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Abstract  62 

‘Severe Acute Respiratory Syndrome - Coronavirus-2’ (SARS-CoV-2) infection causes 63 

Coronavirus Disease 2019 (COVID-19), a mild to moderate respiratory tract infection in the 64 

majority of patients. A subset of patients, however, progresses to severe disease and respiratory 65 

failure with acute respiratory distress syndrome (ARDS). Severe COVID-19 has been associated 66 

with increased neutrophil counts and dysregulated immune responses. The mechanisms of 67 

protective immunity in mild forms and the pathogenesis of dysregulated inflammation in severe 68 

courses of COVID-19 remain largely unclear. Here, we combined two single-cell RNA-sequencing 69 

technologies and single-cell proteomics in whole blood and peripheral blood mononuclear cells 70 

(PBMC) to determine changes in immune cell composition and activation in two independent dual-71 

center patient cohorts (n=46+n=54 COVID-19 samples), each with mild and severe cases of 72 

COVID-19. We observed a specific increase of HLA-DRhiCD11chi inflammatory monocytes that 73 

displayed a strong interferon (IFN)-stimulated gene signature in patients with mild COVID-19, 74 

which was absent in severe disease. Instead, we found evidence of emergency myelopoiesis, 75 

marked by the occurrence of immunosuppressive pre-neutrophils and immature neutrophils and 76 

populations of dysfunctional and suppressive mature neutrophils, as well as suppressive HLA-77 

DRlo monocytes in severe COVID-19. Our study provides detailed insights into systemic immune 78 

response to SARS-CoV-2 infection and it reveals profound alterations in the peripheral myeloid 79 

cell compartment associated with severe courses of COVID-19. 80 

 81 

 82 

  83 
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Introduction  84 

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in December 85 

of 2019 (Wu et al., 2020) and the subsequent pandemic spread of Coronavirus Disease 2019 86 

(COVID-19) has caused immense morbidity and mortality around the world (Fauver et al., 2020; 87 

Zhou et al., 2020b). Clinical presentations of COVID-19 are variable, and while the majority of 88 

patients experiences mild to moderate symptoms, a subset of 10-20% of patients develops 89 

pneumonia and severe disease (Brignola et al., 1988; Guan et al., 2020a; Huang et al., 2020; 90 

Wang et al., 2020b; Zhou et al., 2020a). Clinical deterioration and development of respiratory 91 

failure and acute respiratory distress syndrome (ARDS), typically develops in the second week of 92 

disease. Besides protracted viral replication, this kinetic suggests a role for secondary immune 93 

responses in the development of severe COVID-19 (Ziying Ong et al., 2020). However, the exact 94 

mechanisms that govern the pathophysiology of the different disease courses of COVID-19 95 

remain ill-defined. Patients with comorbidities, including hypertension, diabetes, COPD, 96 

cardiovascular disease, and cerebrovascular disease are at highest risk to develop severe 97 

COVID-19 (Guan et al., 2020b; Wang et al., 2020a). Given that these conditions are associated 98 

with chronic inflammation, disease severity of COVID-19 might be closely linked to the underlying 99 

specific and nonspecific immune response to the virus.  100 

 101 

SARS-CoV-2 was identified as the causative agent of COVID-19 (Wu et al., 2020) and similar to 102 

SARS coronavirus, it uses ACE2 as the primary cellular entry receptor (Hoffmann et al., 2020; Li 103 

et al., 2003). SARS-CoV-2 has a tropism for the upper airways and the lung (Wölfel et al., 2020), 104 

despite rather low numbers of cells that co-express ACE2 and the essential cofactor for ACE2 105 

binding, TMPRSS2 (Allan et al., 2020; Qi et al., 2020; Sungnak et al., 2020; Ziegler et al., 2020), 106 

but the expression of ACE2 and TMPRSS2 in airway epithelial cells are increased by type-I IFN 107 

stimulation (Ziegler et al., 2020). Single cell studies of bronchoalveolar lavage samples have 108 

suggested a complex dysregulation of the pulmonary immune response in severe COVID-19 (Liao 109 

et al., 2020). Overall, systemic inflammation is linked to an unfavorable clinical course of disease 110 

and the development of severe COVID-19 (Giamarellos-Bourboulis et al., 2020; Ziying Ong et al., 111 

2020). SARS-CoV2 infection induces specific T cell and B cell responses, which is reflected by 112 

elevation of SARS-CoV-2 peptide-specific T cells (Braun et al., 2020; Grifoni et al., 2020) and the 113 

production of SARS-CoV-2 specific antibody responses (Long et al., 2020; Ni et al., 2020). 114 

Patients with severe COVID-19 have high systemic levels of inflammatory cytokines, specifically 115 

IL-1β and IL-6 (Chen et al., 2020; Giamarellos-Bourboulis et al., 2020; Ziying Ong et al., 2020), 116 

whereas interferon (IFN) responses appear to be impaired as shown by whole blood 117 

transcriptomics (Hadjadj et al., 2020). Clinical observations and several studies indicate an 118 

increase of neutrophils and a decrease of non-classical (CD14loCD16hi) monocytes in severe 119 

COVID-19 (Hadjadj et al., 2020; Merad and Martin, 2020). Severe immune dysregulation is a 120 

common phenomenon in sepsis, characterized by a progression from hyperinflammatory states 121 

to immunosuppression (Remy et al., 2020; Ritchie and Singanayagam, 2020) and similar 122 

mechanisms have been proposed for severe COVID-19 (Giamarellos-Bourboulis et al., 2020), yet 123 

mechanistic insights are still missing. Exacerbated immune responses play a major role in the 124 

pathophysiology of SARS, leading to severe lung injury and respiratory failure (Perlman and 125 

Dandekar, 2005). Mitigation of immunodysregulation could thus represent a major therapeutic 126 
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avenue for the treatment and prevention of severe COVID-19 (Dimopoulos et al., 2020; Jamilloux 127 

et al., 2020). An early report investigating transcriptional profiles of peripheral blood mononuclear 128 

cells (PBMC) of 7 patients with mixed clinical courses of COVID-19, revealed complex immune 129 

deviations with changes in numerous cellular compartments, including monocytes, NK cells, 130 

dendritic cells and T cells (Salomé and Mahmood, 2020; Wilk et al., 2020).  131 

 132 

The heterogeneity of clinical phenotypes and the complexity of systemic immune responses to 133 

COVID-19 highlight the need for detailed insights into different stages of the disease using high-134 

resolution techniques and well-characterized clinical cohorts. Here, we hypothesized that distinct 135 

immune responses, particularly within the innate immune cell compartment, underlie the different 136 

clinical trajectories of COVID-19 patients (McKechnie and Blish, 2020). The striking alterations in 137 

cell counts and activation states of different innate immune cells in COVID-19 patients, and their 138 

relation to disease severity are currently not sufficiently understood. Here, we performed single-139 

cell transcriptomics and single-cell proteomics on blood samples from two independent cohorts 140 

of COVID-19 patients, which allowed for instant cross-validation of immunological findings. 141 

