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ABSTRACT 

Understanding cortical movement representations and their stability can shed light on 

robust brain-machine interface (BMI) approaches to decode these representations 

without frequent recalibration.  Here, we characterize the spatial organization 
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(somatotopy) and stability of the bilateral sensorimotor map of forearm muscles in an 

incomplete-high spinal-cord injury study participant implanted bilaterally in the primary 

motor and sensory cortices with Utah microelectrode arrays (MEAs). 

We built the map by recording multiunit activity (MUA) and surface electromyography 

(EMG) as the participant executed (or attempted) contractions of 2 wrist muscles on 

each side of the body.  To assess stability, we repeatedly mapped and compared left--

wrist--extensor-related activity throughout several sessions, comparing somatotopy of 

active electrodes and neural signals both at the within-electrode (multiunit) and cross-

electrode (network) levels. 

Body maps showed significant activation in motor and sensory cortical electrodes, with 

fractured, intermixed representations of both intact and paralytic muscles.  Within 

electrodes, firing strength stability decreased with time, with higher stability observed in 

sensory cortex than in motor, and in the contralateral hemisphere than in the ipsilateral.  

However, we observed no differences at network level, and no evidence of decoding 

instabilities for wrist EMG, either across timespans of hours or days, or across recording 

area.  These results demonstrate first-time construction of a bilateral human 

sensorimotor map with MEAs.  Further, while map stability differs between brain area 

and hemisphere at multiunit/electrode level, these differences are nullified at ensemble 

level.  
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INTRODUCTION 

Brain—machine interfaces (BMIs) to restore motor function rely on decoders to infer 

intended movements from sensorimotor neural activity.  Decoder efficacy depends both 

on the relevance of neural regions sampled---how closely they map to executed (or 

attempted) movements---and the stability of the regions---how consistent their activity 

patterns are over time. 

Many efforts have been made to topographically map the body onto the primary motor 

(M1) and sensory cortices (S1)1-5.  Historically, stimulation studies in M1 indicated that 

individual body parts are represented with a partially-fractionated somatotopy; namely 

with the face, arm, and legs seated in largely distinct areas, and individual muscles 

within an effector represented in a more mixed and overlapping fashion6-7.  A recent 

study using microelectrode arrays (MEAs) implanted in a human BMI participant 

however, provided evidence of intermixed whole-body tuning within the hand knob 

area8, raising questions about M1 organization.  The primary somatosensory cortex 

(S1)2, by contrast, exhibits particularly clear somatotopy for cutaneous touch, with 

proprioception having relatively greater overlap between neighboring regions9-10.  

Although much work has focused on characterizing the layout of the sensorimotor map, 

we know less about its stability.  One can examine stability in the neural representation 

of a given movement at multiple levels: as consistencies in the location of active 

neurons (somatotopy), in the firing patterns at individual recording sites, and in the 

activation pattern of all electrodes (network level).  Studies of neural stability at 

individual-channel and cross-channel (population) levels have been limited to motor 

areas and focused mostly on non-human primates (NHPs) without spinal injuries. At the 

single-channel (or unit) level, there is conflicting evidence about whether firing rates or 

tuning patterns stay consistent for several days18-19,23 or whether they are more typically 

limited to more modest periods of several minutes to a few hours20-21, 23-24.   

One may also conceptualize stability as the regularity in covarying activity across 

multiple recording sites at the ensemble or network level25-26.  Studies at this resolution 
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have shown that the representation between network-wide activity and reaching 

movements may be stable through multiple weeks in NHPs26, and even a few years in 

the context of an ecologically important task like targeted reaching19.  Unfortunately, 

replications of this approach in humans are limited because of a comparative shortage 

of studies and the lack of intact, consistently replicable movements to analyze in BMI 

patients. 

Questions of stability are practically relevant.  BMIs trained in humans have largely 

failed to replicate performance in NHPs, often needing to be retrained multiple times 

throughout sessions.25,27-35.  Due to potential instability in the sensorimotor map, 

understanding how consistently this map and its underlying neural activity patterns 

persist over time may be key to developing longer-lasting decoders.  As BMI usage by 

humans continues to grow, further studies of body map organization and stability are 

needed, both to understand how implant location affects signal consistency and quality, 

and to address recent challenges to the principle of somatotopic organization from 

MEAs implanted in humans.   

Here, we studied the body map and its stability in a tetraplegic human (C5/6 incomplete, 

ASIA B), the first person to be implanted bilaterally with MEAs in the traditional hand 

area representation of precentral (M1) and postcentral (S1 Area 1) gyri36.  We first 

estimated the sensorimotor map associated with EMG-controlled muscle contractions 

(or attempted motions) in the forearm above and below injury level.  Then we 

characterized stability of neural activity throughout the map over varying time periods for 

the left wrist extensor muscle (extensor carpi radialis: ECR).  We investigated stability 

from multiple perspectives: in terms of spatial patterning (somatotopy), within electrode-

level signaling, and ensemble-level signaling across brain hemispheres and areas.  

Maps showed significant motor and sensory cortical activity primarily for the upper limb, 

encompassing both intact and paralytic muscles.  At the single-electrode level, we 

observed higher stability in sensory cortex than motor, and in the contralateral 

hemisphere than the ipsilateral.  In contrast, distinctions found at the unit level were 

absent at the ensemble level, all the brain regions being equally accurate and stable for 

decoding muscle activity.  
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RESULTS 

During each experimental session, we measured neural activity associated with isolated 

EMG-controlled muscle contractions using a metronome-paced task (Fig. 1; see 

Materials and Methods for details).  Given that electrode implants were targeted in the 

hand knob of motor cortex, and in the hand and fingertip representations in sensory 

cortex (Fig. 1A), we concentrated this study on wrist and finger muscle contractions 

(Table 1).  Sessions consisted of blocks, in which we instructed the participant to 

contract (or attempt to contract) a specific muscle in isolation to an audiovisual 

metronome paced at approximately 1 tick per 4 seconds (Fig. 1B).  To assure that 

contractions were isolated, we trained the participant’s movements under the guidance 

of physical therapists, and simultaneously monitored electromyograms (EMG) for the 

instructed muscles and surrounding ones likely to be co-activated.  We labeled as 

noncompliant any trials where EMG was absent, or the participant co-contracted 

muscles outside of the wrist.  We excluded such noncompliant trials from further 

analysis.  As shown in Figure 1C, muscle contractions elicited MUA responses, which 

we quantified in terms of peri-event time histograms (PETH) computed from thresholded 

firing rates (see Materials and Methods).  We performed subsequent analyses on 

PSTHs with respect to windows relative to the burst onset. 

Overall, we tested contractions of 2 muscles in the wrists (Fig. 2A, B).  Figure 2B 

tabulates, for each muscle, the significantly active channels and their laterality 

(contralateral, ipsilateral, or bilateral).  Overall, 105 channels in M1 and 92 channels in 

S1 responded to contractions within at least one wrist muscle.  Significant activity 

manifested in all motor and sensory arrays except for MA.  Although muscle 

contractions could be well isolated to one side of the body, channel activity was present 

in both hemispheres. 

In the wrist, unilateral activity accounted for 82.9% of active M1 and 73.6% active S1 

channels for the extensor contractions, and 83.3% of active M1 and 95.2% of active S1 

channels for flexor contractions.  Critically, in a control experimental session where the 
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participant sat quietly listening to the metronome, we found no channels with significant 

activation on any array.   

To perform analyses of map stability, we focused on contractions from the left ECR 

since the participant could isolate this muscle most consistently.  We assessed stability 

at three levels.  First, we examined the consistency and location of active channels 

across sessions, which we term longitudinal spatial stability.  Second, within channels, 

we measured similarities of PETH amplitude (firing strength stability) and PETH shape 

(firing dynamic stability) over adjacent time periods.  Finally, we compared activity 

patterns across populations of channels, based on the similarity of trajectories on a 

neural manifold, which we call ensemble stability.  We provide further details in the 

Materials and Methods, and Supplementary Information sections. 

Longitudinal Spatial Stability Declines Faster in the Ipsilateral Hemisphere than 

the Contralateral, and in Motor Areas than Sensory 

We measured longitudinal spatial stability for 12 sessions over a total of 4 months (Fig. 

