
Simultaneous classification of bilateral hand gestures using bilateral 
microelectrode recordings in a tetraplegic patient 

Tessy M. Thomas1, Robert W. Nickl2, Margaret C. Thompson3, Daniel N. Candrea1, Matthew S. 
Fifer3, David P. McMullen4, Luke E. Osborn3, Eric A. Pohlmeyer3, Manuel Anaya2, William S. 
Anderson5, Brock A. Wester3, Francesco V. Tenore3, Gabriela L. Cantarero2, Pablo A. Celnik2, 
Nathan E. Crone6 

1Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United 
States; 2Department of Physical Medicine and Rehabilitation, Johns Hopkins University, 
Baltimore, Maryland, United States; 3Research and Exploratory Development Department, Johns 
Hopkins University Applied Physics Laboratory, Laurel, Maryland, United States; 4National 
Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States; 
5Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland, United States; 
6Department of Neurology, Johns Hopkins University, Baltimore, Maryland, United States 

*Corresponding author: Tessy M. Thomas, tlal1@jhmi.edu 

 

ABSTRACT 

Most daily tasks require simultaneous control of both hands. Here we demonstrate simultaneous 
classification of gestures in both hands using multi-unit activity recorded from bilateral motor 
and somatosensory cortices of a tetraplegic participant. Attempted gestures were classified using 
hierarchical linear discriminant models trained separately for each hand. In an online experiment, 
gestures were continuously classified and used to control two robotic arms in a center-out 
movement task. Bimanual trials that required keeping one hand still resulted in the best 
performance (70.6%), followed by symmetric movement trials (50%) and asymmetric movement 
trials (22.7%). Our results indicate that gestures can be simultaneously decoded in both hands 
using two independently trained hand models concurrently, but online control using this 
approach becomes more difficult with increased complexity of bimanual gesture combinations. 
This study demonstrates the potential for restoring simultaneous control of both hands using a 
bilateral intracortical brain-machine interface. 
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INTRODUCTION 

Bimanual upper-limb control is crucial for completing many activities of daily living (ADLs). Simple 
tasks such as opening a bottle or squeezing toothpaste onto a toothbrush require simultaneous 
but independent control of both hands. Brain-machine interfaces (BMI) are a promising new 
technology to restore such ADLs in paralyzed individuals. While several BMI studies have 
demonstrated that paralyzed individuals can achieve successful unimanual reach and grasp 
control (Aflalo et al., 2015; Ajiboye et al., 2017; Bouton et al., 2016; Colachis et al., 2018; Collinger 
et al., 2013; Hochberg et al., 2012; Wang et al., 2013; Wodlinger et al., 2015; Yanagisawa et al., 
2011, 2012), much less is known about the degree of bimanual control possible and how it can 
be affected by task complexity. Ifft et al. (2013) provided early evidence that bilateral arm 
movements can be decoded in real-time (online) from neural activity recorded through 
microelectrode arrays (MEAs) in bilateral sensorimotor cortices of non-human primates. More 
recent investigations have demonstrated that tetraplegic patients can also achieve simultaneous 
and independent 3D endpoint control of two arms using neural recordings from MEAs (Downey 
et al., 2019) and electrocorticography (ECoG) (Benabid et al., 2019).  

