery) and baseline metrics of brain 309 

network at rich-club scale as well as normalized rich-club coefficient. For the change in UE-310 

FM, the length of rich-club connections (𝛽" = 8.42, 𝜒"1 = 4.33, 𝑝 = 0.037), normalized rich-311 

club coefficients at k = 19 (	𝛽" = 14.06, 𝜒"1 = 7.05, 𝑝 = 0.008),  k = 20 (	𝛽" = 11.06, 𝜒"1 =312 

6.05, 𝑝 = 0.014 ), the density ratio (𝛽" = 9.49, 𝜒"1 = 5.07, 𝑝 = 0.024 ), cost ratio (𝛽" =313 
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9.29, 𝜒"1 = 4.88, 𝑝 = 0.027), communication cost ratio (𝛽" = 21.59, 𝜒"1 = 6.87, 𝑝 = 0.009) 314 

of feeder connections, and the length (𝛽" = −12.96, 𝜒"1 = 5.13, 𝑝 = 0.024), density ratio 315 

(𝛽" = −8.94, 𝜒"1 = 4.75, 𝑝 = 0.029 ), cost ratio (𝛽" = −9.50, 𝜒"1 = 5.53, 𝑝 = 0.015 ) and 316 

communication cost ratio/density ratio ( 𝛽" = −12.42, 𝜒"1 = 4.39, 𝑝 = 0.036 ) of local 317 

connections were significantly correlated. For the change in BI, the density ( 𝛽" =318 

−12.62, 𝜒"1 = 5.13, 𝑝 = 0.024), length (𝛽" = −12.74, 𝜒"1 = 3.87, 𝑝 = 0.049) and cost (𝛽" =319 

−13.18, 𝜒"1 = 5.92, 𝑝 = 0.015) of local connections, and normalized rich-club coefficients 320 

were significantly correlated. These results were summarized in Table 5.  321 

The network metrics that were selected to predict poststroke functional recovery were shown 322 

in Table 6. The communication cost ratio of feeder connections, length of rich-club and local 323 

connections, and normalized rich-club coefficient (k = 19) could predict UE-FM changes 324 

(𝜒21 = 23.33, p < 0.001). The length of local connections and normalized rich-club coefficients 325 

(k =18, 19) could predict BI changes (𝜒11 = 21.60,	p < 0.001).  326 

Table 5. Correlation between poststroke functional recovery versus metrics of brain network 327 
at rich-club scale. 328 

Poststroke 

functional 

recovery* 

Node/Connection type Metric β0 β1 𝜒"  Df Pr (> 𝜒" ) 

Change in 

UE-FM 

Local connections 

Length -137.87 -12.96 5.13 1 0.024 

Density ratio -88.68 -8.94 4.75 1 0.029 

Cost ratio -84.21 -9.50 5.53 1 0.019 

Communication cost 

ratio/density ratio 
4.42 -12.42 4.39 1 0.036 

Feeder connections 

Density ratio -89.45 9.49 5.07 1 0.024 

Cost ratio -90.18 9.29 4.88 1 0.027 

Comunication cost ratio 72.37 21.59 6.87 1 0.009 

Rich-club connections Length -80.29 8.42 4.33 1 0.037 

Rich-club 
∅#$%& (k = 19) -131.33 14.06 7.05 1 0.008 

∅#$%& (k = 20) -109.59 11.06 6.05 1 0.014 

Change in 

BI 

Local connections 

Density -93.51 -12.62 5.13 1 0.024 

Length -89.66 -12.74 3.87 1 0.049 

Cost  -94.48 -13.18 5.92 1 0.015 

Rich-club 

∅#$%& (k = 18) -77.50 13.26 5.93 1 0.015 

∅#$%& (k = 19) -112.31 19.57 16.36 1 < 0.001 

∅#$%& (k = 20) -81.64 16.45 15.02 1 < 0.001 

∅#$%& (k = 21) -70.26 12.46 5.53 1 0.019 
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∅#$%& (k = 22) -65.49 12.62 6.19 1 0.013 

∅#$%&: normalized rich-club coefficient; k: degree; index.  329 
*Poststroke functional recovery was defined as the changes in functional assessments from baseline. 330 

Table 6. Summary of prediction models.  331 
Poststroke 
functional 
recovery 

Model Variables AIC BIC 𝜒"  Df Pr (> 𝜒" ) 

Change in 
UE-FM 

Baseline Age, gender, time 192.67 200.88    

Prediction 

Age, gender, time, communication 
cost ratio of feeder connections, 
length of rich-club and local 
connections,	∅#$%& (k = 19) 

177.35 191.02 23.33 4 < 0.001 

Change in 
BI 

Baseline Age, gender, time 244.39 252.59    

Prediction 
Age, gender, time, length of local 
connections, ∅#$%& (k = 18, 19) 

228.79 241.09 21.60 2 < 0.001 

∅#$%&: normalized rich-club coefficient; k: degree; index.  332 
AIC: Akaike information criterion; BIC: Bayesian information criterion.  333 

Discussion 334 

Our study aims to investigate the relation between poststroke brain functions and functional 335 

recovery versus the rich-club organization of the structural brain network of patient after first-336 

time acute ischemic stroke. First of all, we investigated the effect of time after stroke on brain 337 

functions, rich-club organization and metrics of the brain network at rich-club and local scales. 338 

