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Abstract: Coronavirus disease 2019 (COVID-19) is characterized by a high incidence of acute 
respiratory failure. The underlying immunopathology of that failure and how it compares to other 
causes of severe respiratory distress, such as influenza virus infection, are not fully understood. 
Here we addressed this by developing a prospective observational cohort of COVID-19 and 
influenza subjects with varying degrees of disease severity and assessing the quality and 
magnitude of their immune responses at the cellular and protein level. Additionally, we 
performed single-cell RNA transcriptional profiling of peripheral blood mononuclear cells from 
select subjects. The cohort consists of 79 COVID-19 subjects, 26 influenza subjects, and 15 
control subjects, including 35 COVID-19 and 7 influenza subjects with acute respiratory failure. 
While COVID-19 subjects exhibited largely equivalent or greater activated lymphocyte counts 
compared to influenza subjects, they had fewer monocytes and lower surface HLA-class II 
expression on monocytes compared to influenza subjects and controls. At least two distinct 
immune profiles were observed by cytokine levels in severe COVID-19 patients: 3 of 71 patients 
were characterized by extreme inflammation, with greater than or equal to ~50% of the 35 
cytokines measured greater than 2 standard deviations from the mean level of other severe 
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patients (both influenza and COVID-19); the other immune profile, which characterized 68 of 71 
subjects, had a mixed inflammatory signature, where 28 of 35 cytokines in COVID-19 patients 
had lower mean cytokine levels, though not all were statistically significant. Only 2 cytokines 
were higher in COVID-19 subjects compared to influenza subjects (IL-6 and IL-8). Influenza 
and COVID-19 patients could be distinguished statistically based on cytokine module 
expression, particularly after controlling for the significant effects of age on cytokine expression, 
but again with lower levels of most cytokines in COVID-19 subjects. Further, high circulating 
levels of IL-1RA and IL-6 were associated with increased odds of intubation in the combined 
influenza and COVID-19 cohort [OR = 3.93 and 4.30, respectively] as well as among only 
COVID-19 patients. Single cell transcriptional profiling of COVID-19 and influenza subjects 
with respiratory failure identified profound suppression in type I and type II interferon signaling 
in COVID-19 patients across multiple clusters. In contrast, COVID-19 cell clusters were 
enriched for alterations in metabolic, stress, and apoptotic pathways. These alterations were 
consistent with an increased glucocorticoid response in COVID-19 patients compared to 
influenza. When considered across the spectrum of innate and adaptive immune profiles, the 
immune pathologies underlying severe influenza and COVID-19 are substantially distinct. The 
majority of COVID-19 patients with acute respiratory failure do not have a cytokine storm 
phenotype but instead exhibit profound type I and type II IFN immunosuppression when 
compared to patients with acute influenza. Upregulation of a small number of inflammatory 
mediators, including IL-6, predicts acute respiratory failure in both COVID-19 and influenza 
patients. 
 
Introduction 
 

Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes 
coronavirus disease 2019 (COVID-19). Acute respiratory failure occurs in a subset of COVID-
19 patients.(1-3) Respiratory failure has occurred in as many as 8% of individuals testing 
positive for infection in the Lombardy region of Italy.(4) Understanding the etiology of 
respiratory failure in COVID-19 patients is critical for determining the best management 
strategies and pharmacologic targets for treatment. Current management of acute respiratory 
failure in COVID-19 consists of optimized supportive care,(5, 6) primarily through oxygen 
administration and consideration of endotracheal intubation and mechanical ventilation in the 
appropriate context.(7)  

Cytokine storm syndrome (CSS) is increasingly proposed as underlying the etiology of 
respiratory failure in patients with COVID-19.(8) This model suggests that respiratory failure is 
related to significant pro-inflammatory cytokine expression that leads to inflammatory cell 
recruitment and tissue damage in the lung. Most of the data supporting this hypothesis in 
COVID-19 comes from an early paper that observed high levels of the cytokines IL-2, IL-7, IL-
10, GCSF, IP-10, MCP-1, MIP-1α and TNFα in a small cohort of COVID-19 patients cared for 
in the ICU. The level of these cytokines was increased in the ICU patients compared with a 
group of COVID-19 patients that did not require care in the ICU.(3) 

There has been significant interest in modulating the systemic immune response in an 
effort to prevent or treat respiratory failure in patients with COVID-19.(2, 9-11) More than one 
hundred clinical trials are currently registered at clinicaltrials.gov to evaluate the efficacy of 
inflammatory cytokine blocking medications or interventions such as cytokine filtration as 
potential treatments for respiratory failure in COVID-19 patients. A thorough understanding of 
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the underlying inflammatory environment in COVID-19 patients is required to successfully 
interpret the findings of these studies. 

Acute respiratory failure in influenza patients has also been attributed to significantly 
increased inflammation and CSS.(12-14) In order to evaluate the etiology of respiratory failure in 
COVID-19 patients, we undertook a comparative investigation of inflammatory responses in a 
cohort of influenza patients with severe illness collected during 2019 and 2020, which allowed 
us to characterize the immune response in patients with severe COVID-19 specifically in the 
context of the more widely studied immune responses seen during influenza disease. 