3). We represent longitudinal spatial stability in two ways.  First, we plotted frequency 

heat maps of channel activity over MEAs (Fig. 3A).  Secondly, we estimated survival 

probabilities for channels on each set of arrays (Fig. 3B-C).  Survival probability was the 

chance that a specific channel was activated for at least n total sessions (1 ≤  n ≤ 12), 

not necessarily consecutive.  To calculate these probabilities for a given hemisphere or 

area, we first counted the number of channels in that location that were active for at 

least n sessions.  Then, we divided these counts by the total active channels in that 

location.  To describe the shape of survival probability functions, we fit by decaying 

exponentials of the following form: 

𝑝(𝑥) = exp(𝑏𝑡) , 𝑏 < 0 

Arrays on the contralateral hemisphere of the brain (right hemisphere: Pedestal C) had 

concentrations of highly stable channels (active > 75% of sessions, indicated by warmer 

colors), which were surrounded by zones of relatively less stability (cooler colors).  This 

pattern was consistent with previous fMRI mapping literature, which resembles a “center 
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of gravity” arrangement.  In the motor array, longitudinal spatial stability was highest on 

the right side of the array (lateral to the brain midline) , and declined progressively 

toward the left (medial) side.   In the sensory array, by contrast, the most stable 

channels were more dispersed, although highest stability tended to lie toward the 

bottom left (anterolateral) section of the array.  The survival probability of contralateral 

channels across both areas was well fit by an exponential (R2=0.938) that appeared to 

decay at a slow rate (b = -0.127).   

In comparison, ipsilateral arrays (Fig. 3A, Pedestal B) showed only sporadic placement 

of active channels.  Activity was largely restricted to < 25% of sessions and exhibited no 

clear centers of gravity.  The survival probability of active ipsilateral channels was also 

well fit by an exponential (Fig. 3B, right panel; R2 = 0.842) that decayed at a sharper 

rate than in contralateral channels (b = -0.434).  Consistent with this difference, the 

median “lifetime” of contralateral channels was higher than ipsilateral (Fig. 3D; nMedian, Co 

– nMedian, Ip = 5 sessions; p < 0.001, Wilcoxon signed-rank test).  Altogether, longitudinal 

spatial stability in contralateral channels was higher than in ipsilateral, and displayed a 

center of gravity pattern that was absent in ipsilateral arrays.   

When channels were grouped by area, decaying exponentials also accurately predicted 

the probabilities of survival for motor (Fig. 3C, left panel; R2= 0.935) and sensory 

channels (right panel; R2=0.979).  However, survival chances decayed more sharply in 

motor (b = -0.248) than in sensory areas (b = -0.724).  Accordingly, the median “lifetime” 

of sensory channels was significantly higher than of motor (Fig. 3D; nMedian, M1 – nMedian, 

S1 = -2.5 days, p = 0.022; Wilcoxon signed-rank test).  Thus, sensory channels had 

higher longitudinal spatial stability than motor channels. 

We excluded Pedestal A from analysis because its motor array failed to show any 

responses to left wrist extensions, consistent with our finding in regional body maps 

(Fig. 2C and S1C).  However, spatial patterning and stability on the sensory array in 

Pedestal A was qualitatively consistent with our observations on the Pedestal B sensory 

array. 
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Firing Strength Stability Within Channels is Higher in the Contralateral 

Hemisphere, but Comparable between Sensory and Motor Areas 

Next, we compared firing strength stability (amplitude of firing rate over time) within 

active channels between consecutive hours (within-session), and sessions (across 

days).  To measure firing strength stability for a given channel, we calculated a 

normalized difference of maximum PETH amplitudes for each hour or session being 

compared (see Supplementary Information for details, especially Fig. S2).   Figure 4 

presents the average of these stabilities across all channels, by brain hemisphere (Fig. 

4A) and area (Fig. 4C).  

Comparing firing strength stability between hemispheres (contralateral vs. ipsilateral 

hemisphere) and across timescales, we observed a main effect of hemisphere (F(1, 

1147) = 209.97, p < 0.0001), and a timescale-by-hemisphere interaction (F(1, 1147), p < 

0.001; Fig. 4C).  Stability was greater in the contralateral hemisphere than the ipsilateral 

for all time points of comparison (difference within hours = 0.383, p < 0.0001; difference 

within days = 0.192, p < 0.0001).  Similarly, hemispheric stabilities fell below their 

empirical upper bounds within hours (Contra: hour-to-hour mean = 0.747, 95% CI of 

upper bound=[0.810, 0.887];  Ipsi hour-to-hour mean = 0.364, 0.95% CI: [0.553, 0.715]).  

Overall this indicates that as time interval between measurements increased firing 

strength stability decreased, with contralateral channels being overall more stable than 

ipsilateral ones. 

Comparing firing strength stability between area (motor vs. sensory areas) and 

timescale, we found no significant effect between motor and sensory areas, but a 

significant effect for time (F(1,1147) =14.35,  p < 0.0001; Fig. 4A) with firing strength 

stability decreasing from hours to days (mean difference = -0.0718, p =< 0.0001).  

Within hours, stability in both diminished below their upper bounds as predicted from 

bootstrapping minute-to-minute data within blocks (see Materials and Methods), both in 

motor (hour-to-hour mean=0.651, upper bound 95% CI: [0.762, 0.8543]) and sensory 

areas (hour-to-hour mean = 0.648, upper bound 95% CI: [0.752, 0.848]).  Overall this 
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indicates that firing strength stability in each area decreased over time, as early as 

within hours,  

Firing Dynamic Stability Within Channels is Comparable Across Hemispheres, 

But Greater in Sensory Areas than Motor 

We calculated dynamic stability within channels as a function of cross correlation 

between PETH waveforms across timescales (see Supplemental Information for more 

details, and Fig. S2 for an example).  Figure 4 presents the average of these stabilities 

across all channels, assorted by brain area (Fig. 4B) or hemisphere (Fig. 4D).  

When comparing firing dynamic stability between hemispheres (contralateral vs 

ipsilateral) and timescale, we found no significant main effects (hemisphere: F(1, 892) = 

2.81, p = 0.094; area: F(1,892)=1.29, p = 0.26), nor  a hemisphere-by-timescale 

interaction (F(1, 892) = 2.29 , p = 0.13).  However, dynamic stability within each 

hemisphere was lower than its respective theoretical minute-to-minute upper bound 

(Contra: hour-to-hour mean=0.211, Upper bound 95% CI = [0.573, 0.680]; Ipsi: hour-to-

hour mean = 0.126, upper bound 95% CI = [0.522, 0.649]).   

Comparing firing dynamic stability between area (motor vs. sensory areas) and 

timescale, we observed a significant effect for area (F(1, 892) = 64.32, p < 0.0001).  

Firing dynamic stability was significantly higher for sensory channels versus motor 

channels (difference of sensory and motor = 0.0974, p<0.001).  Dynamic stabilities in 

both areas were lower than their estimated upper bounds within hours (Motor: hour-to-

hour mean = 0.154, motor upper bound 95% CI=[0.552, 0.672]; sensory hour-to-hour 

mean=0.227, upper bound 95% CI = [0.559, 0.675]). 

In sum, firing dynamic stability decreased with longer time intervals between 

measurements.  No differences were observed between hemispheres, while sensory 

channels were more stable than motor ones.   
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Differences in Channel Sortability Do Not Explain Regional Differences in Within-

Channel Stability 

As noted in a previous study27, neural signals defined by multiunit activity are less stable 

than those containing activity from single units.  To rule out whether the dynamic 

stability differences that we observed between motor and sensory channels were due to 

differences in separability, we applied a spike sorting algorithm to our individual channel 

recordings for the left ECR (wave_clus; see Supplemental Information, Cluster Analysis 

for details 59, 60).  We then stratified our channels by whether they were sortable or not 

(i.e. whether the algorithm determined one cluster, or multiple clusters), and compared 

stability metrics across these groupings. 

Across all arrays, sensory channels had a significantly higher number of separable units 

on average than motor channels (M1 avg: 1.171 +/- 0.008 clusters per channel, S1 avg: 

1.803 +/- 0.030 clusters per channel; t8830 = -28.89; p < 0.001, Fig. S2A). For firing 

dynamic stability, when we compared brain area (M1, S1) and multiunit separability 

(single vs multi-cluster units), we found that multi-cluster channels on the whole were 

less stable than single-cluster, as indicated by their lower cross-correlation values (Fig. 

S2B).   Within single-cluster channels, we found no difference between brain areas 

(motor 95% CI = [0.390, 0.422], sensory 95% CI = [0.384, 0.426]), however, for multi-

cluster groups specifically, motor channels were less stable than sensory (motor 95% CI 

= [0.183, 0.234], sensory 95% CI = [0.262, 0.321]). Overall this suggests that firing 

dynamic stability differences between motor and sensory channels are not driven by 

differences in unit sortability between motor and sensory areas.    

Ensemble Stabilities Are Equal Across Hemisphere and Area 

To measure ensemble stability, we calculated neural trajectories across brain 

hemispheres and areas using principal component analysis (PCA).  Visualizing over the 

first and second principal components (on the “PC1-PC2 plane”; see Fig. 5A-B), we 

found marked similarity of trajectory shape, orientation, and amplitude between 

consecutive hours (A), as well as consecutive sessions (B).  Expanding the analysis to 
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the top 6 PCs, differences in latent variable trajectories did not significantly change on 

average, regardless of whether sessions were hours or days apart (C-D), indicating 

equal stability with time passage.  Likewise, trajectory differences were unaffected by 

brain hemisphere (C) and area (D).   