Second, we examined the relation between poststroke brain functions versus rich-club 339 

organization and network metrics. Finally, we established models to predict poststroke 340 

functional recovery using the metrics of brain network at rich-club scale and normalized rich-341 

club coefficient measured at baseline. 342 

Longitudinal changes in brain network after acute ischemic stroke 343 

The rich-club regions that remained unchanged over the course of stroke recovery included the 344 

bilateral dorsolateral superior frontal gyri, right supplementary motor area, and left median 345 

cingulate and paracingulate gyri (Table 2, Figure 4). As much as  half of the rich-club regions 346 

changed during stroke recovery may suggest that recovery may require remodelling of a 347 

significant portion of rich-club organization. It is noteworthy that the rich-club regions of the 348 

patients at 6 months after stroke, who have largely functionally recovered, were not the same 349 

as those in normal controls as reported by van den Heuvel et al20. This discrepancy may suggest 350 

that their networks may be different, although effects due to the difference in postprocessing 351 

could not be ruled out.   352 
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The properties of the local network of a number of brain regions, majority of which were not 353 

rich-club regions, changed with time after stroke (Figure 4). For network connections, the the 354 

density ratio of rich-club connections increased with time after stroke (Table 3). Considering 355 

that rich-club regions are highly connected brain regions and density ratio reflects the how 356 

strong the connection is, our results suggest that this increase may be an attempt of the rich-357 

club organization to further improve communication efficiency to aid poststroke functional 358 

recovery19. For feeder and local connections, their density ratio manifested contrasting time 359 

effect, likely suggesting a rebalance of resources, thereby allowing higher communication 360 

capacity for feeder connections that connect rich-club to non-rich-club regions. Schirmer and 361 

Chung showed in a study of the rich-club organization across the life span that the 362 

communication path of feeder connections strengthened, and that of local connections 363 

weakened43. Together, these results suggest that rich-club and non-rich-club regions may likely 364 

play very different roles over time. 365 

Plausible neuroarchitectural underpinning of poststroke brain functions and functional 366 

recovery 367 

Our results showed that of all the network properties that correlated with poststroke functions, 368 

communication cost ratio/density ratio of rich-club connections positively correlated with both 369 

motor function and daily activities of daily living (Table 4). Considering that the benefit of 370 

rich-club organization is to confer short communication relays to the brain network as a whole, 371 

albeit its high cost of wiring, our results likely suggest that poststroke brain functions may 372 

hinge on the communication efficiency conferred by the rich-club organization19. 373 

 374 

For the neuroarchitectural underpinning of poststroke functional recovery (change in 375 

functional assessment from baseline), our results showed that higher normalized rich club 376 

coefficients within a week after stroke were correlated with the recovery of both motor 377 

functions and activities of daily living (Table 5), suggesting that residual rich-club 378 

organization of structural brain network after acute stroke may play an important role in 379 

supporting poststroke functional recovery. For the recovery of motor functions, it is interesting 380 

to note that it was correlated with lower density ratio and cost ratio of local connections, higher 381 

density ratio and cost ratio of feeder connections. Our results provide additional support to the 382 

notion that rich-club and non-rich-club regions likely play very different roles not only in 383 

aging43 but also stroke recovery. For the recovery of activities of daily living, it was negatively 384 
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correlated with the density, cost and length of local connctions, indicating that local 385 

connections may play a more dominant role on the recovery of activities of daily living.  386 

Of the baseline network metrics that correlate with poststroke functional recovery, the 387 

communication cost ratio of feeder connections, length of rich-club connections, length of 388 

local connections, and normalized rich-club coefficient could potentially be prognostic 389 

indicators of stroke recovery (Table 6). Our findings extended the work by Ktena et al 27 and 390 

Schirmer et al 26 in modelling poststroke functional outcome. Both of their work demonstrated 391 

that the prediction of stroke functional outcome could be improved by the incorporation of the 392 

number of rich-club regions that were affected by stroke.  393 

Limitations 394 

Our study still has several limitations. First, the infarct was located in different hemispheres 395 

among the 16 patients. To avoid systematic error, we swapped the brain regions from the two 396 

hemispheres for patients with right-sided infarct to ensure that all infarcts were on the left 397 

hemisphere. However, brain asymmetry may have confounded our results; for example, the 398 

strengths of the left and right hemispheres are not equal39. Second, there were some missing 399 

data in our dataset due to patient attrition. We have nonetheless partially circumvented this 400 

problem using data imputation. Finally, we did not have data from control group in order to 401 

investigate the effect of stroke on rich-club organizations, and to compare the difference in 402 

rich-club organization between functionally recovered stroke patients versus healthy controls. 403 

  404 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 13, 2020. ; https://doi.org/10.1101/2020.05.26.20108563doi: medRxiv preprint 

https://doi.org/10.1101/2020.05.26.20108563
http://creativecommons.org/licenses/by-nc-nd/4.0/


Conclusion 405 

We have successfully demonstrated the relation between poststroke brain functions and 406 

functional recovery versus rich-club organization and network metrics after first-time acute 407 

ischemic stroke. Our results provide additional support to the notion that different types of 408 

network connections play different roles in brain functions as well as functional recovery.  409 

  410 
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