 
Results  
 
Demographic and Clinical Characteristics 
  We enrolled a total of 79 symptomatic subjects who tested positive for SARS-CoV-2 
RNA using an FDA-approved clinical PCR test. Our comparison cohort consisted of 26 
symptomatic influenza subjects recruited during the 15 months immediately preceding the 
outbreak of COVID-19 in the Saint Louis region. All tested positive for influenza A or B via a 
clinical PCR test obtained during their clinical care. COVID-19 subjects were significantly older 
than both influenza and control subjects, and significantly more COVID-19 patients required 
hospitalization (Table 1). A higher number of COVID-19 subjects required ICU admission and 
mechanical ventilation than influenza subjects, but this was not significantly different. Twenty-
seven percent of the COVID-19 subjects died during their hospitalization, compared with 8% of 
influenza subjects enrolled. Less than 5% of the combined COVID-19 and influenza cohort were 
immunocompromised. Many subjects in both cohorts exhibited co-morbidities that increased 
their risk for severe disease, including diabetes and chronic lung disease; however, there were no 
significant differences between the COVID-19 and influenza subjects in any measured co-
morbidity (Table 1). 
  
Evaluation of Circulating Immune Cells 
  We initially characterized circulating immune cells by quantifying the absolute number 
of CD4+ and CD8+ T lymphocytes and CD19+ B cells. COVID-19 and influenza subjects both 
exhibited universally reduced populations of these three cell subsets, which generally constitute 
the majority of circulating PBMCs in healthy controls (Fig 1A, Supplemental Fig 1A). In 
contrast, COVID-19 subjects had significantly more circulating early antibody-secreting B cell 
plasmablasts than influenza subjects or controls (Fig 1B). Circulating activated CD8 T cells were 
equivalent across all groups, but circulating activated CD4 T cells were significantly lower in 
influenza compared healthy controls (Fig 1B). However, when compared with either influenza or 
control subjects, COVID-19 subjects exhibited significantly reduced numbers of circulating 
monocytes, including all three common classifications of human monocytes (classical, 
intermediate, and non-classical;  Fig 1C, Supplemental Fig 1B). In line with previous 
observations(15), intermediate monocytes were elevated during acute influenza in comparison to 
healthy controls. 
  Given the pronounced variation in monocyte abundance across patient conditions, we 
also measured major histocompatibility complex class II expression on the surface of monocytes 
to gauge monocyte activation. We noted that COVID-19 subjects had significantly reduced 
abundances of HLA-DR on the surface of all three subsets of monocytes when compared with 
either controls or influenza subjects (Fig 1D). There was no significant difference in the cell-
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surface expression of HLA-DR on B cells or CD8 T cells, but COVID-19 subjects exhibited 
significantly less HLA-DR expression on CD4 T cells compared to influenza subjects 
(Supplemental Fig 1C). 
 
Cytokine associations with disease and outcome 
  Plasma cytokine levels were measured from 27 patients with confirmed influenza virus 
infection, 79 patients with SARS-CoV-2 infection, and 8 healthy controls. Among the SARS-
CoV-2 patients, two response profiles were immediately apparent. Three of 79 patient samples 
had extremely high concentrations, defined as > 2 standard deviations from the mean, for more 
than 17 of the 35 cytokines measured (range: 49%-89%), characteristic of a classic cytokine 
storm (see outliers, Supplemental Fig 2). Standard deviations from the mean ranged from 2 up to 
10.5 among these subjects, with outlier values ranging from 0.8 to 2 orders of magnitude higher 
than the mean for each of the measured cytokines. We excluded these 3 patients from subsequent 
comparative analyses. 
 The dominant response profile among COVID-19 patients consisted of more selective 
cytokine upregulation, with a bias towards lower inflammation when compared to influenza 
patients (Fig 2A). Among all subjects, we found that for 28 of 35 cytokines, COVID-19 patients 
had lower mean cytokine levels, though not all were statistically significant (Supplemental Fig 
3). Among the statistically significant reduced cytokines were GM-CSF (padj=0.0499), IFN-γ 
(padj=0.038), and IL-9 (padj=0.026, Figure 2B). In contrast, only IL-6 (padj=0.086) and IL-8 
(padj=0.01) were near significantly or significantly elevated in the total COVID-19 group 
compared to all influenza patients (Figure 2B). Cytokines upregulated similarly in COVID-19 
and influenza during infection included chemokines (IP10, MIP1β, MCP1, MIG) and 
immunomodulatory cytokines (HGF and IL1-Ra, Supplemental Fig 3). These data indicated that 
the majority of COVID-19 patients did not have as profound an inflammatory phenotype as 
influenza patients, with certain targeted exceptions.  
 We and others have previously shown that cytokine levels are often correlated within a 
subject based on demographic and environmental factors (e.g., age, prior herpesvirus 
exposure)(16). This can obscure variation in cytokine expression patterns within individuals. 
Further, the relatively high dimensionality of cytokine data can make it difficult to detect 
statistically significant associations due to high false discovery rates. Additionally, the distinct 
distributions in our cohorts between severe and mild patients complicate simple overall 
comparisons. To address this, we utilized a data-driven modular informatics approach(17) to 
identify clusters of co-regulated cytokines across all subjects, to normalize cytokine expression 
within subjects, and to identify differences in expression across conditions while adjusting for 
the effects of age and days after symptom onset for sampling. These analyses allowed us to 
detect a number of co-correlating cytokines across COVID-19 and influenza samples, which we 
grouped into distinct co-expression modules using hierarchical clustering (Supplementary Figure 
4). Of particular interest were Modules 1 and 2, which included GCSF, IFN-γ, and IL1-β 
(MOD1) and Eotaxin, HGF, IL1-Ra, IL-2R, IL-6, IL-8, IP10, MCP1, MIG, and VEGF (MOD2), 
respectively. Upon constructing logistic models to assess associations between these cytokines 
and a binary infection status (COVID-19 vs. influenza), we observed that lower levels of both 
MOD1 and MOD2, as well as a number of their constituent cytokines, were significantly 
associated with an increased risk of being COVID-19 positive (Fig 2A). This was particularly 
surprising given that IL-6 and IL-8 are frequently associated with severe COVID-19 infection 
and were upregulated in COVID-19 compared to influenza subjects in the present study. 
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However, the modular analysis considers all of the cytokines within a module, as opposed to 
individual cytokine associations, and MOD2 contains several other cytokines; indeed, neither IL-
6 nor IL-8 alone were significantly associated with being COVID-19 positive. Furthermore, the 
logistic model specifically regresses out potentially confounding covariates that are otherwise 
obscured by simple univariate analysis. These results suggest that overall higher inflammation is 
foremost predictive of influenza infection and that a defining feature of COVID-19 disease is 
generally reduced inflammation compared to influenza as measured by a number of related 
cytokines. Thus, influenza infection was associated with generally higher levels of inflammation, 
and when influenza subjects exhibited high expression in one MOD2 cytokine, they were likely 
to exhibit high expression across the board. In contrast, COVID-19 subjects were not 
characterized by overall high levels of cytokines, but rather exhibited a selective pattern of 
inflammation, in which only a subset of inflammatory cytokines are upregulated. 
 Using this analytical framework further, we next inquired whether particular cytokine 
expression patterns were associated with poor clinical outcomes. In considering all infected 
subjects, higher levels of Modules 1 and 2 were significantly associated with severe disease, 
which we defined as resulting in either intubation or death. Associations between disease 
severity and IL1-RA and IL-6 were particularly strong, with high levels of these analytes 
predictive of poor outcomes (OR = 3.93 and 4.30, respectively; Fig 2C). Importantly, this 
association remained when we repeated the analysis on COVID-19 subjects alone 
(Supplementary Figure 5), demonstrating that exacerbation of these specific inflammatory 
pathways in COVID-19 in the sickest patients.  
 Because these earlier analyses included severity as an outcome within a population of 
patients with diverse disease presentations, we also tested the robustness of our observations 
specifically in hospitalized patients from both groups. Once again, the striking pattern that 
emerged was lower levels of multiple cytokines and modules among hospitalized COVID-19 
patients compared to hospitalized influenza patients. These included GCSF (padj=0.048), MIG 
(padj=0.011), and IL-2R (padj=0.024), and spanned three distinct cytokine modules. Taken 
together, COVID-19 is characterized by high levels of specific cytokines (IL-6, IL-8) when 
compared to influenza, but the majority of inflammatory mediators are significantly lower, even 
among severe patients (Fig 2C-D), especially after accounting for the frequently significant 
effect of patient age on cytokine abundance.  
  