COVID-19 patients with mild disease courses in both cohorts showed increased CD14+HLA-142 

DRhiCD11chi inflammatory monocytes, which were marked by a strong IFN-stimulated gene 143 

(ISG+) signature. In contrast, severe COVID-19 was associated with the appearance of immature 144 

CD14+MPO+Ki67+HLA-DRlo ISG+ suppressive monocytes and dysfunctional low-density 145 

neutrophils. The latter were identified as ARG1+MPO+BPI+ pre-neutrophils and 146 

ARG1+CD101+S100A8/A9+ immature neutrophils, indicative of emergency myelopoiesis. In 147 

addition, suppressive PD-L1+CD123+ neutrophils were detected at late stages in severe COVID-148 

19. Collectively, our study links highly dysregulated myeloid cell responses to severe disease 149 

courses of COVID-19.  150 
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Results    151 

 152 

Dual center cohort study to assess immunological alterations in COVID-19 patients  153 

In order to gain detailed insights into the distinct immunological events in mild versus severe 154 

COVID-19, we analyzed peripheral blood samples collected from independent cohorts of COVID-155 

19 patients at two university medical centers in Germany. Samples from the Berlin cohort (cohort 156 

1) were analyzed by mass cytometry (CyTOF) and single-cell RNA-sequencing (scRNA-seq) 157 

using a droplet-based single cell platform (10x Chromium), while samples from the Bonn cohort 158 

(cohort 2) were analyzed by multi-colour flow cytometry (MCFC) and scRNA-seq using a 159 

microwell-based system (BD Rhapsody). We profiled a total of 8.1 million cells by their surface 160 

protein markers and over 210,000 cells by scRNA-seq in 131 samples derived from a total of 33  161 

COVID-19 patients and 23 controls (Fig. 1A+B, S1A, Table S1).  162 

We delineated COVID-19-induced alterations of the major leukocyte lineages by mass cytometry 163 

on whole blood samples from COVID-19 patients collected between day 6 and day 13 after 164 

disease symptom onset and compared them to age-matched healthy controls. Two antibody 165 

staining panels were designed to capture alterations in mononuclear cells (lymphocytes, 166 

monocytes and dendritic cells, panel 1), and in the granulocyte compartment (panel 2), 167 

respectively (Table S2). High-resolution SPADE analysis was performed with 400 target nodes 168 

and individual nodes were aggregated into cell subsets according to the expression of lineage-169 

specific cell markers, such as CD14 for monocytes and CD15 for neutrophils (Fig. S1B). 170 

Visualization of t-distributed stochastic neighbor embedding (viSNE)-automated analysis 171 

revealed a clear separation of samples from COVID-19 patients and healthy controls, with marked 172 

changes of the monocyte- and the granulocyte compartment (Fig. 1C). Comparison of healthy 173 

control samples utilized for mass cytometry (HC CyTOF) to MCFC data from our recently 174 

published cohorts of healthy controls (HC flow) (Kverneland et al., 2016), demonstrated high 175 

similarities in the proportions of granulocytes, lymphocytes, T cells, total monocytes and 176 

CD14loCD16hi ‘non-classical’ monocytes in whole blood samples from healthy controls, 177 

irrespective of the applied methodology (Fig. 1D). This allowed us to use the absolute numbers 178 

of the published cohorts to also report differences in absolute numbers in COVID-19 samples. In 179 

line with recent reports (Barnes et al., 2020; Xintian et al., 2020), we observed a marked 180 

leukocytosis with increased proportions of granulocytes and neutrophils in patients with severe 181 

COVID-19 (Fig. 1D). In contrast, total lymphocyte- and T cell numbers were strongly reduced in 182 

all COVID-19 patients. Furthermore, we found a significant reduction of monocytes, particularly 183 

non-classical monocytes were virtually absent in COVID-19 (Fig. 1D). These changes, increased 184 

neutrophils in severe COVID-19 and loss of non-classical monocytes in both mild and severe 185 

disease, were validated in cohort 2 by MCFC (Fig. S1C). 186 

 187 

Thus, SARS-CoV-2 infection induces lymphopenia and strong alterations within the myeloid 188 

compartment, with a drastic reduction of non-classical monocytes and neutrophilia in severe 189 

cases of COVID-19.        190 

 191 
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Severity-dependent alterations of the myeloid cell compartment in COVID-19 192 

 193 

Given the dramatic changes in various immune cell populations in COVID-19 (Fig. 1C+D), we 194 

next assessed their composition and activation status during the course of SARS-CoV-2 infection 195 

by droplet-based scRNA-seq in 21 samples from 12 COVID-19 patients (4 mild & 8 severe, cohort 196 

1, Table S1) collected between day 7 and day 20 after disease symptom onset. A total of 25,667 197 

single-cell transcriptomes of PBMC were analyzed together with 22,418 PBMC from a publicly 198 

available control dataset (4 healthy donors). Two-dimensional data representation using Uniform 199 

Manifold Approximation and Projection (UMAP) and high-resolution cell type classification 200 

identified all major cell types expected in the mononuclear compartment of blood, with a high 201 

granularity in the monocyte compartment as indicated by identification of four monocyte subsets 202 

(cluster 2, 5, 12, 14) (Fig. 2A). The top 10 genes identifying each cluster can be found in Fig. 203 

S2A. Monocytes in cluster 2, 5, and 14 expressed CD14, whereas cluster 12 comprised the non-204 

classical monocytes marked by FCGR3A (CD16a). Separate visualization of cells in mild and 205 

severe cases, revealed highly disease severity-specific clusters (Fig. 2B). A distinct subset of the 206 

CD14+ monocytes marked by high expression of interferon (IFN)-stimulated genes (ISG, cluster 207 

5), including ISG15, IFI6, IFITM3, or APOBEC3A (Fig. 2C), was selectively detected in mild 208 

COVID-19. The most prominent change in severe COVID-19, however, was the appearance of 209 

two cell populations (cluster 9+13, Fig. 2B), that were absent in PBMC of patients with mild 210 

COVID-19 and healthy donors. Based on published markers, the cell populations were identified 211 

as neutrophils and immature neutrophils (Fig. 2A+B). The immature neutrophils (cluster 13) 212 

expressed CD24, MMP8, DEFA3 and DEFA4, whereas the identified neutrophil population 213 

(cluster 9) was marked by FCGR3B (CD16b), CXCL8 (IL-8) and CSF3R (G-CSF receptor) 214 

expression (Fig. 2C). The fact that these neutrophil clusters migrated with PBMC fractions on a 215 

density gradient marked them as low-density neutrophils (LDN). 216 

 217 

In the second cohort, PBMC from 14 COVID-19 patients (7 mild, 7 severe) sampled between days 218 