However, simultaneous control of bilateral hand movements or gestures has not yet been 
demonstrated. Several studies have provided evidence that neural activity in one hemisphere, 
including single/multi-unit activity (SUA/MUA) and ECoG activity, contains adequate information 
for both discrete and continuous decoding of unimanual hand and finger movements (Acharya 
et al., 2010; Aggarwal et al., 2008; Bleichner et al., 2014; Bouton et al., 2016; Chestek et al., 2013; 
Colachis et al., 2018; Degenhart et al., 2018; Flint et al., 2017; Hamed et al., 2007; Hotson et al., 
2016; Irwin et al., 2017; Jiang et al., 2017; Jorge et al., 2019; Liang & Bougrain, 2012; Nakanishi 
et al., 2014; Pan et al., 2018; Pistohl et al., 2012; Schwemmer et al., 2018; Vaskov et al., 2018). 
Wisneski et al. (2008) also demonstrated the ability to decode repeated opening and closing of 
either the contralateral or ipsilateral hand in real-time from ECoG signals recorded from one 
hemisphere in able-bodied subjects. Using microelectrode recordings, Downey et al. (2019) 
showed that right and left hand power grasps were difficult to differentiate from each other using 
MUA recorded from only one hemisphere in a tetraplegic subject. Instead, they found a high 
correlation between the neural tuning to these grasps within the motor cortex of one 
hemisphere. Recording from both hemispheres could potentially improve independent and 
simultaneous control of bilateral hand movements for patients with spinal cord injuries (SCI). 
Notwithstanding the added risks from bilateral implants, they have potential advantages over 
unilateral implants for people with intact sensorimotor cortex in both hemispheres, including SCI 
patients. One group showed preliminary evidence that simultaneous opening and closing of both 
hands can be decoded from bilateral sensorimotor activity recorded through 
magnetoencephalography in able-bodied subjects (Belkacem et al., 2018). Using a more invasive 
recording method, Benabid et al. (2019) used bilateral ECoG recordings to provide a tetraplegic 
patient with control of translation and wrist rotation of an exoskeleton’s two upper-limbs. 
However, the degree of complex and dexterous bilateral movements achievable with bilateral 
MEA recordings in a human subject has not yet been investigated.  

As part of an ongoing early feasibility study of bilateral intracortical BMIs for controlling bilateral 
upper-limb movements, we implanted MEAs in the sensorimotor cortex of both hemispheres in 
an SCI subject with incomplete tetraplegia. Here, we present the results of simultaneous online 
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classification of bilateral hand gestures. Bimanual gesture combinations were predicted using 
two hierarchical linear classifiers, each trained for a specific hand using inputs from the 
contralateral motor and somatosensory cortices. Furthermore, by mapping a set of hand gestures 
to four directions on a 2D plane, the participant was able to use the gesture classifiers to 
simultaneously control two JHU/APL Modular Prosthetic limbs (MPLs; Johannes et al., 2011, 
2020) in center-out movement tasks. Online performance was explored as a function of the 
complexity of bilateral gesture combinations. This study represents the first demonstration of 
simultaneous gesture decoding in both hands using bilateral microelectrode recordings. 

RESULTS 

Offline Unilateral Gesture Classification 

A 48-year-old male participant with incomplete tetraplegia (C5/C6, ASIA B) was implanted with 
two pairs of MEAs within the left hemisphere and one pair of MEAs within the right hemisphere. 
Each pair consisted of a 96-channel array in the motor cortex and a 32-channel array in the 
somatosensory cortex (Figure 1). Starting from day 189 post-implant, the participant completed 
14 gesture classification sessions over three months. Each session began with a training task, in 
which the participant was visually cued to attempt unimanual gestures in a randomized order. A 
hierarchical classification model was trained for each hand by using linear discriminant analysis 
(LDA) on MUA recorded from only the contralateral hemisphere. This hierarchical framework 
consisted of a linear model trained to first choose between rest and movement (first step), and 
a second linear model trained to predict a specific gesture (second step). 

 

Figure 1. MEA implant locations. 6 MEAs were implanted in pairs, with a 96-channel array in the motor 
cortex and a 32-channel array in the somatosensory cortex. Each pair was connected to a pedestal on top 
of the skull (top image), through which neural signals were recorded. Two pairs of MEAs (shown in white) 
were implanted in the left hemisphere (left image). One pair of MEAs was implanted in the right 
hemisphere (right image). Yellow dotted-line outlines the central sulcus. 
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Table 1. Offline gesture classification accuracies. Average classification accuracies for rest and eight 
attempted unilateral gestures for each hand across 14 sessions. 