Single Cell Transcriptional Profiles of Subjects with Respiratory Failure Reveals 
Immunosuppression within Monocytes and Increased Glucocorticoid Response in COVID-19 
Subjects 

Immune suppression can often occur as a negative feedback from immune activation, so 
we sought further resolution of the immune state of severe COVID-19 patients to understand the 
dominant regulatory signals determining their trajectory. A total of 29,634 cells from seven 
subjects (three COVID-19, three influenza, and one healthy control) were obtained for single cell 
gene expression analyses after standard processing and filtering. Using an integration-based 
approach that leverages convergent expression signals across samples (see Methods), we 
identified 22 putative transcriptional clusters that we were able to categorize into major cell 
subsets, including monocytes and macrophages (7 transcriptional clusters, including CD16+ and 
CD16- monocytes), CD8+ T cells (5 clusters), CD4+ T cells (3 clusters), B cells (2 clusters), 
regulatory T cells (Tregs), mixed cytolytic lymphocyte populations (MCLPs; e.g., NK and NKT 
cells ), plasmablasts, mast cells, and three other subsets that we putatively identified as 
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plasmacytoid dendritic cells (PDCs), platelets, and cell doublets composed in part of platelets. 
We then interrogated each of these major groups and their constituent transcriptional clusters for 
variation in both relative abundance and gene expression owed to differences in condition (i.e., 
COVID-19-infected, influenza-infected, or healthy control). Although representation of cells 
within the clusters were influenced by their abundance in individual patients (Supplementary 
Figure 6), the models we leveraged to compare across conditions are robust to such differences, 
emphasizing transcriptional variation between conditions among similar subsets. 

To broadly survey transcriptional variation as a function of infection status in an unbiased 
manner, we ranked gene expression differences between COVID-19-infected and influenza-
infected patients for each subset and tested for enrichment of Hallmark gene sets as a function of 
these diagnoses. Surprisingly, a number of important immunological pathways were significantly 
enriched specifically among cells from Influenza patients across a number of subsets: compared 
to the Influenza condition, both IFN-γ and IFN-α response pathways were significantly 
downregulated within the COVID-19 condition for B cells, CD8+ T cells, MCLPs, Tregs, PDCs, 
and monocyte/macrophage subsets (Fig 3E; Supplementary Figure 7). More exhaustive analysis 
using gene ontology pathways related to interferon production, secretion, response, and 
regulation demonstrated that these patterns extended to IFN-β and general Type I interferon 
pathways across most subsets, but particularly among monocytes (Supplementary Figure 8). 
These patterns were concordant with substantial enrichment of inflammatory pathways in 
Influenza cells compared to COVID-19 cells across a majority of cell subsets. In contrast, 
COVID-19 cells were significantly enriched for a number of pathways involved in cellular 
metabolism and proliferation in comparison to Influenza cells across most subsets 
(Supplementary Figure 7).  