Given that such trajectory representations of ensemble activity are of increasing interest 

for BMI decoders, we then asked how the equivalence in PC stability that we observed 

over time, area, and hemisphere would translate to decoding muscle activity. To 

examine decoder stability, we trained a Wiener filter model relating PCA trajectories to 

muscle EMG envelope (described in Materials and Methods, with computational details 

in Supplementary Information).  For each pair of data blocks spanning consecutive 

hours or sessions, we performed a two-fold cross validation procedure.  Namely, we 

trained the Wiener filter on one block, and used the fitted model to predict the envelope 

of measured left-wrist EMG from the other block.  We repeated this process after 

switching the training and test blocks, and then averaged the goodness-of-fit measures 

over both cross-validation fits.  Depending on whether latent variable inputs derived 

from motor or sensory inputs, or both, we adjusted terms of model to account for 

different input latencies (see Supplementary Information, and Fig. S4 for neural latency 

data to verify model assumptions).  Typically, there was high correlation between 

predicted and measured EMG, whether training and test sessions were hours (Fig. 5E; 

R2 = 0.92) or days apart (Fig. 5F; R2 = 0.84).  Furthermore, on average, we found not 

only that decoding performance was not significantly affected by the time frame of 

comparison, nor by area (Fig. 5G) or hemisphere (Fig. 5H).  These conclusions did not 

change when we considered greater numbers of principal components (m = 9 and 12 

PCs as in Gallego et al.26). 

 

DISCUSSION 

In a study participant affected by a C5/6 incomplete spinal cord injury---the first to be 

bilaterally implanted with MEAs---we studied how the stability of wrist muscle 

representation in the sensorimotor cortex across multiple areas, time intervals and 
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scales of resolution.  These questions are crucial, in light of practical experiences that 

human BMIs need to be retrained throughout use sessions.  Our main findings were: (1) 

Channel-level signal stability decreased over time, namely for firing strength; (2) Within-

channel stability was higher for sensory channels than motor, particularly in firing 

dynamics, and higher for contralateral for ipsilateral channels, particularly in firing 

strength; (3) At the ensemble level, no stability differences were observed in manifold 

trajectories, either over time or by brain region (area or hemisphere).   

Multiunit Activity destabilizes within short timescales 
 

Intracortical-level topographies of the motor and sensory maps agree with previous 

findings using non-invasive techniques.  In motor areas, we found a concentrated area 

of maximal stability (see Fig. 3A, array MC) akin to a “Center of Gravity” arrangement40 

with a surrounding penumbra of less stable channels that disappear and reappear 

intermittently over sessions41.  In sensory cortex we found that maximally stable 

channels were more interspersed, which is consistent with descriptions of S1 

somatotopy having multiple dispersed “centers of gravity”42.   

Our longitudinal mapping of the left-wrist extensor suggests that the somatotopic map 

may be inherently unstable at the multiunit level, with minimal to no channels being 

active consistently in all sessions.  Within-channel firing strength and dynamic stabilities 

declined in the order of days, and often sooner within experimental sessions (i.e. hours).  

Destabilizations of within-channel unit activity within hours and days could be explained 

by a few factors.  For example, MUA signal attributes themselves may have been 

inconsistent.  Because firing rates derive from thresholded activity43, our measures are 

ultimately related to the amplitude of action potential signals, and previous studies have 

found that action potential amplitudes typically change progressively over hours and 

days20,21,23.  Also, MUA instabilities over hours and days could reflect neural plasticity 

due to our participant’s involvement in BMI activities during the intervening times.  

Namely, previous work has shown that learning and performance of motor control 

tasks26,44 as well as consolidation during sleep after BMI use45 can produce detectable 

changes in unit-level activity.   
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Contralateral MUA is More Stable than Ipsilateral for Longitudinal Spatial Stability 

and Firing Strength  

Sensory and motor channels were more stable in the contralateral than the ipsilateral 

hemisphere. While the contralateral channels were present during all 12 sessions (Fig. 

3B, left panel), the probability of observing any ipsilateral channel for more than 6 

sessions was zero (Fig. 3B, right panel).  Comparing the median number of sessions 

that a channel in each area was present, we found that the “lifetime” of an contralateral 

channel was significantly higher, indicating that ipsilateral representations are inherently 

more transient.  Within sessions, firing strength stability was greater in the contralateral 

hemisphere than the ipsilateral for all time points of comparison (Fig. 4A).  These 

findings align with a previous fMRI investigation showing the contralateral hemisphere 

was more consistently active than the ipsilateral representation when executing an arm 

movement consistently over multiple days47.     

Sensory MUA is More Stable than Motor in Longitudinal Spatial Stability and 

Firing Dynamic Stability  

Sensory activity was more stable than motor.  Longitudinal spatial stability was higher 

for sensory arrays, as reflected in a shallower decay in survival probability (Fig. 3C, left 

panel.  Firing dynamic stability was also higher (Fig. 4B).  Greater S1 stability does not 

appear to be related to unit separability (Fig. S2), but rather may be an intrinsic property 

of region.  This seems consistent with our current understanding of the relative 

functional roles of sensory and motor cortices: sensory processing favors stability and 

does not require remapping, while motor control necessitates flexibility, particularly in 

uncertain environments or learning new skills.   

The stability discrepancy could be influenced by different material composition of our 

motor and sensory arrays as well.  As we note in our Materials in Methods section, 

motor array electrodes were platinum tipped (Pt), and sensory array electrodes were 

sputtered—iridium—oxide—film tipped (SIROF).  In support of our hypothesis, a 
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previous study observed a tendency of SIROF electrodes to better retain high-amplitude 

neural signals than Pt46, which would likely affect both of our stability measures. 

Ensemble-level Activation is Stable and Overrides Temporal and Regional 

Differences 

At the ensemble level, we found no significant differences in stability across time (Fig. 

5A-D) or between regions (Fig. 5C-D), as measured by the errors between Procrustes-

aligned PC trajectories.   

High channel—level instability may be a natural consequence of the redundancy the 

nervous system affords in programming movements24.  Toward this argument, studies 

in non-human primates (NHPs) show that, despite the replicability of movements such 

as arm reaches, neural firing patterns at the unit level may often vary quite significantly 

due to changes in tuning characteristics20,24.     

Alternatively, it is possible that signal instability may result from limitations in recording 

hardware23,27,46.  Latent variable analysis tempers sources of variation by representing 

neural activity in terms of dimensions (factors) that have optimally high explanatory 

ability.  Despite the underlying sources of the inter-area and inter-hemispheric 

differences in single-channel stability that we found, PCA suggests that variations in 

firing rates at the ensemble-level are comparably stable regardless of implant area or 

hemisphere. 

When we utilized these network-level representations to decode EMG from wrist 

extensions limited to the left ECR, we additionally found that both areas and 

hemispheres were equally predictive of muscle activation, and that there were no 

differences in accuracy across time (Fig. 5E-H).  This observation is consistent with 

recent findings in NHPs26, although to our knowledge we provide the first evidence in a 

human. 
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Sensorimotor Array Activity Is Widely Distributed Spatially and Temporally 

A distinction of our study is that we employed isolated muscle contractions, and 

validated their compliance with instructions using both guidance from physical therapists 

and EMG in real time.  Our cortical activity map (Fig. 2) showed intermixed muscle 

representations in motor and sensory arrays, which aligns with previous 

characterizations.  All contractions predominantly elicited activity in the array 

contralateral to the muscle.  However, we detected ipsilateral activity in the motor 

arrays, and somewhat more bilateral activity in motor and sensory areas (Fig. 2B).    

As expected, motor activity preceded sensory activity (Fig. S3).  Because our 

participant’s injury graded B on the ASIA Impairment Scale,51 with substantial tactile 

sensitivity in the hand, much of the sensory response that we observed is likely from 

afferent sensory feedback.  Interestingly, some sensory channel activity preceded 

typical afferent delays (approx. 30 ms post-EMG burst) or were simultaneous with EMG 

burst (Fig. S2, pink shaded region).. We conjecture that these early responses may be 

indirect evidence of efference copy signaling10, although further experiments are 

necessary to verify this claim. 