 

Table 1 shows the average offline classification accuracy of each gesture which was used for at 

least one online task (Figure S1). The first step of the hierarchical model classified between rest 

and movement with an accuracy of 93.3% and 89.4% for the right and left hand, respectively. 

Right hand gestures, decoded in the second step, were more accurately classified than left hand 

gestures (Wilcoxon rank-sum test, p=1.78x10-6). Among the gestures, 2-finger pinch was most 

accurately classified (81.3% on right hand, 70.3% on left hand), followed by classification of wrist 

flexion and wrist extension. As a result, these three gestures were frequently used as movement 

classes for a majority of experimental sessions. Early sessions included power grasp as one of the 

gestures, but it was poorly classified on the left hand and was replaced with other gestures in 

later sessions. The alternative gestures included open hand, 5-finger flat pinch, index flex, and 

index extend, of which the first two were most consistently discriminable on both hands. 

Different gestures were substituted in order to use the most discriminable gesture set across 

both hands for online control during each session. 

Online Bilateral Gesture Classification 

In order to assess online classification of gestures in both hands simultaneously, the participant 
used the gesture classifiers to drive two MPLs and perform a bimanual center-out movement 
task. Taking a similar approach to previous studies (Degenhart et al., 2018; Wang et al., 2013), a 
specific gesture was mapped to each of the four cardinal directions on a 2D vertical plane, and 
the predicted gesture from each hand’s model was used to guide the corresponding MPL at a 
constant velocity towards a target on the vertical or horizontal axis. The same gestures were used 
for both hands, and the directional mapping was mirrored across both hands (Figure S2). This 
task provided an experimentally controlled environment to test the effectiveness of the gesture 
classifiers for online control while also keeping the subject engaged in achieving a goal. The 
bimanual task required the participant to use a hierarchical classification model for each hand 
simultaneously in order to independently control both MPLs. Bimanual trials consisted of three 
types of bimanual gesture combinations: stabilizing trials (also referred to as “Gesture+Stabilize”: 
one model must predict a gesture while the other model predicts “rest” simultaneously), 
symmetric gesture trials (both models must simultaneously predict the same gesture), and 
asymmetric gesture trials (both models must simultaneously predict different gestures). A 
unimanual center-out movement task, in which only one model and one MPL were active during 
each trial, was also performed to obtain a benchmark for comparing two-hand gesture 
classification. Unimanual trials consisted of two types: isolated unimanual trials (used only one 
hand’s model during all trials in a block), and alternating unimanual trials (switched between the 
right and left hand models for each trial in a block). 
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The participant completed 32 blocks of the unimanual task and 16 blocks of the bimanual task. 
The average success rate for reaching the target (target-reach) was 76% for unimanual blocks 
and 63.8% for bimanual blocks (Figure 2A). The distribution of target-reach success rates for the 
unimanual task was significantly higher than the distribution for the bimanual task (Wilcoxon 
rank-sum test, p=0.016). But with a median trial-completion time of 3.19 s (unimanual) and 3.07 
s (bimanual), there was no significant difference (Wilcoxon rank-sum test, p=0.49) in the time it 
took to successfully reach the target between the two tasks (Figure 2B). 

 

Figure 2. Online center-out task performance using gesture classification. (A) Average success rate and 
(B) trial-completion time for reaching targets (target-reach) using predicted gestures are shown for 
unimanual trials and bimanual trials, as well as for three different bimanual combinations (C, D). Error 
bars signify standard error. The time it took to successfully reach the target during individual trials (trial-
completion times) is plotted as vertical scatterplots for each task type (B, D). Boxplots display a summary 
of the distribution of the underlying scatterplot. The edges and middle line of the box represent 25th 
percentile, median, and 75th percentile from bottom to top. Circles that fall outside of the boxplot 
whiskers are outliers.  
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Trials from the bimanual tasks were further divided into three groups according to the complexity 
of bimanual gesture prediction. These groups included stabilizing trials, symmetric gesture trials, 
and asymmetric gesture trials. Each of these bimanual trial groups required simultaneous 
classification of gestures on both hands with varying degrees of independence and difficulty, with 
stabilizing trials as the least complex and asymmetric trials as the most complex gesture 
combination. The participant achieved a higher target-reach success rate for the stabilizing trials 
(70.6%) than for the symmetric and asymmetric gesture trials (Figure 2C). Symmetric gesture 
trials were completed with an average target-reach success rate of 50%. Performance was 
poorest for asymmetric gesture trials, in which the participant successfully reached both targets 
during only 22.7% of the trials. Stabilizing trials also had the shortest median trial-completion 
time, followed by symmetric and asymmetric gesture trials (Figure 2D). 