Given the substantial downregulation of HLA-DR among COVID-19 monocytes 
observed during flow cytometry analysis, we decided to further investigate potential 
transcriptional differences between COVID-19 and Influenza specifically within our 
transcriptionally defined monocyte/macrophage subset and clusters. As expected given the flow 
cytometry analysis carried out on these same patients, the proportion of cells in 
monocyte/macrophage subsets were substantially smaller in COVID-19 compared to both 
healthy and influenza subjects (Supplementary Figure 9). We furthermore noted significant 
decreases in a number of interferon-induced genes known to play important roles in the innate 
immune response to viral insults (Fig 3D). This evidence of decreased, or perhaps dysregulated, 
interferon expression and a relative dearth of expression corresponding to inflammatory 
processes were accompanied by a significant enrichment of a number of stress and corticoid 
response pathways in COVID-19 cells across most subsets, but particularly within 
monocytes/macrophages (Fig 3E; Supplementary Figure 10). 

Discussion  
 

Understanding the complexities of the systemic inflammatory response to SARS-CoV-2 
infection is critical to determining the most appropriate treatment for this condition. We have 
demonstrated that the immunophenotype of COVID-19 and influenza patients vary widely. Two 
forms of COVID-19 immune dysregulation were observed: a cytokine storm phenotype in a 
small proportion of patients (3 of 79) and a far more common phenotype characterized by 
targeted immunosuppression. The signatures of this common COVID-19 phenotype were highly 
elevated IL-6 and IL-8, paired with lower levels (compared to severe influenza) of cytokines in 
many other pathways and essentially the absence of any Type I or Type II IFN response. The 
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suppression in Type I IFN signaling has been noted by others in humans and animal models of 
COVID-19 infections(18, 19). At the cellular level, dramatic reductions in overall cellularity and 
particularly in the monocyte compartment were observed, with phenotypic and transcriptional 
evidence (Class II downregulation) that monocytes were less activated. While lymphocyte 
numbers (except for plasmablasts) were reduced in both infected groups compared to healthy 
controls, several lymphocyte subsets had functional signatures of suppression in COVID-19 
patients, including type I and II IFN signaling. IFN-γ production is critical for effector type I 
responses, and its absence may limit antiviral activity. The elevated plasmablast frequencies in 
COVID-19 patients may reflect the abundance of viral antigens, which is consistent with the 
reported persistence of viral RNA in nasal swabs for up to 15 days after onset of symptoms(20).  

The single cell analyses also identified enrichment of several pathways in COVID-19 
patients associated with metabolic stress and the general stress response. These results, combined 
with the targeted, severe suppression of specific pathways and dramatic leuko- and lymphopenia 
led us to consider what pathways might account for this response profile. Previous studies in 
animal models had implicated glucocorticoid (GC) signaling in the immunosuppression and 
lymphopenia that occurs in the influenza model in mice.(21) In humans, systemic inflammation, 
and hydrocortisone specifically, are known to suppress HLA-DR expression on monocytes.(22) 

Excessive GC production is an attractive hypothesis to account for the observed immune 
dysregulation and disease manifestations in COVID-19. First, the high levels of IL-6 
production—one of the two cytokines that were higher in COVID-19 than in severe influenza—
can directly drive excessive cortisol production through multiple mechanisms, including through 
the direct induction of corticotropin-releasing hormone and adrenocorticotropin. IL-6 can also 
act directly on the adrenal cortex to stimulate GC release.(23) While GCs are generally 
immunosuppressive, which is why they are often considered therapeutically, their effects are 
uneven across the cytokine landscape, with cortisol failing to suppress IL-6(24), or even 
inducing IL-6 and IL-8 in one report.(25) Notably, in this study there were differences in 
cortisol’s effects between male and female cells, with more pro-inflammatory effects observed in 
males; male sex has been noted as a consistent risk factor in COVID-19.(26) A recent 
retrospective cohort study from Germany has also reported increased cortisol levels in a majority 
of COVID-19 patients.(27) 

Another potential source of cortisol production unique to SARS-CoV-2 infection is 
through its modulation of ACE2 levels. ACE2 is the receptor for virus entry, and while it is still 
unclear the extent to which its levels are modulated by infection, experience from SARS-CoV-1 
and other data suggest that ACE2 expression or activity are lowered. This directly affects the 
renin-angiotensin system, enhancing ACE activity and resulting in a shift towards angiotensin II 
(Ang II) production and away from angiotensin 1-7. Ang II enhances Il-6 and cortisol 
production, while Ang 1-7 suppresses them.(28, 29) 