3 and 28 after onset of symptoms, and 2 controls, were collected for single-cell transcriptomic 219 

analysis using a microwell-based platform (BD Rhapsody). In total, high-quality single-cell 220 

transcriptomes for 93,297 PBMC were assessed and their overall population structure was 221 

visualized in two-dimensional space using UMAP (Fig. 2D). Data-driven cell type classification 222 

based on public reference transcriptome data (Aran et al., 2019) and cluster-specific marker gene 223 

expression depicted the presence of all major cell types expected in the PBMC compartment and 224 

revealed the appearance of additional clusters and substructures. The top 10 genes specifically 225 

expressed in each cluster of the UMAP depicted in Fig. 2D are shown in Fig. S2B. Similar to 226 

cohort 1, samples in cohort 2 also exhibited a prominent plasticity of the monocyte compartment, 227 

which could be subclassified into six clusters (Fig. 2D, cluster 1, 3, 5, 9, 12). Disease severity-228 

associated changes seen in cohort 1 were also evident in cohort 2 (Fig. 2E). The appearance of 229 

LDN populations within the isolated PBMC fraction was validated in cohort 2, albeit at lower 230 

frequencies. Immature neutrophils and mature neutrophil cell clusters were detected in both 231 

cohorts (cluster 13 and 9 in cohort 1, cluster 18 and 13 in cohort 2) and showed a nearly identical 232 

marker gene expression profile (Fig. 2C). Similar to cohort 1, a prominent shift in subpopulation 233 

occupancy was observed in the monocyte clusters, particularly in cluster 3, 5, and 9 (Fig. 2D+E). 234 

Comparison of the specific marker genes identified for the monocyte-associated subcluster in 235 
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cohort 1 with those in the corresponding cluster in cohort 2 revealed presence of the inflammatory 236 

ISG signature within the monocyte compartment, although it spread across different clusters in 237 

cohort 2 (cluster 9, 3, 1, Fig. 2C).  238 

 239 

Single-cell transcriptomics of PBMC from COVID-19 patients identified disease-severity 240 

dependent cell subsets in the monocyte compartment as well as the appearance of two LDN 241 

populations. 242 

 243 

 244 

Mild COVID-19 is characterized by HLA-DR+ CD11c+ monocytes with an IFN signature  245 

 246 

The monocyte compartment is particularly affected by COVID-19, as seen by mass cytometry 247 

revealing a loss of CD14loCD16hi non-classical monocytes, particularly in mild COVID-19 (Fig. 248 

1C+D). Substantial shifts in monocyte subpopulation structure were also evident by scRNA-seq 249 

depending on disease severity (Fig. 2). To further dissect phenotypic alterations of the monocyte 250 

compartment in SARS-CoV-2 infection, we applied mass cytometry using a panel of 38 antibodies 251 

(Table S2, panel 1) to whole blood samples from COVID-19 patients with a mild or severe disease 252 

course, and corresponding age- and gender-matched healthy controls. Unsupervised cluster 253 

analysis using 15 surface antigens as well as the proliferation marker Ki67 separated the myeloid 254 

compartment into subpopulations of ‘classical’, ‘intermediate’ and ‘non-classical’ monocytes, 255 

myeloid dendritic cells (mDC) and plasmacytoid dendritic cells (pDC) (Fig. 3A). The classical 256 

monocyte compartment displayed a high level of heterogeneity and separated into two main 257 

subclusters. The majority of classical monocytes showed high expression of activation markers 258 

CD38, CD95, and CXCR3. Classical monocyte separated into two main subclusters based on 259 

high expression of CD62L and Ki67, indicative of proliferative capacity, versus high expression of 260 

CD226, CD69, HLA-DR and CD11c identifying highly activated, inflammatory cells (Fig. 3A). 261 

Monocytes from COVID-19 patients were clearly separated from those of healthy controls by 262 

viSNE analyses (Fig. 3B), mainly based on higher CD226 and CXCR3 expression in COVID-19 263 

(Fig. S3A). Enhanced CD226 expression on activated monocytes might promote diapedesis 264 

through endothelial junctions and tissue infiltration, potentially explaining the relative reduction in 265 

overall monocytes in COVID-19 patients (Reymond et al., 2004). Classical monocytes in mild 266 

COVID-19 were enriched in HLA-DRhi and CD11chi populations compared to severe disease and 267 

healthy controls (Fig. S3A). Thus, the response pattern of peripheral classical monocytes to 268 

SARS-CoV-2 infection is associated with disease severity.  269 

 270 

To investigate molecular responses of monocytes to SARS-CoV-2 infection, we extracted clusters 271 

2, 5, 12 and 14 from the PBMC dataset of cohort 1 (Fig. 2A) for further in-depth analysis. 272 

Monocytes in cluster 2 particularly expressed genes found in classical monocytes, such as VCAN 273 

and S100A10, while cells in cluster 14 were characterized by high expression of ZFP36L2 , and 274 

were hence labeled as ZFP36L2+ monocytes and classical monocytes, respectively (Fig. 3C). 275 

Cluster 12 was defined as non-classical monocytes by high expression of FGR3A, encoding 276 

CD16. As outlined before, the remaining cluster 5 (inflammatory monocytes) was characterized 277 

by an ISG program, which was further corroborated by gene ontology enrichment analysis 278 

(GOEA), assigning this cluster to ‘type I interferon signaling pathway’ (Fig. 3D). In addition, 279 
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inflammatory (cluster 5) and non-classical monocytes (cluster 12) were also enriched for ‘MHC 280 

class II protein complex’ (MHCII), which is concordant with the high expression of HLA-DRA and 281 

HLA-DRB1 in these cells (Fig. 3C, S3B). Expression of CD14 indicated that the ISG+ cells 282 

represent a population of classical monocytes (Fig. S3B). Investigation of PBMC revealed that 283 

the number of these inflammatory monocytes differed between patients with mild and severe 284 

disease courses (Fig. 2E). We next investigated this shift in greater detail in cohort 2. The 285 

dimensionality reduction and re-clustering of the monocyte space revealed high transcriptional 286 

heterogeneity within the monocyte compartment (Fig. 3E, S3D). We identified three classical 287 

monocyte clusters (cluster 0, 2, and 6), which showed high ISG expression (Fig. S3C+E). 288 

Interestingly, only cluster 2 cells co-expressed high levels of MHCII molecules (Fig. S3C) and 289 

were thereby identified as counterparts of the inflammatory monocyte cluster in cohort 1 (Fig. 290 

3C). In contrast, the remaining two ISG+ clusters exhibited low levels of HLA-DRA and HLA-DRB1 291 

expression (Fig. S3D), and cluster 6 was additionally characterized by platelet-associated genes 292 

(TUBB1, PPBP, and PF4) (Fig. S3E), indicating that these cells represent platelet-interacting 293 

inflammatory monocytes. Intriguingly, a proportion of cluster 0 monocytes expressed pre-294 

maturation markers like MPO and PLAC8 and IL1R2, which were recently linked to an immature 295 

monocyte population found in sepsis patients (Reyes et al., 2020) (Fig. S3F). Indeed, the gene 296 

signatures derived from these sepsis-associated monocytes were specifically enriched in clusters 297 