Implications for BMI 

Practical use of BMI technology relies on developing stable decoders.  Our findings 

suggest that decoders that weight neural activity based on the temporal dynamics of 

specific channels will have limited longevity. This is because the underlying neural code 

at the individual-multiunit level changes over short timescales, especially in the motor 

cortex.  Although this feature may be biologically beneficial (i.e. the brain encodes motor 

commands in a flexible manner), it also complicates the current design of neural 

decoders. This is because a particular combination of neural activity generated by a 

muscle contraction at one time expectedly leads to changes in neural activity in future 

iterations of the same contraction. Therefore, a better long-term strategy may be to 

account for a thorough description of neural activity embodied in the overall dynamics of 

the response across channels, as this both equalizes stability across brain regions and 
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extends the time frame that it is maintained before declining48.  Along this line, recent 

advances in decoding algorithms that consider whole-trial dynamics and activity 

patterns at a higher level of abstraction rather than individual electrodes26, 48 could both 

provide longer lasting BMI-decoders, as well as overcome stability differences 

measured across brain regions.   
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MATERIALS AND METHODS (1535/ Rec. 1500 words) 

This study was conducted under an Investigational Device Exemption (IDE) by the FDA 

(G170010) and approved by the Johns Hopkins School of Medicine Institutional Review 

Board (IRB) and NIWC Pacific Human Research Protection Office (HRPO).  A study 

participant with a C5/6 incomplete ASIA Impairment Scale (AIS) B spinal cord injury51 

(male, 49 years old at time of surgery, 32 years post injury at time of study; right-hand 

dominant) was implanted bilaterally with six cortical microelectrode arrays (NeuroPort; 

Blackrock Neurotech, Salt Lake City, UT): 4 in the dominant (left) hemisphere (motor 

array, pedestal A= MA; motor array, pedestal B= MB; sensory array, pedestal A= SA; 

sensory array, pedestal B= SB) and 2 in the nondominant (right) hemisphere (motor 

array, pedestal C= MC; sensory array, pedestal C= SC; Fig. 1A).  The participant had 

residual control of shoulder and wrist muscles and quasi-intact sensation.  All motor 

array electrodes were platinum tipped (Pt), and all sensory array electrodes were 

sputtered—iridium—oxide—film tipped (SIROF).   

Biosignal Recordings   

EMG Recordings: During each block, we measured 8 channels of EMG from the 

targeted muscle, its contralateral homologue, adjacent muscles likely to be co-

contracted, and select postural muscles (AMT-8; Bortec Biomedical, Calgary, AB, 

Canada).  We recorded EMG and photodiode data at a 2kHz sampling rate with 

Blackrock Neural Signal Processors (Blackrock Microsystems, Salt Lake City, UT), and 

inspected these signals online using the Central software suite (Blackrock 

Microsystems).  We coded all experimental software and analyses in MATLAB 

(MathWorks, Natick, MA). 

EMG Screening and Onset Estimation:  For each trial, we first epoched EMG signals for 

all recorded muscles into a window from -0.750 to 2 seconds relative to the metronome 

cue (see Fig. 1). Then, we visually screened EMG activity for co-contractions, spasms 

(synchronous high-amplitude global muscle activations), or missed cues (lack of EMG 

response from an intact target muscle).  Afterward, we manually tagged EMG burst 

onsets and endings using a custom graphical user interface. 
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Neural Recordings:  We recorded multiunit activity (MUA) data by automatically 

thresholding 30-kHz-sampled neural data with Neuroport Neural Signal Processors 

(Blackrock Neurotech, Salt Lake City, UT), at a level of -3.25 dB relative to quiet sitting.  

Prior to offline analysis, we binned spiking times into peri-event time histograms 

(PETHs) at a resolution of 1 ms.  Subsequently, we computed all neural activity 

measures on raw PETHs, only smoothing them for visualization purposes (using 

Gaussian kernels of width 120 ms) or for ensemble analyses (width 150 ms).  We coded 

all experimental software and analyses in MATLAB. 

Body Map Experiment:   

We characterized the body sensorimotor map and its underlying MUA firing rate activity 

within the coverage of the MEA implants for the wrists and hands (Table 1).  To evoke 

muscle activity, we asked the participant to perform (or absent functional movement, to 

attempt) paced and repeated isolated muscle contractions to a metronome, while 

simultaneously recording surface EMG and MUA (Fig. 1B).  We assessed each muscle 

in separate blocks of trials.  Prior to each block, we made sure the participant was 

positioned to eliminate postural and extraneous EMG activity outside the targeted 

muscle.  The participant then rehearsed the specified muscle contraction while a trained 

experimenter monitored EMG activity and provided verbal feedback to facilitate proper 

muscle isolation.  After isolating the target muscle activity, we recorded EMG and MUA, 

while an experimenter continuously monitored EMG for task compliance and proper 

muscle isolation.  Each block consisted of well-isolated, repeated muscle contractions 

paced with a metronome for approximately 2.5 minutes (i.e. roughly 35 trials). The 

metronome cue occurred every 4 s (plus random jitter) and was presented 

simultaneously as an auditory beep and an onscreen flash of a gray patch (of duration 

0.750 s).  A photodiode marked the cue onset for referencing during offline analysis.  

We excluded from further analysis trials where an EMG-producing muscle did not 

generate a recognizable signal or we observed extraneous muscle activity.  

To rule out that neural activity was induced by posture or the metronome cues 

themselves, we repeated the experiment by having the participant sit in the same 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 30, 2022. ; https://doi.org/10.1101/2020.06.02.20117036doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.02.20117036


   
 

19 
 

posture used during muscle contraction blocks, but passively listen and watch the 

metronome cues without moving. 

Sensorimotor Stability Experiment:   

To investigate stability of the sensorimotor map, we repeatedly characterized the 

sensorimotor activity and representation of the left extensor carpi radialis longus (ECRL) 

– a muscle that had a profuse representation among our arrays and could be reliably 

activated in an isolated manner without causing fatigue. We repeated the same 

metronome experiment described above across 12 sessions (approximately twice per 

week over the course of several months).  During multiple sessions, we mapped ECR 

activity twice, approximately 2 hours apart.  Day-to-day stability compared activity from 

one session to the next (roughly 4 days apart). Hour-to-hour stability compared activity 

collected at the beginning and end of a session (roughly 2 hours apart).  We performed 

all analyses on trial-averaged PETHs from each block.  

Sensorimotor Map  

We constructed (1) regional body maps (wrist: Fig. 2; fingers: Fig. S1); and (2) stability 

maps of the left ECRL to track somatotopy and individual channel activity over various 

timescales (Fig. 3A).  For regional body maps, we labeled channels based on whether 

they were active for contractions of individual muscle groups (384 channels x 17 epochs 

x m, where m was number of isolated muscles per region, correcting for multiple 

comparisons using the False Discovery Rate, or FDR, method; see Supplemental 

Information52-53).  For stability maps, we labeled channels according to the percentage 

of days that significant activity was registered (384 channels x 17 epochs x 12 days, 

corrected for multiple comparisons using FDR).  

Stability Definitions 

Longitudinal Spatial Stability:  We defined longitudinal spatial stability as frequency of 

sessions that a wrist contraction evoked activity on each electrode, and display these 

results as a heat map for each array (Fig. 4A). We estimated probabilities of survival 
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(i.e. of being active for at least n sessions of 12) by counting the number of channels 

per area/ hemisphere active for at least n sessions, and converting these counts to 

probabilities by normalizing to the total number of active channels within that 

area/hemisphere.  Shapes of probability functions were quantified by fitting exponential 

curves to each probability distribution of the form y=exp(-bn), with b estimating a 

survival rate.   

Within-Channel Stability:  We characterized unit-level stability of left ECRL 

representation in terms of firing rate and firing dynamics.  Firing Strength stability is the 

normalized difference of z-scored PETH amplitudes.  Firing Dynamic stability relates to 

correlation magnitude between aligned PETH waveforms, thus capturing more temporal 

features.  Both metrics range from 0 to 1, higher values indicating greater stability.  

Computational details are available in Supplementary Information. 

Stability Bounds:  Although firing rate and firing dynamic stability are maximized at 1, 

this value is mathematical.  We obtained practical upper limits for our data by 

bootstrapping on within-block data, reasoning that trials within the same block would be 

most stable.  For each bootstrap experiment, we randomly selected a block of data, and 

sampled two sets of 40 trials with replacement from which to calculate a stability value.  

After completing 1000 such experiments, we computed the mean and 95% CI of 

stability statistics, as shown in Figs. 5A-D.  Because such bounds were derived from 

within-block data, they also roughly estimate within-minute stabilities. 

Multi-Channel (Population) Stability and Decoding 

The goal of our multi-channel analysis was to compare the population activity across 

electrodes implanted in common areas or hemispheres, in terms of both their similarity 

and their relationship to cued muscle activations in the left wrist extensor (ECRL).  For 

averaging purposes on compliant trials only, we manually marked the EMGs for the 

beginning and end of the ECRL contractions to use as endpoints for a common time 

axis across trial, and then time-warped all EMG and neural signals to this axis by linear 

interpolation (150 points).  Afterward, we averaged time-warped data by block. 
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In each block, we grouped neural channels into ensembles by brain area 

(motor/sensory), or hemisphere (contralateral/ ipsilateral), and analyzed them using 

principal component analysis (PCA).  We wanted to assure that resulting PCs for each 

ensemble were uniform across all hour-to-hour and all day-to-day (session-to-session) 

blocks.  To accomplish this, we first concatenated all blocks of ensemble-specific data 

for each time scale (hours or days), and then decomposed each ensemble-specific 

concatenation with a single PCA.  Next, we applied the Procrustes algorithm48,61, which 

calculated a manifold alignment between consecutive trajectories using basic linear 

transformations (rotation, scaling, translation).  It also computed a normalized squared 

error between the trajectories (increasing values ranging from 0 to 1 denoting greater 

instability), which we report. 