Beyond considering the potential impacts of increased GC production on the 
development of the immunosuppressed phenotype we characterized in the vast majority of 
COVID-19 patients in this study, we must also consider the possibility that GCs modulate the 
immune microenvironment differently in the context of distinct viral encounters. There are 
known but underappreciated immunosuppressive features of influenza (30-32); coronaviruses are 
similarly known to utilize a number of nonstructural proteins to disrupt host gene expression and 
protein synthesis (33, 34), with the potential for profound impacts on various immune signaling 
pathways (35). Although the details of these mechanisms in the context of COVID-19 immune 
dysregulation remain to be fully elucidated, our own analyses demonstrate enhanced GC 
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signaling in cells from COVID-19 patients, consistent with an enhanced production of GCs or 
enhanced sensitivity to GCs after infection. Together these data suggest a feedforward 
amplification of IL-6 and GC signaling, paired with a profound suppression of other potentially 
protective immune functions through GC-induced apoptosis and suppression of key antiviral 
pathways. GCs can also drive other pathological phenotypes including clotting dysfunction, 
consistent with severe manifestations of COVID-19.(36) The direct and indirect effects of 
SARS-CoV-2’s unique biology may determine this pathological outcome. Therapeutic 
consideration should be given to inhibiting both IL-6 and GC activity in the majority of COVID-
19 patients exhibiting this phenotype (high IL-6, low IFN signaling, profound cytopenias) versus 
the small proportion of patients with a true cytokine storm phenotype. While inhibiting GC 
activity alone may cause excessive inflammation, co-administration with IL-6-blocking 
antibodies in a dose regulated manner may limit these effects. These data also indicate that 
administration of GCs would potentially be deleterious, an outcome consistent with some limited 
reports.(37) Other studies have indicated beneficial or neutral effects from GC, and indicate a 
focus on understanding their dynamics and activity across the course of infection is an important 
direction for future research.(38, 39) 
 
Materials and Methods 
 
Study Design 

This is a prospective observational cohort of subjects with viral respiratory illness 
symptoms who presented to Barnes Jewish Hospital, St. Louis Children’s Hospital, Missouri 
Baptist Medical Center or affiliated Barnes Jewish Hospital testing sites located in Saint Louis, 
Missouri, USA. Inclusion criteria required that subjects were symptomatic and had a physician-
ordered SARS-CoV-2 test performed in the course of their normal clinical care. Some subjects 
were enrolled prior to the return of the SARS-CoV-2 test result. Enrolled subjects who tested 
negative for SARS-CoV-2 are not included in the current manuscript. This report includes the 
first subjects enrolled in the study; however, study recruitment is ongoing. All samples were 
collected at the time of enrollment, which was during or immediately following evaluation in a 
medical facility. Patient-reported duration of illness and other clinically relevant medical 
information was collected at the time of enrollment from the subject, their legally authorized 
representative, or the medical record. The portions of the study relevant to each institution were 
reviewed and approved by the Washington University in Saint Louis Institutional Review Board 
(WU-350 study approval # 202003085) and the Missouri Baptist Medical Center Institutional 
Review Board (Approval # 1132). The study complied with the ethical standards of the Helsinki 
Declaration.  

We also report findings from healthy control subjects and influenza-infected subjects 
enrolled in separate, ongoing studies. Control subjects had not experienced symptoms of a viral 
respiratory illness at the time of sample collection or within the previous 90 days, and samples 
were all collected before October of 2019. Influenza subjects were enrolled in the ongoing 
EDFLU study.(15)  All influenza subjects were sampled in 2019 and 2020. We enrolled most 
influenza subjects during the course of the 2019-2020 influenza season, immediately before the 
spread of COVID-19 disease in the Saint Louis region. The last included influenza subject was 
enrolled and sampled on March 2rd of 2020. The first case of COVID-19 was reported in Saint 
Louis on March 8th of 2020 in a returning traveler. The control and influenza studies were 
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independently approved by the Washington University Institutional Review Board (Approval #’s 
201707160, 201801209, 201808171, 201710220, 201808115 and 201910011). 

 
 Multi-Parameter Flow Cytometry 

Absolute counts of CD45+ cells in whole blood were determined at the time of blood 
collection on fresh samples by flow cytometry with Precision Count Beads (BioLegend). 
Peripheral blood mononuclear cells (PBMCs), prepared using ficoll separation, were analyzed 
using a panel of antibodies directed against the following antigens: CD8 BV421 (clone RPA-T8), 
CD20 Pacific Blue (clone 2H7), CD16 BV570 (clone 3G8), HLA-DR BV605 (clone L243), IgD 
SuperBright 702 (clone IA6-2), CD19 BV750 (clone HIB19), CD45 Alexa Fluor 532 (clone 
HI30), CD71 PE (clone CY1G4), CD38 PE-Cy7 (clone HIT2), CD14 APC (clone M5E2), CD4 
Spark 685 (clone SK3), and CD3 Alexa 700 (clone UCHT1). PBMC samples of 0.5-2x106 cells 
were stained with a master-mix containing pre-titrated concentrations of the antibodies, along 
with BD Brilliant Buffer (BD Biosciences) and Zombie NIR Fixable Viability Marker 
(BioLegend) to differentiate live and dead cells. Samples were run on a Cytek Aurora spectral 
flow cytometer using SpectroFlo software (Cytek) and unmixed before final analysis was 
completed using FlowJo software (BD Biosciences). 

 Cytokine Quantification 
  Plasma obtained from subjects was frozen at -80°C and subsequently analyzed using a 
human magnetic cytokine panel providing parallel measurement of 35 cytokines (ThermoFisher). 
The assay was performed according to the manufacturer’s instructions with each subject sample 
performed in duplicate and then analyzed on a Luminex FLEXMAP 3D instrument. 
 
Single-Cell RNAseq 
  PBMCs were suspended at 1000 cells/µL and approximately 17,400 cells were input to a 
10x Genomics Chromium instrument. Each sample was used for two independent reactions, with 
all first reactions processed on one chip and second reactions processed on a second chip. Single-
cell gene expression libraries were prepared using 5-prime (V2) kits and sequenced on the 
Illumina NovaSeq 6000 platform at 151x151bp. Individual libraries were processed using 
CellRanger (v3.1.0; 10xGenomics) with the accompanying human reference (GRCh38-3.0.0), 
which was modified to include the influenza A, influenza B, and COVID-19 (NC_045512.2) 
genomes. Processed libraries were subsequently aggregated using CellRanger, randomly 
subsampling mapped reads to equalize sequencing depth across cells. Filtered aggregation 
matrices were subsequently analyzed using Seurat(40) (v3.1.4), excluding cells from 
downstream analyses that exhibited extremes in the total number of transcripts expressed, the 
total number of genes expressed, or mitochondrial gene expression. For each cell we inferred cell 
cycle phase using markers from Tirosh et al 2016(41)  and incorporated module scores from a 
number of external gene sets in the same manner. 