0 and 6 (Fig. S3G). Low HLA-DR expression and monocyte immaturity result in reduced 298 

responsiveness to microbial stimuli (Veglia et al., 2018), which is why cluster 0 cells are referred 299 

to as suppressive monocytes. To understand how the identified cell populations in the patients 300 

change over time, we next investigated the time-dependent cluster occupancies per patient in 301 

cohort 2 (Fig. 3F). This analysis clearly showed that the ISG+ inflammatory clusters appeared in 302 

the early phase of the disease and gradually decreased over time. In addition, the inflammatory 303 

cluster 2 was associated with patients exhibiting a mild course of the disease, whereas the 304 

suppressive cluster 0 and platelet-activated monocyte cluster 6 were associated with severe 305 

disease. The gradual decrease of the ISG+ clusters was also evident in cohort 1, which showed 306 

a clear time-dependent decrease of IFI6 and ISG15 (Fig. S3H). 307 

 308 

Taken together, we observed dynamic changes of the monocyte compartment in SARS-CoV-2-309 

infected patients, associated with disease severity and time after onset of disease.  310 

 311 

 312 

Low-density neutrophils emerge in severe COVID-19 patients indicative of emergency 313 

myelopoiesis  314 

 315 

Surprisingly, PBMC preparations in both cohorts contained two distinct clusters (Fig. 2A, clusters 316 

9, 13; Fig. 2D, clusters 13, 18) of LDN, specifically in patients with severe disease. Since LDN in 317 

cohort 1 were more frequent than in cohort 2, we focused our in-depth analysis on cohort 1 data. 318 

We subsampled all LDN (Fig. 4A) and re-clustered the cells which gave rise to 8 transcriptionally 319 

distinct clusters within the LDN compartment of PBMC (Fig. 4A+B). We first analyzed previously 320 

described markers for pre-neutrophils, immature and mature neutrophils (Ng et al., 2019; Scapini 321 

et al., 2016) and identified cluster 4 as CD15(FUT4)+CD63+CD66b(CEACAM8)+ pre-neutrophils, 322 

clusters 3 and 6 as CD11b(ITGAM)+CD101+ immature neutrophils and the remaining clusters as 323 
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mature neutrophils (Fig. S4A). The identification of pre-neutrophils and immature neutrophils was 324 

further supported by signature enrichment of neutrophil progenitors derived from previous single-325 

cell data (Fig. 4C) (Pellin et al., 2019; Popescu et al., 2019). Cell cycle gene analysis further 326 

corroborated cluster 4 being pre-neutrophils with the highest proportion of cells per cluster 327 

showing a proliferative signature (Fig. S4B). Clusters 0,1, 2 and 5 (originally from cluster 9 in Fig. 328 

2A) were characterized by expression of the mature neutrophil markers FCGR3A (CD16) and 329 

MME (CD10) (Fig. S4A).  330 

 331 

Visualizing the most differentially expressed genes for each cluster revealed extensive phenotypic 332 

heterogeneity within the LDN compartment (Fig. 4B). For example, cluster 5 (ISG+ neutrophils) 333 

within the mature neutrophils highly expressed many ISGs (ISG15, IFITM1/3 and RSAD2), 334 

strongly supporting an activated inflammatory neutrophil phenotype. Cluster 4 (pre-neutrophils) 335 

expressed several genes (e.g. MPO, ELANE, PRTN3) that have been associated with 336 

pathophysiological conditions including sepsis (Ahmad et al., 2019; Carbon et al., 2019; Silvestre-337 

Roig et al., 2019). Similarly, immature neutrophils (clusters 3 and 6) expressed other genes (e.g. 338 

CD24, LCN2) previously associated with unfavorable outcome in sepsis (Kangelaris et al., 2015). 339 

 340 

LDN mainly arise under pathological conditions, notably in infection and sepsis in the context of 341 

emergency myelopoiesis, and they have been associated with dysfunctional immune responses 342 

marked by combined immunosuppression and inflammation (Silvestre-Roig et al., 2019). We 343 

therefore investigated the expression of prominent genes previously linked to such pathological 344 

conditions (Fig. 4D+E). Pre-neutrophils strongly expressed PRTN3, ELANE, and MPO, genes 345 

that are involved in neutrophil extracellular trap formation (Stiel et al., 2018; Thomas et al., 2014; 346 

You et al., 2019) among other functions. Both pre-neutrophils and immature neutrophils 347 

expressed PADI4, another co-factor in NETosis (Leshner et al., 2012). NETs have recently been 348 

implicated in the pathogenesis of COVID-19 (Barnes et al., 2020; Zuo et al., 2020). Other genes, 349 

including CD24, Olfactomedin (OLFM4), Lipocalin 2 (LCN2), Bactericidal/permeability-increasing 350 

protein (BPI), previously associated with poor outcome in sepsis, were highly expressed in pre- 351 

and immature neutrophils (Kangelaris et al., 2015). We also observed a very strong expression 352 

of the alarmins S100A8 and S100A9, which is not restricted to the pre-and immature state (Fig. 353 

4D). Other members of the S100 gene family (e.g. S100A4, S100A12) are also strongly induced 354 

in different neutrophil clusters. Finally, known inhibitors of T cell activation, namely PD-L1 355 

(CD274) and Arginase 1 (ARG1) (Bronte et al., 2003; Li et al., 2018) were highly expressed in 356 

neutrophils in COVID-19 patients (Fig. 4E). PD-L1+ mature neutrophils (clusters 0, 5) resemble 357 

cells found in HIV-1 infected patients (Bowers et al., 2014). ARG1+ cells were found among 358 

mature and immature neutrophils (clusters 1, 2, 3, 4 and 6) and did not overlap with PD-L1 359 

expression suggesting an emergence of different populations of suppressive neutrophils in 360 

COVID-19. ARG1+ neutrophils in sepsis patients were shown to deplete arginine and constrain T 361 

cell function in septic shock (Darcy et al., 2014), and were predictive of the development of 362 

nosocomial infections (Uhel et al., 2017). Collectively, analyzing the LDN compartment recovered 363 

from PBMC fractions of COVID-19 patients revealed multiple mechanisms that might contribute 364 

to severe disease course and dysregulated immune responses. 365 

 366 

 367 
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Persistent increase in activated and immunosuppressive neutrophils in severe COVID-19  368 

 369 

To further dissect the profound alterations within the neutrophil compartment, we applied mass 370 

cytometry to whole blood samples from cohort 1 and age- and gender-matched healthy controls. 371 