Right vs. Left Hand Performance 

We tested for significant differences in performance between the right hand and left hand 
models (“significant effects of handedness”) in terms of target-reach success rates and trial-
completion times during three trial types: isolated unimanual trials, alternating unimanual trials, 
and bimanual stabilizing trials. Bimanual symmetric and asymmetric gesture trials were excluded 
from this comparison because both hands were required to achieve their goals simultaneously, 
resulting in the same target-reach success rates and trial-completion times for both right hand 
and left hand models. The average target-reach success rate achieved by the right hand model 
was 3.8%, 11.1%, and 2.6% higher than that achieved by the left hand model for the isolated 
unimanual, alternating unimanual, and bimanual stabilizing trials, respectively (Figure 3A). 
Median trial-completion times, ranging between 2.81 s and 3.45 s, were very similar for both the 
right and left hand models across all three trial types (Figure 3B). Even though the right hand 
model had slightly higher target-reach success rates than the left hand model across all three 
trial types, there were no significant effects of handedness or trial type on either target-reach 
success rate (p=0.20, p=0.06, two-way ANOVA) or trial-completion time (p=0.53, p=0.093, two-
way ANOVA). 

We used distance-ratio, defined as the straightest and shortest distance to the target relative to 
the actual distance traveled by the MPL (from worst to ideal ranging from 0 to 1), as an additional 
performance metric to compare right and left hand models across all five different trial types. 
The median distance-ratio for isolated unimanual trials was the closest to the ideal ratio. 
However, there was much variance among the distance traveled in individual trials for all trial 
types, as shown by the wide distribution of distance-ratio values (Figure 3C). Handedness did not 
have any significant effect on distance-ratio (p=0.28), but trial type did have a significant effect 
(p=0.016, two-way ANOVA). 
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Figure 3. Online performance of right vs. left hand. (A) Average target-reach success rates and (B) 
distributions of trial-completion times for the right and left hand are shown for two unimanual and one 
bimanual task types. (C) Distance-ratio (the straightest and shortest distance to the target divided by the 
distance traveled by the MPL to the target) for successful trials is plotted as vertical scatterplots and 
overlaid with boxplots for right and left hand for all five task types. 
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Motor vs. Sensory Contributions to Decoding 