After filtering, we first sought to characterize putative cell subsets shared across 
conditions by detecting integration anchors among the samples, effectively minimizing 
condition-associated differences. The top 2,000 variable genes were identified for each library 
using the “vst” method, and integration anchors were obtained using canonical correlation 
analysis (CCA). Data were integrated using 50 CCA dimensions and scaled to regress out the 
effects of total transcript count, percent of mitochondrial gene expression, and module scores 
associated with cell phase. Principal components (PC) were calculated and assessed for statistical 
significance using random permutation. The first 51 PCs (p < 0.01) were used to identify 
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transcriptional clusters and for tSNE and UMAP dimensionality reduction. After identifying 
clusters on the basis of transcriptional similarities across cells from all three conditions (i.e., the 
“integrated” analysis), we performed pairwise differential gene expression analysis between 
conditions using Wilcoxon Rank Sum tests as implemented in Seurat, with default parameters. 
We also generated an additional UMAP projection using the top 2,000 variable genes across the 
entire dataset (excluding TCR and IG genes, which are known to map poorly) irrespective of the 
CCA but again using significant PCs; this allowed us visualize cells in a manner that did not 
obscure transcriptional differences owed to sample or condition but with previously identified 
cell subsets and transcriptional clusters from the integration analysis overlaid. We also looked 
within identified subsets and clusters for explicit differences in gene pathway enrichment 
between cells from COVID-19-infected and influenza-infected patients, COVID-19-infected and 
healthy patients, and influenza-infected and healthy patients. For these analyses, gene expression 
differences between conditions were ranked for individual subsets and transcriptional clusters by 
calculating differential expression under a generalized linear hurdle model(42). To generate gene 
ranks, gene-specific average log fold changes were multiplied by the absolute difference in the 
proportions of cells expressing the gene (+1e-4 as a lower boundary) and the inverse of the FDR-
adjusted p-values, which were re-scaled from 1e-7 to 1 to institute reasonable bounds in the 
ranking. These ranks were used as inputs for gene set enrichment analysis(43) using 
GSEAPreranked with a classic enrichment statistic and chip-based gene collapsing based on the 
Human_Symbol_with_Remapping_MSigDB.v.7.0 chip(44). Gene sets were considered 
significantly enriched if they resulted in a nominal p-value < 0.05 and a q-value < 0.20. 

 
Data Availability 
Raw flow cytometry and cytokine data can be found in Supplementary Tables 1 and 2, 
respectively. Single cell gene expression sequences have been uploaded to the NCBI Short Read 
Archive under BioProject ID PRJNA630932. 
 
Analysis 
Flow Cytometry  
Lymphocyte subsets were compared across healthy, influenza, and SARS-CoV-2 subjects using 
Mann-Whitney U tests. In the HLA-DR expression analysis, there were four negative mean 
fluorescence intensity observations, these were replaced with a value of 1. Results were adjusted 
for multiple comparisons using the Benjamin-Hochberg approach and considered significant if 
the adjusted p-value was less than 0.05 (FDR < 0.05). 
Cytokines 
Cytokine levels were natural safe-log transformed prior to analysis and compared across healthy, 
influenza, and SARS-CoV-2 subjects using Kruskal-Wallis tests. Results were adjusted for 
multiple comparisons using the Benjamini–Hochberg approach. Kruskall-Wallis tests with an 
FDR-adjusted p-value < 0.10 were selected for further investigation, and were followed up with 
post hoc Dunn’s tests to determine which groups differ from each other. P-values obtained from 
Dunn’s tests were subjected to multiple testing adjustment and considered statistically significant 
a FDR < 0.05. 
Cytokine-cytokine co-correlations were investigated using CytoMod(17) utilizing both absolute 
and mean-adjusted (i.e., relative) cytokine values of either all COVID-19 and influenza data, 
using only using COVID-19 data, or only using data from hospitalized subjects of either cohort. 
For these correlations, values below the lower limit of detection were set to the lower limit of 
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detection, and values above the upper limit of detection were excluded. In each instance we 
tested up to k = 12 modules and used gap statistic to identify the optimal k. Logistic regressions 
were carried out within the CytoMod framework and controlled for effects of age and the 
number of days after symptom onset that a sample was collected. P-values were adjusted for 
multiple testing as above, and all significant results reported from logistic models were assessed 
an FDR < 0.05. 

Supplementary Materials 
 

Fig. S1. Gating strategy for flow cytometry analysis. 
Fig. S2. Overview of cytokine levels across all subjects. 

Fig. S3. Box plots of cytokine concentrations for all 35 cytokines measured. 
Fig. S4. Correlations of absolute cytokine values. 