We specifically designed the antibody panel 2 to not only identify neutrophils but also discriminate 372 

between maturation stages and reveal phenotypical signs of activation, immunosuppressive 373 

properties or dysfunction. Unsupervised clustering analysis of all neutrophils acquired from 374 

healthy control and COVID-19 samples identified 7 major subsets (Fig. 5A). Whereas neutrophils 375 

belonging to cell subsets 2, 5 and 7 appeared quiescent, with low expression of activation markers 376 

like CD64, neutrophil subsets 1 and 6 appeared to be dominated by highly activated, CD64+, 377 

Siglec 8+, RANK+ and RANKL+ as well as Ki67+ proliferating cells. Cells within subset 3 adopted 378 

an intermediate phenotype. Neutrophils from COVID-19 patients clearly separated from those of 379 

healthy controls, and neutrophils in patients with severe COVID-19 were distinct from those of 380 

patients with mild disease (Fig. 5B). Subset 1 was highly enriched for neutrophils from COVID-381 

19 patients. Consequently, we observed an increase in CD34+ immature and activated neutrophils 382 

with high CD64, Siglec 8, RANK and RANKL (Riegel et al., 2012) expression in samples from 383 

COVID-19 patients regardless of disease course (Fig. 5B+C). In contrast, CD62L was exclusively 384 

downregulated in up to 50% of the neutrophils from severe but not mild COVID-19 patients, 385 

indicative of distinct dysfunctional neutrophil populations with immunosuppressive properties 386 

(Kamp et al., 2012; Pillay et al., 2012; Tak et al., 2017). These findings were further supported by 387 

upregulation of CD123 and PD-L1 expression (Fig. 5B+C) as hallmarks of myeloid-derived 388 

suppressor cell (MDSC) function (Cassetta et al., 2019; Testa et al., 2004; Younos et al., 2015) 389 

on neutrophils of severe COVID-19 patients. In addition, neutrophils of severe COVID-19 patients 390 

adopted an aged phenotype with elevated CD45 expression (Fig. 5B). 391 

 392 

Thus, SARS-CoV-2 infection induces major alterations in the neutrophil compartment. While 393 

neutrophils in patients with mild COVID-19 display an activated phenotype, additional markers of 394 

immunosuppression or dysfunction are upregulated in patients with severe disease.   395 

 396 

The differences in the functional states of neutrophils in mild and severe COVID-19 in the snap-397 

shot analysis, prompted us to perform a longitudinal analysis. We analyzed samples according to 398 

collection either within the first 10 days (early) or during the second and third week (late) after 399 

onset of disease symptoms. The proportional increase in total granulocytes and CD34+ neutrophil 400 

subset in severe COVID-19 was only detected during the early phase of the disease (Fig. 5D+E). 401 

However, the additionally observed alterations in the neutrophil compartment such as loss of 402 

CD62L expression accompanied by increase of CD123 and PD-L1 positive populations as signs 403 

of dysfunctionality and immunosuppressive properties were persistent in severe COVID-19 404 

patients (Fig. 5E).  405 

 406 

Next, we analyzed whether similar to the evolution on the transcriptional level, we can also capture 407 

time-dependent changes of the monocyte compartment on the protein level. The proportion of 408 

non-classical monocytes started to recover in mild patients during the later stages of the disease 409 

(Fig. 5D). This was accompanied by reduced CD11c and CXCR3 expression in classical 410 

monocytes (Fig. 5F) and relates very well to the described longitudinal changes of the HLA-DR 411 
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& ISG+ monocyte cluster (Fig. 3F, S3H). In contrast, although classical monocytes of severe 412 

patients never showed high CD11c expression, they maintained high levels of CXCR3 expression 413 

even in late stages of the disease, indicating prolonged activation (Fig. 5F). Thus, severe COVID-414 

19 patients are characterized by a combination of persistent inflammation and 415 

immunosuppression, which is reminiscent of long-term post-traumatic complications (Hesselink 416 

et al., 2019). Our data reveal an early strong monocyte activation versus persistent signs of 417 

neutrophil dysfunctionality as discriminators between mild and severe COVID-19.    418 

 419 

  420 

Single cell transcriptomes of whole blood neutrophils reveal suppressive signatures in 421 

severe COVID-19 422 

 423 

Whole blood CyTOF analysis (cohort 1) clearly indicated a very distinct molecular regulation 424 

within the neutrophil compartment in severe and mild COVID-19. To further delineate this 425 

regulation with respect to the underlying transcriptional programs, we performed scRNA-seq 426 

analysis on fresh whole blood samples from 19 individuals (21 samples, cohort 2). Overlay of all 427 

samples of cohort 2 (fresh/frozen PBMC, fresh whole blood, 162,697 cells, Fig. S6A), without 428 

batch correction, revealed the major cell type distribution, including the granulocyte compartment 429 

(Fig. 6A, S6A). Cell type distribution as identified by scRNA-seq (Fig. S6B) strongly correlated 430 

with the MCFC data of the same samples (Fig. S6C). We noticed abnormal transcriptional 431 

activation in six samples, which was caused by protracted cold treatment (4°C) prior to single-cell 432 

sampling, as recently described for PBMC (Massoni-Badosa et al., 2020). These samples were 433 

therefore excluded from further analysis. The remaining 30,019 neutrophils were subsampled and 434 

revealed a structure of 11 clusters (Fig. 6B-C). Using marker- and data-driven approaches as 435 

applied to LDN (Fig. 4D, S4A), we identified CD15(FUT4)+CD63+CD66b+CD101+CD10- pre-436 

neutrophils, CD11b(ITGAM)+CD101+CD10- immature neutrophils along with 9 mature neutrophil 437 

clusters (Fig. 6B-D, S6D-E). Heterogeneous expression of various markers involved in neutrophil 438 

function including SELL (L-selectin, CD62L), CXCR2, FCGR2 (CD32), and CD10 as a marker for 439 

mature neutrophils, pointed towards distinct functionalities within the neutrophil compartment 440 

(Fig. 6C, 6H, S6E). The phenotypic diversity was further corroborated, when we assessed the 441 

expression of markers previously identified by CyTOF to be differentially regulated in patients with 442 

severe COVID-19 (Fig. 5). For example, we found elevated expression of CD274 (PD-L1) and 443 

CD64 in neutrophil clusters identified specifically in patients with severe COVID-19 (Fig. 6E, S6F). 444 

Out of the 11 neutrophil clusters identified in whole blood in cohort 2, 10 clusters could also be 445 

mapped to fresh PBMC samples in cohort 1 (Fig. S6D), indicating that scRNA-seq of fresh PBMC 446 

- in COVID-19 patients - reveals relevant parts of the neutrophil compartment. When we analyzed 447 

PBMC samples of cohort 2, these clusters could be identified in fresh samples, but were lost upon 448 

freezing (Fig. S6A). Importantly, the analysis corroborated the transcriptional phenotype of pre-449 

neutrophils and immature neutrophils (cluster 8+9) in cohort 2 (Fig. 6B-D, S6D-E).  450 