The model weights used to discriminate between attempted gestures during the second step of 
the hierarchical classifiers were analyzed to determine the decoding contributions of motor and 
sensory electrodes (Figure 4). In the left hemisphere, 47% out of 192 motor electrodes and 100% 
out of 64 sensory electrodes were used by the right hand model during at least two sessions. One 
electrode on the lateral sensory MEA and one electrode on the medial motor MEA were the most 
informative. The motor electrodes that contributed to the model were primarily located on the 
medial motor MEA, with a small cluster of electrodes providing relatively high decoding power 
(> 0.6). The minimal contribution (< 0.16) from the lateral motor MEA was likely due to an overall 
low yield of SUA and MUA from that array. Since the time of implantation, we have observed 
almost no modulation in this array during a wide variety of attempted and executed proximal 
and distal upper-limb movements. The lateral sensory array contributed more to decoding than 
the medial sensory array. Based on pre-implant functional mapping, this array is likely situated 
near somatosensory thumb and index representations, which may have helped discriminate 
between gestures such as pinch and open hand. In the right hemisphere, 67% out of 96 motor 
electrodes and 91% out of 32 sensory electrodes were used by the left hand model during at least 
two sessions. The most informative electrode was located on the motor MEA and was part of a 
cluster of electrodes along the lateral edge of the array with relatively strong contributions (> 
0.73) to decoding. The sensory MEA also showed high decoding power, though not as uniformly 
as its homologous array in the opposite hemisphere. Across motor and sensory arrays in both 
hemispheres, the electrodes with higher decoding power were more consistently included in the 
model across multiple sessions. 
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Figure 4. Decoding contributions of motor and sensory MEAs. Normalized weights of each electrode in 
the gesture classification models are displayed by a color ranging from light yellow (least contributing) to 
dark red (most contributing). White electrodes were not included in the classification model (see 
MATERIALS AND METHODS). Decoding weights of electrodes in each hemisphere were normalized to the 
highest weight observed across all motor and sensory arrays in that hemisphere. Arrays on the left 
hemisphere (left image) were used to classify right hand gestures, and arrays on the right hemisphere 
(right image) were used to classify left hand gestures. Yellow-dotted line outlines the central sulcus. 

DISCUSSION 

Most daily tasks require simultaneous use of both hands for grasping and interacting with one or 
more objects. In this study, we demonstrated, for the first time, online classification of bilateral 
hand gestures using multi-unit activity recorded from bilateral motor and somatosensory cortices 
in an SCI patient with incomplete tetraplegia. Not only were movements for both hands classified 
at the same time, but they were also classified independently of each other. Simultaneous and 
independent classification may have been possible because an independent decoding model was 
constructed for each hand by restricting the model inputs to MUA in only the contralateral 
hemisphere. In light of the observation of Downey et al. (2019) that MUA from the motor cortex 
in one hemisphere contains correlated neural representations of right and left hand grasps, it is 
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possible that using microelectrode recordings from both hemispheres also reduces interference 
from the ipsilateral hand within each hemisphere.  

While we showed that it was possible to classify bimanual gesture combinations, we found that 
online performance tended to decrease as bimanual combinations became more complex. Our 
decoding model performed well when the participant attempted movements on one hand while 
simultaneously keeping the other hand at rest, but had difficulty in decoding symmetric and 
asymmetric gestures, with the poorest performance observed for simultaneous asymmetric 
gestures. These differences in bimanual decoding performance could have been due to different 
demands on attention. For example, more complex gesture combinations may have required 
more divided attention between the two hands when attempting to control both MPLs, leading 
to a decrease in online performance. When executing a movement with one hand while 
continuously maintaining the other hand at rest, attention can focus primarily on the moving 
hand while the resting hand is passively monitored. Symmetric movements may have required 
more attention than stabilizing movements, but may have still been feasible due to similar 
movement kinematics across both hands. In contrast, asymmetric movements involved 
simultaneous attention to independent goals for both hands. Given that such asymmetric tasks 
can be difficult for most people, it may not be surprising that online performance was worse 
during asymmetric gesture trials than during symmetric gesture trials. Another potential reason 
why our decoding models generalized better for stabilizing trials is that the classification models 
for each hand were trained solely on unimanual gestures, for which attention and kinematics 
were very similar to the stabilizing trials. In contrast, symmetric and asymmetric bimanual 
gesture combinations may have had neural representations that were very different from 
unimanual gestures, possibly because of neural activity encoding both contralateral and 
ipsilateral hand movements in the same hemisphere. Several studies have provided evidence 
that contralateral, ipsilateral, and bilateral reaching and finger movements can evoke neural 
activations in the same hemisphere (Aizawa et al., 1990; Ames & Churchland, 2019; Cisek et al., 
2003; Cramer et al., 1999; Diedrichsen et al., 2013; Donchin et al., 1998, 2002; Heming et al., 
2019; Kim et al., 1993; Steinberg et al., 2002). If models for each hand are trained on both 
unimanual and bimanual gestures, they could potentially generalize to a wider range of bimanual 
gesture combinations. However, to train on all possible bimanual combinations would have 
greatly expanded the time required for training. 