To measure stability of the mapping between PC structure and EMG, we used a 

Wiener-filter approach, detailed in Supplementary Information.   

Statistical Analyses 

We compared differences in longitudinal spatial stability by measuring the survival rates 

across time for channels of each area (motor, sensory) and hemisphere (contralateral, 

ipsilateral).  Differences in the distribution of the number of sessions the channels 

between areas or hemispheres were assessed using nonparametric unpaired two-

sample tests (Wilcoxon signed-rank test). 

To compare within-channel firing rate and firing dynamic stability, we performed 2-way 

ANOVAs (1) with factors of brain area (motor, sensory) and timescale (hours, days), (2) 

with factors of laterality (contralateral, ipsilateral) and timescale (hours, days).  We also 

relate to upper bounds by comparing mean values with 95% CIs of bounds. 

We report all data as means ± 1 s.e.  Effects were considered significant if p < 0.05.  All 

post-hoc analyses were done using two-tailed Tukey’s tests of Honestly Significant 

Difference (HSD).   
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FIGURE LEGENDS 

Figure 1:  Cortical recording sites and experimental methods.   

(A) Sites of the six bilaterally-implanted microelectrode arrays (MEAs), overlaid on MRI 

reconstruction of participant’s brain (CS: central sulcus). Arrays are labeled by 

anatomical target and pedestal (e.g. MA: primary motor cortex, pedestal A; SB:  primary 

sensory cortex, pedestal B).   

(B)  Experimental paradigm.  Isolated muscle contractions (or contraction attempts) 

were cued by metronome ticks (click and pixel flash) at 4-second intervals plus jitter.   

Electromyography (EMG) traces are from 4 example trials (repetitions), where the 

participant executed left extensor carpi radialis (ECR) contractions without co-

contracting neighboring or opposite-limb muscles. 

(C)  Temporal referencing and synchronization of neuromuscular and cortical data for a 

representative EMG-producing muscle (the left extensor carpi radialis: ECR).    The 

upper plot shows event-referenced raw EMG in mV (reference line).  Box plot shows 

movement cue time distributions relative to burst onset; pink regions are the 

interquartile range (IQR) of this distribution. The lower plot shows the peri-event time 

histograms (PETH) of multiunit activity (MUA) from an example motor channel on the 

contralateral motor array, in spikes / sec.  Signals were referenced to EMG burst onset 

(dashed line; see Supplemental Information), and are trial averaged.  Shaded regions 

show bootstrapped 95%--confidence intervals.  

Figure 2:  Regional body map for wrists, showing activity patterns across 

individual muscles.   

A:  Overview of assessed muscles, color-coded by group.  Targeted groups were: wrist 

extensors---extensor carpi radialis; wrist flexors:  flexor carpi ulnaris. 

B:  Summary of channel-level representation of each muscle by brain area (M1: motor 

cortex arrays; S1: sensory cortex arrays) and laterality (contralateral, ipsilateral, or 
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both).  Counts are raw numbers, and percentages are with respect to all channels active 

for that region within the indicated brain area. 

(C)  Activity maps for right hemisphere (MA: motor array, pedestal A; MB: motor array, 

pedestal B; SA: sensory array, pedestal A; SB: sensory array, pedestal B) and left 

hemisphere (MC: motor array, pedestal C; SC: sensory array, pedestal C).  Channels 

with significant MUA responses to contractions in a body region are colored as in panel 

A.  Solid colors indicate activity for only the contralateral side of the body (right side for 

MA/SA/MB/SB, left side for MC/SC); diagonal lines denote activity for the ipsilateral 

side; and black triangle overlays denote that both sides of the body elicited a response. 

Figure 3:  Spatial patterning and longitudinal stability activity from contractions 

of left wrist extensor (ECR: extensor carpi radialis longus).  Longitudinal stability is 

considered relative to how often a channel is measured as active relative to the number 

of experiment sessions (12 total).  

(A)  Frequency of activity across sessions for each channel distributed over arrays B 

and C (top: motor; bottom: sensory).  Color code denotes the percentage of sessions (of 

12) that a given channel was active, with higher percentages corresponding to greater 

longitudinal stability.  

(B) Probabilities that any active channel on Pedestals B and C  responds for more than 

n sessions, within contralateral (left panel) and ipsilateral (right) hemispheres.  Motor 

and sensory areas are pooled.  Dashed lines mark the median number of sessions 

responsive among channels within the active footprint of each hemisphere. 

(C)  Probabilities that any active channel on Pedestals B and C (mapped in panel A) 

responds for more than n sessions, measured for motor (left panel) and sensory (right) 

areas (hemispheres pooled).  For example, a channel active for exactly 2 out of 12 

possible sessions would be counted in the bars for both n=1 and n=2.  Dashed lines 

mark the median number of sessions that a given channel in the active footprint of each 

area responds. 
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(D)  Distributions of the number of total sessions a channel responds to attempted left 

wrist extensions (among all channels in active footprint), by area.  The median number 

of sessions a channel within the active footprint was observed responsive was greater 

among sensory than motor arrays (nMedian, M1 – nMedian, S1 = -2.5 days, p = 0.022)  

(E)  Distributions of the number of total sessions a channel responds to attempted left 

wrist extensions, by hemisphere.  The median number of sessions a channel was 

observed responsive was greater within the contralateral than the ipsilateral hemisphere 

(nMedian, Co – nMedian, Ip = 5 sessions; p < 0.001) 

Figure 4:  Within-channel (MUA) stabilities of left-ECR-related activity over time.   

X-axis denotes time scale of comparison (H: hours; D: days).  Y-axis measures are 

normalized to the range [0, 1], higher values denoting greater stability.  Bars show mean 

values +/- 1 SE. (*), (**), and (***) denote significance levels of 0.05, 0.01, and 0.001 

respectively.(A-B)  Regions labeled Upper bounds are determined by estimating minute-

to-minute stability levels by bootstrapping (see Materials and Methods).   

(A) Firing strength stability significantly decreased from hours to days, and was higher 

for contralateral than ipsilateral channels.  There was a significant laterality—by--

timescale interaction, with contralateral channel stability decreasing more quickly than 

ipsilateral.  Both hemispheres were less stable within hours than their upper bounds. 

(B)  Firing dynamic stability (cross-correlation between z-scored PETHs) did not 

significantly decrease from hours to days in both hemispheres.  There was a significant 

laterality—by--timescale interaction, with stability in ipsilateral channels degrading faster 

than contralateral channels over minutes to hours, such that there was no difference 

between hemispheres over hours and days.  Dynamic stability in both hemispheres was 

less stable within hours than their upper bounds, suggesting short-term destabilization 

within minutes to hours. 

 (C-D) Comparative stability across areas, pooled over brain hemisphere.  
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(C) Firing strength stability (relative change in z-score of firing rate) by cortical area, 

over time.  Stability significantly decreased over time from hours to days, with no 

significant difference between cortical areas.  Within-hours stabilities for each area were 

significantly lower than the within-minutes upper bounds, suggesting an additional 

decrease on the order of minutes to hours. 

(D) Firing dynamic stability was invariant within areas from hours to days, but was 

significantly higher in sensory than motor channels.  Within-hours stabilities for each 

area were significantly lower than the within-minutes upper bounds, suggesting a 

decrease on the order of minutes to hours. 

Figure 5:    Ensemble-level (network) stabilities of left-ECR-related activity over 

time. 

(A–B) Representative principal-component (PC) trajectories of neural ensemble, 

visualized in the PC1-PC2 plane, during left wrist extensions across typical sets of 

consecutive--hour (A) and consecutive--day (B) recordings, for the right (contralateral) 

hemisphere (i.e. motor and sensory channels aggregated).  Trajectories reflect average 

neural activity within EMG bursts only, with endpoints designated at the onset (filled 

circles, variables t0), and terminal points (filled boxes and variables tf) of the burst.  Error 

is a normalized Euclidean distance between trajectories, with higher values approaching 

1 indicating greater instability (see Materials and Methods). 

(C–D) Cumulative error between trajectory representations of ensemble activity, 

comprising the first six PCs, between consecutive hours, and consecutive days (Mean 

+/- 1 s.e).  Channel ensembles are grouped by brain hemisphere (C) and area (D).   