Heatmap and UMAP visualization of the cell type distribution identified pre-neutrophils and 451 

immature neutrophils in severe COVID-19, at late time points (Fig. 6F-G). Furthermore, clusters 452 

2 and 0 were associated with severe COVID-19, while clusters 5 and 10 were found in mild 453 

COVID-19 (Fig. 6F-G). IFN-signatures were detected in neutrophils from mild and severe COVID-454 

19 patients and even in some of the clusters derived from controls (Fig. S6G). However,  455 
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expression of CD177, CD274 (PD-L1) and zinc finger DHHC domain-containing palmitoyl 456 

transferases ZDHHC19, indicative of an immature and suppressive granulocyte phenotype 457 

(Volkmann et al., 2020), was specifically observed in patients with severe COVID-19 (Fig. 6C). 458 

ZDHHC19 has been shown to promote palmitoylation of STAT3 (Niu et al., 2019), as well as the 459 

Chikungunya virus derived protein nsP1 (Zhang et al., 2018). In addition, neutrophils in severe 460 

COVID-19 expressed FCGR1A, ICAM1 and ZC3H12A (Fig. 6H), indicative of their suppressive 461 

nature. As indicated by the clustering in the UMAP (Fig. 6B+G), pseudotime analysis strongly 462 

suggested that cells in cluster 2 preceded those in cluster 0, and particularly CD274 (PD-1L) was 463 

among the genes that further enriched in cluster 0 compared to cluster 2, indicating a progression 464 

towards a suppressive phenotype in late stage disease (Fig. S6H+I). Predictions of transcription 465 

factor (TF)-based regulation of the cluster-specific gene signatures revealed a strict separation of 466 

mature neutrophils from pre-neutrophils and immature neutrophils (Fig. S6J), but showed a 467 

surprisingly high overlap between clusters 5 (mild), 2 (severe early), and 0 (severe late) in STAT- 468 

and IRF-family member TFs (Fig. 6I). However, there was a striking loss of important TF hubs in 469 

cluster 0, found in late stage severe COVID-19 (Fig. 6I).   470 

 471 

Collectively, the neutrophil compartment in peripheral blood of COVID-19 patients is 472 

characterized by the appearance of LDN, ARG1+MPO+BPI+ pre-neutrophils and CD10+ 473 

S100A8/A9+ immature neutrophils, reminiscent of emergency myelopoiesis, as well as 474 

CD274+(PD-L1+) suppressive mature neutrophils. All neutrophil subsets emerging in severe 475 

COVID-19 express an armamentarium of genes associated with suppressive functions as they 476 

have been described for sepsis or ARDS, indicating that a dysregulated myeloid cell compartment 477 

contributes to severe COVID-19.   478 

  479 
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Discussion  480 

 481 

SARS-CoV-2 infection generally causes mild disease in the majority of individuals, however about 482 

10-20% of COVID-19 patients progress to severe disease with pneumonia and respiratory failure. 483 

The case-fatality ratio was found to be 49% among patients with critical illness and respiratory 484 

failure (Wu and McGoogan, 2020). The pathomechanisms that govern progression from mild 485 

COVID-19 to potentially fatal courses of disease are currently unknown, but dysregulated immune 486 

responses have been repeatedly described in patients with severe COVID-19 (Zhou et al., 2020c). 487 

Detailed knowledge of the underlying molecular processes is urgently needed in order to identify 488 

predictive biomarkers and therapeutic targets for severe COVID-19, which could enable 489 

individualized treatments.  490 

 491 

Here, we employed five complementary technologies at single-cell resolution to assess 492 

differences in the systemic immune response in patients with mild or severe courses of COVID-493 

19. We analyzed a total of 131 samples from two independent cohorts collected at two university 494 

medical centers in Germany. The combination of single-cell transcriptomics and single-cell 495 

proteomics, using different technological platforms and sample-processing strategies in 496 

independent patient cohorts provided unprecedented insights into the systemic immune 497 

responses in COVID-19 and allowed for cross-validation of key findings.  498 

 499 

This multipronged approach revealed drastic changes within the myeloid cell compartment, 500 

particularly in patients with a severe course of disease. Early activation of HLA-DRhiCD11chi 501 

monocytes with a strong antiviral IFN-signature was a hallmark of mild COVID-19, which receded 502 

during the natural course of disease, as demonstrated at later time points in patients with mild 503 

COVID-19. In contrast, we found clear evidence of emergency myelopoiesis with release of pre-504 

neutrophils and immature neutrophils with immunosuppressive features in severe COVID-19. 505 

Prolonged partial monocyte activation and release of dysfunctional neutrophils may thus 506 

contribute to severe disease course and ARDS development. 507 

 508 

Several reports have described inflammatory monocyte responses, with a strong IFN-signature 509 

in COVID-19 (Liao et al., 2020; Merad and Martin, 2020; Zhou et al., 2020c). Mononuclear 510 

phagocytes and neutrophils appear to dominate inflammatory infiltrates in the lungs, and resident 511 

alveolar macrophages are replaced by inflammatory monocyte-derived macrophages in patients 512 

with severe COVID-19 (Liao et al., 2020). Here, we report substantial alterations of the monocyte 513 

compartment, with time- and disease severity-dependent changes in two separate cohorts of 514 

COVID-19 patients. We observed a depletion of CD14loCD16hi non-classical monocytes in all 515 

patients, which was particularly prominent in mild cases and less pronounced in severe disease 516 

(Fig. 1D). This is in line with previous reports, and it has also been observed in other severe viral 517 

infections (Lüdtke et al., 2016; Naranjo-Gómez et al., 2019). Strikingly, we found a strong transient 518 

increase in highly activated CD14+CD11chiHLA-DRhi ISG+ monocytes in mild cases of COVID-19, 519 

which were absent in severe cases (Fig. 3). In contrast, we identified immature suppressive 520 

monocytes with low expression of HLA-DR in patients with severe disease. Low HLA-DR 521 

expression on monocytes has been previously associated with an increased risk to develop 522 
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infectious complications after trauma (Hoffmann et al., 2017) and increased mortality in septic 523 

shock (Monneret et al., 2006), Furthermore, CD14+HLA-DRlo/neg monocytes, have also been 524 

identified as important mediators of tumor-induced immunosuppression (Mengos et al., 2019). 525 

Indeed, the severe COVID-19-specific immunosuppressive monocyte cluster showed enrichment 526 

of genes previously identified in sepsis patients (Fig. S3H) (Reyes et al., 2020). 527 

 528 

Acute pathological insults, such as trauma or severe infections, trigger a process referred to as 529 

emergency myelopoiesis in order to replenish functional granulocytes and other hematopoietic 530 

cells. Emergency myelopoiesis is characterized by the mobilization of immature myeloid cells, 531 

which exert immunosuppressive functions (Loftus et al., 2018; Schultze et al., 2019). Emergence 532 

of suppressive myeloid cells has been previously observed during sepsis and severe influenza 533 

virus infection (Darcy et al., 2014; Loftus et al., 2018; Sander et al., 2010; De Santo et al., 2008). 534 