When we compared the performance of independent right and left hand models, we observed a 
significant difference in offline classification accuracies, namely higher accuracy for right hand 
gestures. Right hand models may have achieved a higher accuracy due to having more inputs 
than the left hand models. With twice as many electrodes in the left hemisphere as the right 
hemisphere, the right hand model may have been more capable of capturing separable neural 
representations for the different gestures. In particular, the right hand model received twice as 
many somatosensory inputs as the left hand model, and the additional decoding power from 
these extra inputs may have resulted in a higher classification accuracy for the right hand. 
Interestingly we did not observe this same disparity between right hand and left hand models 
when comparing online performances. The lack of any significant differences between the two 
hands may have resulted from the specific nature of the online task. Offline assessment required 
the model to classify gestures from only a single attempt. In contrast, the online assessment 
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involved using the model’s predictions to drive the MPLs toward targets that were far enough 
from the center of the movement space to require multiple attempts of a gesture. Repeated 
gesture attempts may have resulted in a more consistent increase in firing rates, which could 
have yielded higher and more similar classification accuracies for the two hands during the online 
task. Further studies will be needed to test whether this similarity in online performance will 
extend to scenarios in which classification models are used to execute hand and wrist movements 
with the MPLs. 

Both motor and somatosensory cortices in the contralateral hemisphere contributed to decoding 
gestures in each hand. In each hemisphere, the proportion of informative motor electrodes was 
smaller than the proportion of informative sensory electrodes. It is possible that cortical 
activation in the “hand knob” area was significantly reduced as a result of the participant’s SCI, 
resulting in sparse areas of activation difficult to capture within a single MEA. The motor 
electrodes with the highest decoding power also tended to be clustered to one side of the MEA, 
which suggests that the arrays captured one edge of the neural representations for relevant hand 
movements. The lateral motor MEA in the left hemisphere may have been in a more ideal 
location to capture these neural representations, but the low yield of SUA and MUA from that 
array may have led to its minimal contribution to decoding. Somatosensory cortical areas 
associated with individual finger sensations also showed high decoding power, which may have 
aided in differentiating gestures with opposing finger positions such as pinch, power, and open 
hand. Since the participant retained partial sensation in both hands, some of the neural activity 
in somatosensory cortex may have originated as sensory feedback from slight finger movements 
during attempted gestures. This activity could have also resulted from movement-related 
information received from the motor cortex, such as an efference copy (Crapse & Sommer, 2008; 
Favorov et al., 2015; Lebedev et al., 1994; Soso & Fetz, 1980). While sensory feedback may not 
be present in other individuals with more complete SCI, informative somatosensory activations 
could result from cortical inputs from motor areas. However, due to the higher prevalence of 
incomplete SCI than complete SCI among the affected population, these results could generalize 
to a broader population. 

An important step to restoring complete bimanual control through a BMI is to provide the ability 
to control both hands at the same time. Here we show that it is possible to simultaneously and 
independently decode hand gestures in both hands from bilateral MEA recordings. These results 
suggest that a BMI user can utilize two classification models together to independently control 
two end-effectors. This approach could potentially be used to restore bimanual grasp control to 
SCI patients through functional electrical stimulation of their muscles or control of a bilateral 
exoskeleton, or to bilateral upper-limb amputees through control of two neuroprostheses. 
Further investigations will be needed to gain a better understanding of the neural 
representations of increasingly complex bimanual hand movements and their interactions across 
the two hemispheres. The ability to achieve simultaneous control of complex and dexterous 
movements in both hands could expand the activities of daily living possible for these individuals 
and increase their independence. 
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MATERIALS AND METHODS 

Research Participant 

In a study conducted under an Investigational Device Exemption (170010) by the Food and Drug 
Administration and approved by the Johns Hopkins Institutional Review Board and NIWC Pacific 
IRB, an incomplete tetraplegic (C5/C6, ASIA B) participant was recruited through a registered 
clinical trial (NCT03161067) and implanted with six MEAs 30 years post-injury. The participant 
had some retained motor control of the upper arm and wrist extension on both sides but had 
little to no movement in the rest of his hands and fingers. Pre-operative examination revealed 
intact light touch sensation in hands and fingers, but found some deficits to pinprick sensation in 
certain areas. 