Fig. S5. Modular analysis of cytokines using only samples from COVID-19 patients. 
Fig. S6. Percentage of cells from each single-cell RNAseq bioinformatically-defined 
transcriptional clusters in COVID-19, healthy control and influenza subjects. 
Fig. S7. Graphs for all results of pre-ranked gene set enrichment analysis of hallmark gene sets 
comparing COVID-19 and influenza subjects. 
Fig. S8. Graphs for selected results from pre-ranked gene set enrichment analysis of gene 
ontology gene sets comparing COVID-19 and influenza subjects. 
Fig. S9. Percentage of cells from each single-cell RNAseq transcriptionally identified cell subset 
in COVID-19, healthy control and influenza subjects. 
Fig. S10. Evaluation of pre-ranked gene set enrichment analysis of gene ontology gene sets with 
“cortico,” “cortisol,” or “stress” in the gene set name. 
S. Table 1. Raw flow cytometry data. 

S. Table 2. Raw cytokine data. 
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Figure 1.  Evaluation of absolute numbers of circulating lymphocyte and monocyte 
subpopulations in select healthy controls (N=15), acute influenza-infected subjects (N=23), and 
acute SARS-CoV-2-infected subjects (N=22).  (A) Total B cells, CD8 and CD4 T cells; (B) 
circulating B cell plasmablasts, activated CD8 and CD4 T cells; and (C) classical, intermediate, 
and nonclassical monocytes. (D) Surface expression of the major histocompatibility complex 
class 2 molecule, HLA-DR, on the surface of the indicated sub-populations of circulating 
monocytes as measured by geometric mean florescent intensity (MFI) using flow cytometry. 
Presented p-values are from Mann-Whitney U tests, post adjustment for multiple testing. 
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Figure 2.  Selective cytokine upregulation in COVID-19 patients. (A) To visualize cytokine 
levels in COVID-19 patients relative to influenza patients, all cytokine levels were normalized to 
the median cytokine level in influenza subjects, with respect to cytokine; thus, 
the normalized median cytokine level in influenza patients equals 1 for all cytokines and is 
represented by the vertical blue line. Bar graphs, and the numbers on them, represent the value of 
the normalized median COVID-19 cytokine level relative to the normalized median influenza 
cytokine level for a given cytokine. Bars in light red represent cytokine levels lower in COVID-
19 patients relative to influenza patients (normalized median < 1, n = 28) and bars in dark red 
are cytokines higher in COVID-19 patients relative to influenza patients (normalized median > 
1, n = 7). (B) Box plots show cytokine concentrations in COVID-19, influenza, and healthy 
subjects: Presented p-values are from post hoc Dunn’s tests, following adjustment for multiple 
testing. (C)  Forest plots depicting the odds ratios obtained from logistic regression analysis 
between cytokines and COVID-19 infection (left) and severe disease (i.e., resulting in intubation 
or death; right). Logistic regression models utilized absolute log10-transformed cytokine values 
and included age and the number of days since symptom onset at sampling as covariates. Results 
from each cytokine module are presented, as well as results from each constituent cytokine 
Modules 1 and 2, which showed the most variation across tested outcomes; otherwise, cytokines 
are only presented if they reached statistical significance in one of the logistic regression models. 
Grey shading indicates the area of the plots where odds ratios are less than 1, which are 
indicative of negative associations. Presented p-values correspond to the specific module or 
cytokine and were adjusted for multiple testing. Odds ratios are indicated with points, and 
confidence lines encompass the range between the lower and upper limits. Red points and 
confidence lines indicate FDR-adjusted p-values < 0.05. For each model, † indicates that age was 
a significant covariate, whereas ‡ indicates that day of sampling was statistically 
significant. (D) Cytokine concentrations in hospitalized COVID-19 and influenza 
subjects. Presented p-values are based on logistic regression analysis in 
the CytoMod package, following adjustment for multiple testing.  
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Figure 3. 
Single-cell gene expression analyses of PBMCs from COVID-19-positive, influenza-

positive, and healthy subjects demonstrate profound differences in the relative abundance and 
transcriptional activity of cell subsets across conditions. (A) UMAP (Uniform Manifold 
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Approximation and Projection) plots depict transcriptional clusters, which (B) vary 
transcriptionally as a function of condition despite the presence of nearly all subsets across the 
various conditions, as evidenced in (C). Putative cell subset identities are denoted with (p). (D) 
Violin plots demonstrate extreme downregulation of selected interferon-activated (OAS1) or 
interferon-induced (IFIT3, MX1) genes among cells from COVID-19 patients (red) compared to 
cells from influenza patients (blue). Asterisks indicate significance at FDR < 0.05. (E) In direct 
comparison to cells from influenza-infected patients, transcriptional patterns among cells from 
COVID-19 patients reveal significant upregulation (red bars) of metabolic pathways, stress 
pathways, and glucocorticoid signaling pathways, particularly in monocytes/macrophages; in 
contrast, interferon pathways were significantly downregulated (blue bars) among subsets from 
COVID-19 patients. Grey bars indicate that tests for enrichment did not meet statistical 
significance for a particular subset. 

Table 1. Clinical cohort characteristics 

 

Analysis with Chi-square test, Mann-Whitney test or Kruskal-Wallis ANOVA, as appropriate. 