Here we detected pre-neutrophils and immature neutrophils within PBMC, indicating their reduced 535 

cellular density, specifically in severe COVID-19 (Fig. 4). These LDN showed an immature gene 536 

expression profile and a surface marker and gene expression profile indicative of 537 

immunosuppressive functions. For example, olfactomedin-4+ LDN have been associated with 538 

immunopathogenesis in sepsis (Alder et al., 2017).  539 

 540 

Suppressive neutrophils have been shown to increase in patients with bacterial sepsis and their 541 

frequencies correlated with sepsis severity and systemic inflammation (Darcy et al., 2014), as well  542 

as in healthy volunteers treated with G-CSF (Hartung et al., 1995). Analyzing whole blood 543 

samples without density separation, we identified neutrophils with an IFN-signature in mild and 544 

severe COVID-19, but only in patients with severe disease, these activated neutrophils also 545 

expressed PD-L1 (CD274), which further increased in expression in late stage disease. The 546 

expression of CD177 on mature activated neutrophils at early stages, but not at later stages, and 547 

the identification of genes associated with suppressive cellular functions (ZDHHC19, ZC3H12A) 548 

strongly favor a model in which neutrophils emerging prematurely from the bone marrow are 549 

programmed towards a suppressive program in severe COVID-19. The transcriptional programs 550 

induced in pre-neutrophils, immature and mature COVID-19-associated neutrophil clusters may 551 

also align with other clinical observations in severe COVID-19 patients, including increased NET 552 

formation (Barnes et al., 2020; Zuo et al., 2020), coagulation (Klok et al., 2020; Pfeiler et al., 2014) 553 

and immunothrombosis (Stiel et al., 2018; Xu et al., 2020). In contrast, in patients with mild 554 

COVID-19, none of these transcriptional programs was observed. Despite the fact that SARS-555 

CoV2neg controls exhibited a range of comorbidities (e.g. COPD, type diabetes II), we did not 556 

observe this massive expansion of suppressive neutrophils in these chronic inflammatory 557 

conditions. The pathophysiological consequences of this suppressive signature in severe COVID-558 

19 are unclear at this stage, but it is highly likely that they contribute to immunoparalysis in 559 

critically ill patients, potentially leading to insufficient host defense, disbalanced inflammation and 560 

increased susceptibility to superinfections.  561 

 562 

Collectively, our data link a striking appearance of immature and suppressive cells, in both the 563 

monocyte and neutrophil compartment, to disease severity in COVID-19. Consequently, for the 564 

development of better treatments and prevention of severe COVID-19, we may benefit from 565 
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achievements in other fields such as cancer, which have successfully applied therapies targeting 566 

suppressive myeloid cells.        567 
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STAR Methods 568 

Study subjects 569 

Cohort 1 / Berlin cohort 570 

This study includes a subset of patients enrolled between March 2 and March 27 2020 in the Pa-571 

COVID-19 study, a prospective observational cohort study assessing pathophysiology and clinical 572 

characteristics of patients with COVID-19 at Charité Universitätsmedizin Berlin (Kurth et al., 573 

2020). The study is approved by the Institutional Review board of Charité (EA2/066/20). Written 574 

informed consent was provided by all patients or legal representatives for participation in the 575 

study. The patient subset included in this analysis contains 7 healthy donors (Table S1) and 19 576 

COVID-19 patients (Figure 1A+B, Table S1). All COVID-19 patients tested positive for SARS-577 

CoV-2 RNA in nasopharyngeal swabs.  578 

Cohort 2 / Bonn cohort 579 

This study was approved by the Institutional Review board of the University Hospital Bonn (073/19 580 

and 134/20). After providing written informed consent, 12 control donors (Table S1) and 14 581 

COVID-19 patients (Figure 1A+B, Table S1) were included in the study. In patients who were 582 

not able to consent at the time of study enrollment, consent was obtained after recovery. COVID-583 

19 patients who tested positive for SARS-CoV-2 RNA in nasopharyngeal swabs were recruited 584 

at the Medical Clinic I of the University Hospital Bonn between March 30 and May 17, 2020. 585 

 586 

Isolation of blood cells for scRNA-seq  587 

Cohort 1 / Berlin cohort 588 

 589 

PBMC were isolated from heparinized whole blood by density centrifugation over Pancoll (density: 590 

1.077g/ml; PAN-Biotech™). If the pellet was still slightly red, remaining CD235ab+ cells 591 

(Erythrocytes) were depleted by Negative Selection (MagniSort™ Thermo Fisher). Subsequently 592 

the PBMC were prepared for 3’scRNA-seq (10xGenomics) or cryopreserved and analyzed later. 593 

 594 

Cohort 2 / Bonn cohort 595 

In the Bonn cohort, scRNA-seq was performed on fresh whole blood, fresh PBMC and frozen 596 

PBMC. Briefly, PBMC were isolated from EDTA-treated or heparinized peripheral blood by density 597 

centrifugation over Pancoll or Ficoll-Paque density centrifugation (density: 1.077g/ml). Cells were 598 

then washed with DPBS, directly prepared for scRNA-seq (BD Rhapsody) or cryopreserved in 599 

RPMI-1640 with 40% FBS and 10% DMSO. Whole blood was prepared by treatment of 1 ml 600 

peripheral blood with 10 ml of RBC lysis buffer (Biolegend). After one wash in DPBS cells were 601 

directly processed for scRNA-seq (BD Rhapsody) or MCFC. Frozen PCMC were recovered by 602 
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rapidly thawing frozen cell suspensions in a 37° C water bath followed by immediate dilution in 603 

pre-warmed RPMI-1640+10% FBS (Gibco) and centrifugation at 300g for 5 min. After 604 

centrifugation, the cells were resuspended in RPMI-1640+10% FBS and processed for scRNA-605 

seq. Antibody cocktails were cryopreserved as described before (Schulz et al., 2019). 606 

Antibodies used for mass cytometry 607 

 608 

All anti-human antibodies pre-conjugated to metal isotopes were obtained from Fluidigm 609 

Corporation (San Francisco, US). All remaining antibodies were obtained from the indicated 610 

companies as purified antibodies and in-house conjugation was done using the MaxPar X8 611 

labeling kit (Fluidigm). Supplementary table 2 shows a detailed list of all antibodies used for panel 612 

1 and panel 2. 613 

  614 

Sample processing, antigen staining and data analysis of mass cytometry-based immune 615 

cell profiling 616 

 617 

500 µl of whole blood (heparin) was fixed in 700 µl of proteomic stabilizer (Smart Tube Inc., San 618 