Implantation Procedure 

Two 96-channel MEAs (Pt-tipped Utah arrays – Blackrock Microsystems, Salt Lake City, Utah) 
were placed in the left primary motor cortex (M1), and one 96-channel MEA was placed in the 
right M1 (Figure 1). Two 32-channel MEAs (SIROF-tipped) were placed in the left primary 
somatosensory cortex (S1), and one 32-channel MEA was placed in the right S1 (Figure 1). These 
arrays were capable of both stimulating and recording from neural units. Pre-operative 7T 
structural and functional MRI (fMRI) were used to target the placement of these arrays within 
the pre-central and post-central gyri in both hemispheres. fMRI activation maps of physical and 
attempted movements of the hand, wrist, elbow, and shoulder highlighted the most active areas 
of the hand knob. Similarly, fMRI activation maps from mechanical stimulation of individual 
fingers highlighted finger representations in the post-central gyrus. Additionally, high-density 
ECoG functional mapping was performed intra-operatively to localize the representations of 
individual fingers within the cortical area informed by fMRI. High-gamma (70-110 Hz) power 
modulations were mapped in real-time from a 3x21 high-density ECoG grid (1mm contacts, 3mm 
spacing) placed on the post-central gyrus of one hemisphere during vibrotactile stimulation of 
individual fingers of the contralateral hand. The resulting finger activation maps helped to target 
the sensory MEAs in cortical areas that straddled the border between 2-3 finger representations.  

Experiment Description 

During each session, the participant first completed a training task that involved attempting 
different gestures in a trial-by-trial manner. The gestures were randomly cued by showing the 
participant a picture of the gesture for 2 s followed by a 2-3 s pause. The gestures used across all 
sessions included power grasp, open hand, 2-finger pinch, 5-finger precision pinch, wrist flexion, 
wrist extension, index flexion, index extension, and rest (Figure S1). The participant was 
instructed to attempt the cued gesture to the fullest extent possible and hold the gesture until 
the picture disappeared from the screen. The participant’s upper arms and forearms were 
positioned in a neutral position, and the hands were held in a neutral position with gravity 
eliminated in-between trials (palms facing each other). The participant was able to physically 
execute certain gestures to some extent, such as wrist extension and wrist flexion, but could only 
produce minimal finger twitches when attempting other hand movements. After the training task 
was completed, classification models were trained and validated to report offline classification 
accuracies.  
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The participant then used the classifiers online to complete unimanual and bimanual center-out 
tasks. The set of gestures that yielded the best discriminability offline were mapped to four 
directions along the vertical and horizontal axes (Figure S2). The participant’s predicted gestures 
were used to guide each MPL at a constant velocity towards a target at the end of one axis. Each 
MPL had a separate set of four targets, and each MPL began at a “home” position located at the 
center of its respective 2D vertical plane. Once a target was displayed for one or both MPLs, the 
participant was instructed to move the MPL(s) to the respective target(s) in as straight a path as 
possible. The maximum time allowed for each trial was 20 s. Once the participant successfully 
reached the targets or the trial time exceeded this time limit, the MPLs were automatically reset 
to the home position.  

Neural Recording and Pre-processing 

Neural activity was recorded from the MEAs using three 128-channel Neuroport Neural Signal 
Processors (Blackrock Microsystems). At the beginning of each session, the voltage threshold for 
each electrode was set at -3.5 times the root-mean-square voltage (RMS) of resting-state activity. 
Spiking activity was captured at 30 kHz, and the multi-unit firing rate for each electrode was 
calculated by counting the number of spikes that crossed the threshold within each 30 ms bin. 
The square-root of the firing rate at each time point was normalized to the mean and standard 
deviation (z-score calculation) of the square-rooted firing rates within the previous 60 s. 