(E–F) EMG of left wrist extensor (ECR: extensor carpi radialis), as measured from 

surface electrodes (blue) and as predicted from PCA trajectories (PCs 1-6: red) using 

Wiener filters trained on separate data.  Data shown is for test (measurement) and 

training datasets recorded over consecutive hours (E) and days (sessions) (F).  All 

envelopes are restricted to between burst onsets and terminations, and were time 

warped to an equal length to facilitate analysis.  The x-axis shows the resulting time axis 
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(in samples).  The y-axis gives normalized envelope amplitude (see Supplemental 

Information).  R2 signifies the correlation between the actual EMG and the prediction. 

(G–H) Correlations (R2) between measured (actual) and predicted EMG, arranged by 

brain hemisphere (G) and area (H).  As above, R2 is based on training and test sessions 

spaced over consecutive hours and days (sessions). 

  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 30, 2022. ; https://doi.org/10.1101/2020.06.02.20117036doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.02.20117036


   
 

27 
 

REFERENCES 

1. Leyton ASF, Sherrington CS (1917). Observations on the excitable cortex of the 

chimpanzee, orangutan, and gorilla. Quarterly Journal of Experimental Physiology 11 (2): 

135–222.  doi: 10.1113/expphysiol.1917.sp000240 

2. Penfield W, Boldrey E (1937). Somatic motor and sensory representation in the cerebral 

cortex of man as studied by electrical stimulation.  Brain 60 (4): 389–443.  Doi: 

10.1093/brain/60.4.389 

3. Becker RF (1953). The Cerebral Cortex of Man. By Wilder Penfield and Theodore 

Rasmussen. The Macmillan Company, New York, N.Y. 1950. 248 Pp.” American Journal 

of Physical Anthropology 11 (3): 441–44.  doi: 10.1002/ajpa.1330110318 

4. Lotze M, Erb M, Flor H, Huelsmann E, Godde B, Grodd W (2000).  FMRI Evaluation of 

Somatotopic Representation in Human Primary Motor Cortex.  NeuroImage 11 (5 Pt 1): 

473–81. doi: 10.1006/nimg.2000.0556 

5. Meier JD, Aflalo TN, Kastner S, Graziano MSA (2008).  Complex Organization of Human 

Primary Motor Cortex: A High-Resolution FMRI Study.  Journal of Neurophysiology 100 

(4): 1800–1812.  doi: 10.1152/jn.90531.2008. 

6. Schieber, MH, Hibbard LS (1993). How somatotopic is the motor cortex hand area? 

Science, 261 (5120), pp.489-492.  doi: 10.1126/science.8332915 

7. Graziano M (2006).  The organization of behavioral repertoire in motor cortex.  Annu Rev 

Neurosci, 29: 105-34.  Doi: 10.1146/annurev.neuro.29.051605.112924 

8. Willett FR, Deo DR, Avansino DT, Rezaii P, Hochberg L, Henderson JM, Shenoy K 

(2020).  Hand Knob Area of Premotor Cortex Represents the Whole Body in 

Compositional Way.  Cell 181, 1-14.  doi: 10.1016/j.cell.2020.02.043 

9. Costanzo RM, Gardner EP (1981).  Multiple-joint neurons in somatosensory cortex of 

awake monkeys.  Brain Research 214, 321-333.  doi: 10.1016/0006-8993(81)91197-5 

10. Delhaye BP, Long KH, Bensmaia SJ (2019).  Neural basis of touch and proprioception in 

primate cortex.  Compr Physiol. 8(4), 1575-1602.  doi: 10.1002/cphy.c170033 

11. Nudo RJ., Milliken GW (1996). Reorganization of Movement Representations in Primary 

Motor Cortex Following Focal Ischemic Infarcts in Adult Squirrel Monkeys.  Journal of 

Neurophysiology 75 (5): 2144–49.  Doi: 10.1152/jn.1996.75.5.2144. 

12. Nudo RJ, Milliken GW, Jenkins WM, Merzenich MM (1996).  Use-Dependent Alterations of 

Movement Representations in Primary Motor Cortex of Adult Squirrel Monkeys.   Journal 

of Neuroscience 16 (2): 785–807.  doi: 10.1523/JNEUROSCI.16-02-00785.1996 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 30, 2022. ; https://doi.org/10.1101/2020.06.02.20117036doi: medRxiv preprint 

https://doi.org/10.1113/expphysiol.1917.sp000240
https://doi.org/10.1093/brain/60.4.389
https://doi.org/10.1002/ajpa.1330110318
https://doi.org/10.1006/nimg.2000.0556
https://doi.org/10.1152/jn.90531.2008
https://doi.org/10.1016/0006-8993(81)91197-5
https://doi.org/10.1002/cphy.c170033
https://doi.org/10.1152/jn.1996.75.5.2144
https://doi.org/10.1101/2020.06.02.20117036


   
 

28 
 

13. Nudo RJ, Wise BM, SiFuentes F, Milliken GW (1996).  Neural Substrates for the Effects of 

Rehabilitative Training on Motor Recovery after Ischemic Infarct. Science 272 (5269): 

1791–94.  doi: 10.1126/science.272.5269.1791. 

14. Kleim JA, Barbay S, Nudo RJ (1998). Functional Reorganization of the Rat Motor Cortex 

Following Motor Skill Learning. Journal of Neurophysiology 80 (6): 3321–25.  doi: 

10.1152/jn.1998.80.6.3321. 

15. Franchi G (2002).   Time Course of Motor Cortex Reorganization Following Botulinum 

Toxin Injection into the Vibrissal Pad of the Adult Rat. European Journal of Neuroscience 

16 (7): 1333–48.  doi:10.1046/j.1460-9568.2002.02195.x. 

16. Gaser C, Schlaug G (2003).  Brain Structures Differ between Musicians and Non-

Musicians.  Journal of Neuroscience 23 (27): 9240–45.  doi: 10.1523/JNEUROSCI.23-27-

09240.2003. 

17. Schieber MH , Lang CE, Reilly KT, McNulty P, Sirigu A (2009). Selective Activation of 

Human Finger Muscles after Stroke or Amputation. In Progress in Motor Control (pp. 559–

75).  Springer, Boston, MA.  doi: 10.1007/978-0-387-77064-2_30. 

18. Fraser GW, Schwartz AB (2012).  Recording from the Same Neurons Chronically in Motor 

Cortex.” Journal of Neurophysiology 107 (7): 1970–78.  doi: 10.1152/jn.01012.2010. 

19. Flint RD, Scheid MR, Wright ZA, Solla SA, Slutzky MW (2016).  Long-term stability of 

motor cortical activity: implications for brain machine interfaces and optimal feedback 

control.  Journal of Neuroscience 36(12), 3623-3632.  doi: 10.1523/JNEUROSCI.2339-

15.2016 

20. Chestek CA, Gilja V, Nuyujukian P, Foster JD, Fan JM, Kaufman MT, Churchland MM, 

Rivera-Alvidrez Z, Cunningham DP, Ryu SI, Shenoy KV (2011).  Long-term stability of 

neural prosthetic control signals from silicon cortical arrays in rhesus macaque motor 

cortex.  J. Neural Eng 8.  doi: 10.1088/1741-2560/4/045005 

21. Perge JA, Homer ML, Malik WQ, Cash S, Eskandar E, Friehs G, Donoghue JP, Hochberg 

LR (2013).  Intra-day signal instabilities affect decoding performance in an intracortical 

neural interface system. J. Neural Eng., 10(3), p.036004. doi: 10.1088/1741-

2560/10/3/036004 

22. Chestek CA, Batista AP, Santhanam G, Yu BM, Afshar A, Cunningham JP, Gilja V, Ryu 

SI, Churchland MM, Shenoy KV (2007).  Single-Neuron Stability during Repeated 

Reaching in Macaque Premotor Cortex. Journal of Neuroscience (40): 10742–50, 2007.  

doi: 10.1523/JNEUROSCI.0959-07.2007 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 30, 2022. ; https://doi.org/10.1101/2020.06.02.20117036doi: medRxiv preprint 

https://doi.org/10.1126/science.272.5269.1791
https://doi.org/10.1152/jn.1998.80.6.3321
https://doi.org/10.1046/j.1460-9568.2002.02195.x
https://doi.org/10.1523/JNEUROSCI.23-27-09240.2003
https://doi.org/10.1523/JNEUROSCI.23-27-09240.2003
https://doi.org/10.1007/978-0-387-77064-2_30
https://doi.org/10.1152/jn.01012.2010
https://doi.org/10.1523/JNEUROSCI.0959-07.2007
https://doi.org/10.1101/2020.06.02.20117036


   
 

29 
 

23. Suner S, Fellows MR, Vargas-Irwin C, Nakata GK, Donoghue JP (2005). Reliability of 

signals from a chronically implanted, silicon-based electrode array in non-human primate 

primary motor cortex.  IEEE Trans Neural Syst Rehabil Eng 13(4), 524-541.doi: 

10.1109/TNSRE.2005.857687  

24. Rokni U, Richardson AG, Bizzi E, Seung HS (2007).  Motor Learning with Unstable Neural 

Representations.  Neuron 54 (4): 653–66.  doi: 10.1016/j.neuron.2007.04.030 

25. Gallego JA, Perich MG, Miller LE, Solla SA (2017).  Neural Manifolds for the Control of 

Movement.”Neuron 94 (5): 978–84.  doi: 10.1016/j.neuron.2017.05.025. 