 
  

 SARS-CoV-2 
Mar. & April 2020 

Number or % 
(IQR or frequency) 

Influenza 
2019 and 2020 
Number or % 

(IQR or frequency) 
 

Healthy 
Control 

Number or % 
(IQR or frequency) 

 

Total Number of 
Subjects 

79 26 15  

Average Age 61 (52-71) years 42 (29-51) years 32 (28-37) years P<0.001 
Female 44% (35/79) 58% (15/26) 53% (8/15) P=0.455 
Average Duration of 
Symptoms 

6.4 (3 - 9) days 4.1 (2 - 7) days N/A P=0.025 

Influenza Vaccine 
Current Year 

N/A 29% (6/21) N/A  

Admitted to Hospital 90% (71/79) 58% (15/26) N/A P<0.001 
ICU Admissions 56% (44/79) 35% (9/26) N/A P=0.062 
Intubation and 
Mechanical Ventilation 

44% (35/79) 27% (7/26) N/A P=0.117 

In-Hospital Death 27% (21/79) 8% (2/26) N/A P=0.034 
Immunocompromised 6% (5/79) 0% (0/26) N/A P=0.189 
Chronic Lung Disease 34% (27/79) 42% (11/26) N/A P=0.454 
Chronic Heart Failure 13% (10/79) 23% (6/26) N/A P=0.200 
Active Cancer 6% (5/79) 8% (2/26) N/A P=0.809 
Diabetes Mellitus 43% (34/79) 27% (7/26) N/A P=0.144 
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Supplementary Materials: 

Supplementary Figure 1. Gating strategy for flow cytometry analysis of myeloid (A) and 
lymphoid (B) subsets. (C) Expression of HLA-DR, measured by mean fluorescence intensity, on 
B cells, CD8 T cells, and CD4 T cells. 
 
Supplementary Figure 2. Overview of cytokine levels across all subjects, data points from the 3 
COVID-19 patients with extremely high cytokine concentrations are shown in red. 
 
Supplementary Figure 3. Box plots of cytokine concentrations in COVID-19, influenza, and 
healthy subjects for each of the 35 cytokines measured. P-values presented are raw, unadjusted 
Kruskal-Wallis tests or Mann-Whitney U tests. 
 
Supplementary Figure 4. Correlations of absolute cytokine values are visualized after 
hierarchical clustering (left), as well as the proportion of times cytokine pairs clustered together 
during hierarchical clustering over 1,000 permutations (right) for: (A) all samples from COVID-
19- and influenza-infected patients, (B) only samples obtained from COVID-19-infected 
patients, and (C) only samples obtained from hospitalized patients. Data from healthy patients 
were not included in these analyses. Figures were produced using CytoMod. 
 
Supplementary Figure 5. Modular analysis of cytokines as described in the manuscript were 
repeated using only samples from COVID-19-infected patients. (A) Odds ratio heatmap from 
logistic regression analysis testing for associations between cytokines/cytokine modules and 
disease severity (as defined by presentation that resulted in intubation or death, “IntOrDec"). 
Only statistically significant odds ratios are visualized; all non-grey values correspond to 
statistically significant results after multiple testing adjusted to ensure a false discovery rate 
<0.05. Asterisks indicate an additional, more stringent Bonferroni multiple testing adjustment, 
with *** corresponding to FWER (family-wise error rate) < 0.001 and ** corresponding to 
FWER < 0.01. Odds ratios are presented in a color scales that spans from dark purple (OR  = 
1/2.5), corresponding to a negative association between cytokine expression and severity, to dark 
brown (OR = 2.5), corresponding to a positive association between cytokine expression and 
severity. Modules were defined by hierarchical clustering of cytokine-cytokine correlations (B). 
(C) visualizes the proportion of times cytokine pairs clustered together during hierarchical 
clustering over 1,000 permutations. Figures were produced using CytoMod. 
 
Supplementary Figure 6. For each bioinformatically defined transcriptional cluster, the 
percentage of cells from each single-cell gene expression library that were assigned to that 
cluster is presented. Colors correspond to the patient from which the sample was obtained, with 
each patient represented by two independent gene expression libraries constructed from distinct 
cell aliquots from the same PBMC sample. 
 
Supplementary Figure 7. Graphs depicting all results of Preranked Gene Set Enrichment 
Analysis of Hallmark gene sets when comparing COVID-19-infected and influenza-infected 
subjects on a per-cell-subset basis. Red: significantly enriched in cells from COVID-19-infected 
patients; blue: significantly enriched in cells from influenza-infected patients; grey: not 
statistically enriched in either condition. 
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Supplementary Figure 8. Graphs depicting selected results from Preranked Gene Set 
Enrichment Analysis of Gene Ontology gene sets. Gene Ontology Biological Processes gene sets 
that passed default GSEA thresholds were tested, with results adjusted for multiple testing, and 
all results with the term “interferon” in the gene set name that were significant in either direction 
for at least one cell subset are plotted. Red: significantly enriched in cells from COVID-19-
infected patients; blue: significantly enriched in cells from influenza-infected patients; grey: not 
statistically enriched in either condition. 
 
Supplementary Figure 9. For each transcriptionally identified cell subset, the percentage of 
cells from each single-cell gene expression library that were assigned to that subset is presented. 
Colors correspond to patient from which the sample was obtained, with each patient represented 
by two independent gene expression libraries constructed from distinct cell aliquots from the 
same PBMC sample. 
 
Supplementary Figure 10. Graphs depicting selected results from Preranked Gene Set 
Enrichment Analysis of Gene Ontology gene sets. Gene Ontology Biological Processes gene sets 
that passed default GSEA thresholds were tested, with results adjusted for multiple testing, and 
all results with the terms “cortico”, “cortisol”, or “stress” in the gene set name that were 
significant in either direction for at least one cell subset are plotted. Red: significantly enriched 
in cells from COVID-19-infected patients; blue: significantly enriched in cells from influenza-
infected patients; grey: not statistically enriched in either condition. 

 
 
Additional supplemental data files Supplementary Table 1 and Supplementary Table 2 are 
available in the online version. 
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