Offline Classifier Training and Validation 

Normalized firing rates recorded from both motor and sensory electrodes within each 
hemisphere during the training task were segmented and used to build a classification model for 
the contralateral hand. The average normalized firing rate of each electrode within a 1 s window 
relative to cue-onset of each trial was calculated. The start of the window was shifted forward by 
250 ms or 500 ms from cue-onset to account for the participant’s reaction time and to capture 
neural activity corresponding to movement attempt. The amount of shift was determined from 
offline visualization of the average neural activity aligned to cue-onset for each attempted 
gesture. Computing the average firing rate for each electrode resulted in a set of 384 neural 
features (combined number of electrodes across all six arrays) for each trial. An ANOVA test was 
used to identify the electrodes that showed a significant difference in average firing rate between 
at least two gesture classes (p<0.05, FDR corrected). The neural features corresponding to the 
selected electrodes were used to train a hierarchical classification model using linear discriminant 
analysis. The first step of the model was trained to classify between rest and movement, while 
the second step was trained to classify between the different gestures. The second step of the 
classifier would only be used if the first step predicted movement. A separate classifier was built 
for each hand using neural features from only the contralateral hemisphere. Each model was 
trained and validated using 10-fold cross-validation. 

Online MPL Control 

Online control was tested using unimanual and bimanual center-out tasks. The participant used 
only the classifier corresponding to the active MPL during each trial of a unimanual task, and used 
two classifiers to control both MPLs simultaneously during each trial of a bimanual task. The 
online decoder received binned spike counts every 30 ms, which were pre-processed in the same 
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way as the training data. Normalized firing rates from the electrodes were stored in a 1 s buffer 
and updated every 30 ms. The buffered firing rates were averaged and used by the hierarchical 
classification model to make a rest or gesture prediction. A prediction was made every 30 ms. 
For each block of a unimanual or bimanual testing task, online control was assessed by computing 
the target-reach success rate, trial-completion times, and distance-ratios. Target-reach success 
rate was determined as the number of trials in which the participant successfully navigated the 
MPLs to the cued targets divided by the total number of trials. A successful unimanual trial 
required the MPL to reach its target within 20 s and stay on target for 100 ms. A successful 
bimanual trial required both MPLs to reach their targets within 20 s and simultaneously be on 
their targets for 100 ms. Trial-completion time was determined for each successful trial as the 
time it took to reach the target. Distance-ratio was also calculated for each successful trial as the 
straightest and shortest distance to the target divided by the actual distance traveled to the 
target. All three performance metrics were compared using a two-way ANOVA test to test for 
significant differences in the performance of right and left hand models within and across the 
different task types. 

Characterizing Cortical Contributions to Decoding 

To analyze the relative decoding contributions of motor and sensory electrodes from each 
hemisphere to decoding gestures on the contralateral hand, the weights assigned to each 
electrode were extracted from the classification model. The weight vectors assigned to each 
electrode by a given classification model were summed together and normalized. All electrode 
weights from each hemisphere were normalized to the highest weight across all motor and 
sensory electrodes in that hemisphere. These normalized weights were displayed as a heat map 
ranging from 0 to 1 on the arrays. 
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SUPPLEMENTAL FIGURES 

 

 
Figure S1. The different gestures used for training and testing hierarchical classification models across 14 
sessions. Top row: power grasp, open hand, 2-finger pinch, 5-finger flat pinch. Bottom row: wrist flex, 
wrist extend, index flex, index extend. Right hand gestures are shown here. Left hand gestures (mirror 
versions of these images) were also shown during the training phase. 

 

 

Figure S2. Four gestures were mapped to four cardinal directions in the vertical 2D plane. The same 
gestures were used to control the left and right MPLs, and the gesture-direction mapping was mirrored 
across the two MPLs. 
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