26. Gallego JA, Perich MG, Chowdhury RH, Solla SA, and Miller LE (2020). Long-term 

stability of cortical population dynamics underlying consistent behavior. Nat 

Neurosci, 23(2), 260-270. 

27. Downey JE, Schwed N, Chase SM, Schwartz AB, Collinger JL (2018).  Intracortical 

recording stability in human brain—computer interface users.  Journal of neural 

engineering 5(4) 46016.  doi: 10.1088/1741-2552/aab7a0 

28. Ganguly K, Carmena JM (2009).  Emergence of a Stable Cortical Map for Neuroprosthetic 

Control.  PLoS Biology 7 (7): e1000153.  doi: 10.1371/journal.pbio.1000153 

29. Hochberg, LR, Serruya MD, Friehs GM, Mukand JA, Saleh M, Caplan AH, Branner A, 

Chen D, Penn RD, and Donoghue JP (2006). Neuronal Ensemble Control of Prosthetic 

Devices by a Human with Tetraplegia. Nature 442 (7099): 164–71. doi: 

10.1038/nature04970 

30. Hochberg LR, Bacher D, Jarosiewicz B, Masse NY,  Simeral JD, Vogel J, Haddadin S, Liu 

J, Cash SS, van der Smagt P, Donoghue JP (2012).  Reach and Grasp by People with 

Tetraplegia Using a Neurally Controlled Robotic Arm.  Nature 485 (7398): 372–75.  doi: 

10.1038/nature11076. 

31. Collinger JL , Wodlinger B, Downey JE, Wang W, Tyler-Kabara EC, Weber DJ, McMorland 

AJC, Velliste M, Boninger ML, Schwartz AB (2013). High-performance neuroprosthetic 

control by an individual with tetraplegia.  The Lancet  381 (9866): 557–64.  doi: 

10.1016/S0140-6736(12)61816-9 

32. Klaes C, Shi Y, Kellis S, Minxha J, Revechkis B, Andersen RA (2014).  A Cognitive 

Neuroprosthetic That Uses Cortical Stimulation for Somatosensory Feedback.   Journal of 

Neural Engineering 11 (5): 056024.  doi: 10.1088/1741-2560/11/5/056024. 

33. Klaes C , Kellis S, Aflalo T, Lee B, Pejsa K, Shanfield K, Hayes-Jackson S, Aisen M, Heck 

C, Liu C, Andersen RA (2015).  Hand Shape Representations in the Human Posterior 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 30, 2022. ; https://doi.org/10.1101/2020.06.02.20117036doi: medRxiv preprint 

https://doi.org/10.1109/tnsre.2005.857687
https://doi.org/10.1016/j.neuron.2007.04.030
https://doi.org/10.1016/j.neuron.2017.05.025
https://doi.org/10.1088/1741-2552/aab7a0
https://doi.org/10.1371/journal.pbio.1000153
https://doi.org/10.1038/nature04970
https://doi.org/10.1038/nature11076
https://doi.org/10.1016/S0140-6736(12)61816-9
https://doi.org/10.1088/1741-2560/11/5/056024
https://doi.org/10.1101/2020.06.02.20117036


   
 

30 
 

Parietal Cortex. Journal of Neuroscience 35 (46): 15466–76.  doi: 

10.1523/JNEUROSCI.2747-15.2015 

34. Bouton CE, Shaikhouni A, Annetta NV, Bockbrader MA, Friedenberg DA, Nielson DM, 

Sharma G, Sederberg PB, Glenn BC, Mysiw WJ, Morgan AG, Deogaonkar M, Rezai AR 

(2016).  Restoring Cortical Control of Functional Movement in a Human with Quadriplegia. 

Nature 533 (7602): 247–50. doi: 10.1038/nature17435 

35. Ajiboye AB, Willett FR, Young DR, Memberg WD, Murphy BA, Miller JP, Walter BL, Sweet 

JA, Hoyen HA, Keith MV, Peckham PH, Simeral JD, Donoghue JP, Hochberg LR, Kirsch 

RF (2017).  “Restoration of Reaching and Grasping Movements through Brain-Controlled 

Muscle Stimulation in a Person with Tetraplegia: A Proof-of-Concept Demonstration.” The 

Lancet 389 (10081): 1821–30. doi: 10.1016/S0140-6736(17)30601-3 

36. McMullen D, Thomas TM, Fifer MS, Candrea DN, Tenore FV, Nickl RW, Pohlmeyer EA, 

Coogan C, Osborn L, Schiavi A, Wojtasiewicz T, Gordon C, Cohen AB, Ramsey NF, 

Schellekens W, Bensmaia S, Cantarero GL, Celnik PA, Wester BA, Crone NE (2021). 

Novel intraoperative online functional mapping of somatosensory finger representations for 

targeted stimulating electrode placement: Technical note. J.  Neurosurg.  doi: 

10.3171/2020.9.JNS202675 

37. Fifer MS, McMullen DP, Osborn LE, Thomas TM, Christie BP, Nickl RW, Candrea 

DN, Pohlmeyer EA, Thompson MC, Anaya MA, Schellekens W, Ramsey NF, Bensmaia 

SJ, Anderson WS, Wester BA, Crone NE, Celnik PA, Cantarero GL, Tenore FV (2021).  

Intracortical Somatosensory Stimulation to Elicit Fingertip Sensations in an Individual With 

Spinal Cord Injury.  Neurology.  Doi: 10.1212/WNL.0000000000013173 

38. Manzoni T, Barbaresi P, Conti F, Fabri M (1989).  The callosal connections of the primary 

somatosensory cortex and the neural bases of midline fusion.  Exp Brain Res 76: 251-266.  

doi: 10.1007/BF00247886 

39. Iwamura Y, Taoka M, Iriki A (2001)  Bilateral activity and callosal connections in the 

somatosensory cortex.  Neuroscientist 7 419-429.  doi: 10.1177/107385840100700511 

40. Uy J, Ridding MC, and Miles TS (2002). Stability of maps of human motor cortex made 

with transcranial magnetic stimulation. Brain Topography 14.4: 293-297.  doi: 

10.1023/A:1015752711146 

41. Alkadhi H, Crelier GR, Boendermaker SH, Golay X, Hepp-Reymond MC, Kollias SS 

(2002).  Reproducibility of primary motor cortex somatotopy under controlled 

conditions. Am J Neuroradiol, 23(9), 1524-1532. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 30, 2022. ; https://doi.org/10.1101/2020.06.02.20117036doi: medRxiv preprint 

https://doi.org/10.1523/JNEUROSCI.2747-15.2015
https://doi.org/10.1038/nature17435
https://doi.org/10.1016/S0140-6736(17)30601-3
https://doi.org/10.3171/2020.9.JNS202675
https://doi.org/10.1177%2F107385840100700511
https://doi.org/10.1101/2020.06.02.20117036


   
 

31 
 

42. Hluštík, P, Solodkin A, Gullapalli RP, Noll DC, Small SL (2001). Somatotopy in human 

primary motor and somatosensory hand representations revisited. Cerebral Cortex, 11(4), 

312-321.  doi: 10.1093/cercor/11.4.312 

43. Lewicki MS (1998). A review of methods for spike sorting: the detection and classification 

of neural action potentials. Network: Computation in Neural Systems 9(4), pp.R53-R78.  

doi: 10.1088/0954-898X_9_4_001 

44. Orsborn AL, Moorman HG, Overduin SA, Shanechi MM, Dimitrov DF, Carmena JM 

(2014). Closed-loop decoder adaptation shapes neural plasticity for skillful neuroprosthetic 

control. Neuron, 82(6), pp.1380-1393.  doi: 10.1016/j.neuron.2014.04.048 

45. Gulati T, Ramanathan D, Wong C. Ganguly K (2014). Reactivation of emergent task-related 

ensembles during slow-wave sleep after neuroprosthetic learning. Nat Neurosci 17, 1107–

1113. doi: 10.1038/nn.3759 

46. Hughes CL, Flesher SN, Weiss JM, Downey JE, Boninger M, Collinger JL, Gaunt RA 

(2021). Neural stimulation and recording performance in human sensorimotor cortex over 

1500 days. J Neural Eng, 18(4), 045012.  doi: 10.1088/1741-2552/ac18ad   

47. Alkadhi H, Crelier GR, Boendermaker SH, Hepp-Reymond MC, Kollias, SS (2002). 

Somatotopy in the ipsilateral primary motor cortex. Neuroreport, 13(16), pp.2065-2070.  

doi: 10.1097/00001756-200211150-00015  

48. Degenhart AD, Bishop WE, Oby,ER, Tyler-Kabara EC, Chase SM, Batista AP, Yu BM ( 

2020). Stabilization of a brain–computer interface via the alignment of low-dimensional 

spaces of neural activity. Nat Biomed Eng, 1-14. doi: 10.1038/s41551-020-0542-9 

49. Schroeder KE, Perkins SM, Wang Q, Churchland MM (2020).  Neural control of virtual 

ego-motion enabled by an opportunistic decoding strategy.  bioRxiv. doi: 

10.1101/2019.12.13.862532 

50. Thomas TM, Nickl RW, Thompson MC, Candrea DN, Fifer MS, McMullen DP, Osborn LE, 

Pohlmeyer EA, Anaya M, Anderson WS, Wester BA, Tenore FV, Cantarero GL, Celnik PA, 

Crone NE.  Simultaneous classification of bilateral hand gestures using bilateral 

microelectrode recordings in a tetraplegic patient.  medRxiv.  

doi: 10.1101/2020.06.02.20116913 

51. Roberts TT, Garrett RL, Cepela DJ (2017).  Classifications in brief: American spinal injury 

association (ASIA) impairment scale.  Clin. Orthop. Relat. Res.  Clinical orthopaedics and 

related research 475.5: 1499-1504.  doi: 10.1007/s11999-016-5133-4 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 30, 2022. ; https://doi.org/10.1101/2020.06.02.20117036doi: medRxiv preprint 

https://doi.org/10.1093/cercor/11.4.312
https://doi.org/10.1088/0954-898X_9_4_001
https://doi.org/10.1016/j.neuron.2014.04.048
https://doi.org/10.1097/00001756-200211150-00015
https://doi.org/10.1038/s41551-020-0542-9
https://doi.org/10.1101/2020.06.02.20116913
https://dx.doi.org/10.1007%2Fs11999-016-5133-4
https://doi.org/10.1101/2020.06.02.20117036


   
 

32 
 

52. Benjamini, Y. & Hochberg, Y. (1995) Controlling the false discovery rate: A practical and 

powerful approach to multiple testing. Journal of the Royal Statistical Society B 57(1): 289-

300.  doi: 10.1111/j.2517-6161.1995.tb02031.x 

53. Groppe DM., Urbach TP, Kutas M. (2011) Mass univariate analysis of event-related brain 

potentials/fields I: A critical tutorial review.  Psychophysiology, 48(12): 1711-1725.  doi: 

10.1111/j.1469-8986.2011.01272.x 

54. Maunsell JH, Gibson JR (1992). Visual response latencies in striate cortex of the macaque 

monkey. Journal of Neurophysiology, 68(4), pp.1332-1344.  doi: 

10.1152/jn.1992.68.4.1332 

55. Churchward PR, Butler EG, Finkelstein DI, Aumann, TD, Sudbury A, Horne MK (1997). A 

comparison of methods used to detect changes in neuronal discharge patterns. Journal of 

neuroscience methods, 76(2), pp.203-210.  doi: 10.1016/S0165-0270(97)00099-X 

56. Eifuku S, De Souza WC, Tamura R, Nishijo H, Ono T (2004). Neuronal correlates of face 

identification in the monkey anterior temporal cortical areas. Journal of 

neurophysiology, 91(1), pp.358-371. doi: 10.1152/jn.00198.2003 

57. Sugase-Miyamoto Y, Richmond BJ (2005). Neuronal signals in the monkey basolateral 

amygdala during reward schedules. Journal of Neuroscience, 25(48), pp.11071-11083.  

doi: 10.1523/JNEUROSCI.1796-05.2005 

58. Levakova M, Tamborrino M, Ditlevsen S, Lansky P (2015).  A review of the methods for 

neuronal response latency estimation.  BioSystems 136, 23-34.  doi: 

10.1016/j.biosystems.2015.04.008 

59. Quiroga RQ, Nadasdy Z, Ben-Shaul, Y (2004).  Unsupervised spike detection and sorting 

with wavelets and superparamagnetic clustering. Neural computation, 16(8): 1661-1687. 

doi: 10.1162/089976604774201631 

60. Chaure FJ, Rey HG, Quian Quiroga R (2018).  A novel and fully automatic spike-sorting 

implementation with variable number of features. Journal of neurophysiology 120(4): 1859-

1871.  doi: 10.1152/jn.00339.2018 

61. Wang C, Mahadevan S (2008).  “Manifold alignment using Procrustes analysis”.   Proc. - 

Int. Conf. Mach. Learn., pp. 1120-1127. 

  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 30, 2022. ; https://doi.org/10.1101/2020.06.02.20117036doi: medRxiv preprint 

https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1152/jn.1992.68.4.1332
https://doi.org/10.1016/S0165-0270(97)00099-X
https://doi.org/10.1152/jn.00198.2003
https://doi.org/10.1523/JNEUROSCI.1796-05.2005
https://doi.org/10.1016/j.biosystems.2015.04.008
https://doi.org/10.1162/089976604774201631
https://doi.org/10.1152/jn.00339.2018
https://doi.org/10.1101/2020.06.02.20117036


   
 

33 
 

ACKNOWLEDGMENTS: 

This research was supported by the following funding: the Defense Advanced Research 

Projects Agency (DARPA, Arlington, VA) Revolutionizing Prosthetics  program (contract 

N6600110C4056) and Neurally-Enhanced Operations program (contract 

HR001120C0120); the National Institutes of Health (NIH) Eunice Kennedy Shriver 

National Institute of Child Health and Human Development (NICHD) T32HD741426 

(RWN); and the National Institute of Neurological Disorders and Stroke (NIH-NINDS) 

NS088606 (TMT, DNC, NEC).  The views, opinions, and/or findings expressed are 

those of the author(s) and should not be interpreted as representing the official views or 

policies of the Department of Defense or the U.S. Government.  Development of 

experimental setup and support for regulatory submissions associated with this study 

were provided by a grant from the Alfred E. Mann Foundation.  Software infrastructure 

and study preparation were developed with internal funding from Johns Hopkins 

University Applied Physics Laboratory and the Johns Hopkins School of Medicine. 

We thank the participant for his participation in this and additional studies36-37,50. We 

gratefully acknowledge Drs. Kendra Cherry-Allen, Jennifer Keller, Vikram Chib, Robert 

Kambic, Agostina Casamento-Moran, and Charles E. Connor for helpful consultation.  

Additionally, we thank Dr. Peter Gorman, Dr. Cristina Sadowsky, and Dr. Philippines 

Cabahug and their staffs.  This study was conducted under Investigational Device 

Exemption (IDE, 170010) by the Food and Drug Administration (FDA) for the purpose of 

evaluating bilateral sensory and motor capabilities of microelectrode array implants in 

people affected by tetraplegia. It is registered on clinicaltrials.gov as NCT03161067. 

  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 30, 2022. ; https://doi.org/10.1101/2020.06.02.20117036doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.02.20117036


   
 

34 
 

AUTHOR CONTRIBUTIONS  

 

Conceptualization: RWN, GLC, PAC; 

Methodology: RWN, MAA, GLC, PAC 

Validation: RWN, MAA, GLC, PAC 

Formal Analysis, RWN analyzed data with input from MSF, DPM, GLC, PAC 

Investigation: RWN, MAA, TMT, GLC, PAC 

Resources: GLC, PAC 

Data Curation: RWN 

Writing – Original Draft: RWN, GLC 

Writing --- Review & Editing: RWN, MAA, TMT, MSF, DPM, MCT, DNC, LEO, WSA, 

BAW, FVT, NEC, GLC, PAC 

Visualization: RWN, BAW 

Supervision: GLC, PAC 

Project Administration: GLC, PAC 

Funding Acquisition: FVT, GLC, PAC 

  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 30, 2022. ; https://doi.org/10.1101/2020.06.02.20117036doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.02.20117036


   
 

35 
 

 

FIGURES 

   

Figure 1 

  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 30, 2022. ; https://doi.org/10.1101/2020.06.02.20117036doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.02.20117036


   
 

36 
 

 

Figure 2 

 

 

  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 30, 2022. ; https://doi.org/10.1101/2020.06.02.20117036doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.02.20117036


   
 

37 
 

  

Figure 3 

  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 30, 2022. ; https://doi.org/10.1101/2020.06.02.20117036doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.02.20117036


   
 

38 
 

  

 

Figure 4 

 

 

  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 30, 2022. ; https://doi.org/10.1101/2020.06.02.20117036doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.02.20117036


   
 

39 
 

  

Figure 5 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 30, 2022. ; https://doi.org/10.1101/2020.06.02.20117036doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.02.20117036