Carlos, US) as described in the user manual and stored at -80°C until further processing. Whole 619 

blood samples were thawed in Thaw/Lyse buffer (Smart Tube Inc.). For barcoding antibodies 620 

recognising human beta-2 microglobulin (B2M) were conjugated in house to 104Pd, 106Pd, 108Pd, 621 
110Pd, 198Pt (Mei et al., 2015, 2016; Schulz and Mei, 2019). Up to 10 individual samples were 622 

stained using a staining buffer from Fluidigm with a combination of two different B2M antibodies 623 

for 30 min at 4°C. Cells were washed and pooled for surface and intracellular staining. 624 

For surface staining the barcoded and pooled samples were equally divided into two samples. 625 

Cells were resuspended in antibody staining cocktails for panel 1 or panel 2 respectively (Table 626 

S2) and stained for 30 min at 4°C. For secondary antibody staining of panel 2, cells were washed 627 

and stained with anti-APC 163Dy for 30 min at 4°C. After surface staining cells were washed with 628 

PBS, resuspended in cell-ID intercalator 103Rh to discriminate between live and dead cells and 629 

incubated for 5 min at room temperature. After washing, cells were fixed overnight in 2 % PFA 630 

solution diluted dissolved in PBS to 2%. 631 

For intracellular staining cells were washed twice with a permeabilization buffer (eBioscience, San 632 

Diego, US) and stained with the respective antibodies diluted in a permeabilization buffer for 30 633 

min at room temperature. After washing, cells were stained with iridium intercalator (Fluidigm) 634 

diluted in 2 % PFA for 20 min at room temperature. Cells were washed once with PBS and then 635 

twice with ddH2O and kept at 4°C until mass cytometry measurement. 636 

A minimum of 100.000 cells per sample and panel were acquired on a CyTOF2/Helios mass 637 

cytometer (Fluidigm). For normalization of the fcs files 1:10 EQ Four Element Calibration Beads 638 

(Fluidigm) were added. Cells were analyzed using a CyTOF2 upgraded to Helios specifications, 639 

with software version 6.7.1014, using a narrow bore injector. The instrument was tuned according 640 

to the manufacturer’s instructions with tuning solution (Fluidigm) and measurement of EQ four 641 

element calibration beads (Fluidigm) containing 140/142Ce, 151/153Eu, 165Ho and 175/176Lu 642 

served as a quality control for sensitivity and recovery. Directly prior to analysis, cells were 643 

resuspended in ddH2O, filtered through a 20-µm cell strainer (Celltrics, Sysmex), counted and 644 

adjusted to 5-8 x 105 cells/ml. EQ four element calibration beads were added at a final 645 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 5, 2020. ; https://doi.org/10.1101/2020.06.03.20119818doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.03.20119818
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 
 

concentration of 1:10 v/v of the sample volume to be able to normalize the data to compensate 646 

for signal drift and day-to-day changes in instrument sensitivity. Samples were acquired with a 647 

flow rate of 300-400 events/s. The lower convolution threshold was set to 400, with noise 648 

reduction mode turned on and cell definition parameters set at event duration of 10-150 pushes 649 

(push = 13 µs). The resulting flow cytometry standard (FCS) files were normalized and 650 

randomized using the CyTOF software's internal FCS-Processing module on the non-randomized 651 

('original') data. The default settings in the software were used with time interval normalization 652 

(100 s/minimum of 50 beads) and passport version 2. Intervals with less than 50 beads per 100 653 

s were excluded from the resulting FCS file. 654 

Blood processing for flow cytometry 655 

 656 

1 ml of fresh blood from control or COVID-19 donors was treated with 10 ml of RBC lysis buffer 657 

(Biolegend). After RBC lysis, cells were washed with DPBS and 1-2 million cells were used for 658 

flow cytometry analysis. Cells were then stained for surface markers (Table S3) in DPBS with BD 659 

Horizon Brilliant™ Stain Buffer (Becton Dickinson) for 30 min at 4°C. To distinguish live from dead 660 

cells, the cells were incubated with LIVE/DEAD Fixable Yellow Dead Cell Stain Kit (1:1000 – 661 

Thermo Scientific). Following staining and washing, the cell suspension was fixed with 4% PFA 662 

for 5 min at room temperature to prevent any possible risk of contamination during acquisition of 663 

the samples. Flow cytometry analysis was performed on a BD Symphony instrument (Becton 664 

Dickinson) configured with 5 lasers (UV, violet, blue, yellow-green, red). 665 

10x Genomics Chromium single-cell RNA-seq  666 

 667 

PBMC were isolated and prepared as described above. Afterwards, patient samples were 668 

hashtagged with TotalSeq-A antibodies (Biolegend) according to the manufacturer's protocol for 669 

TotalSeqTM-A antibodies and cell hashing with 10x Single Cell 3’ Reagent Kit v3.1. 50 µL cell 670 

suspension with 1x106 cells were resuspended in staining buffer (2% BSA, Jackson Immuno 671 

Research; 0,01% Tween-20, Sigma-Aldrich; 1x DPBS, Gibco) and 5 µL Human TruStain FcXTM 672 

FcBlocking (Biolegend) reagent were added. The blocking was performed for 10 min at 4°C. In 673 

the next step 1 µg unique TotalSeq-A antibody was added to each sample and incubated for 30 674 

minutes at 4°C. After the incubation time 1.5 mL staining buffer were added and centrifuged for 5 675 

minutes at 350g and 4°C. Washing was repeated for a total of 3 washes. Subsequently, the cells 676 

were resuspended in an appropriate volume of 1x DPBS (Gibco), passed through a 40 µm mesh 677 

(FlowmiTM Cell Strainer, Merck) and counted, using a Neubauer counting (Marienfeld). Cell counts 678 

were adjusted and hashtagged cells were pooled equally. The cell suspension was super-loaded, 679 

with 50,000 cells, in the ChromiumTM Controller for partitioning single cells into nanoliter-scale Gel 680 

Bead-In-Emulsions (GEMs). Single Cell 3’ reagent kit v3.1 was used for reverse transcription, 681 

cDNA amplification and library construction of the gene expression libraries (10x Genomics) 682 

following the detailed protocol provided by 10xGenomics. Hashtag libraries were prepared 683 

according to the cell hashing protocol for 10x Single Cell 3’ Reagent Kit v3.1 provided by 684 

Biolegend, including primer sequences and reagent specifications. Biometra Trio Thermal Cycler 685 

was used for amplification and incubation steps (Analytik Jena). Libraries were quantified by 686 

QubitTM 2.0 Fluorometer (ThermoFisher) and quality was checked using 2100 Bioanalyzer with 687 
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High Sensitivity DNA kit (Agilent). Sequencing was performed in paired-end mode with a S1 and 688 

S2 flow cell (2 × 50 cycles kit) using NovaSeq 6000 sequencer (Illumina).  689 

BD Rhapsody single-cell RNA-seq 690 

 691 

Whole transcriptome analyses, using the BD Rhapsody Single-Cell Analysis System (BD, 692 

Biosciences) were performed on PBMC and whole blood samples prepared as described above. 693 

Cells from each sample were labeled with sample tags (BD™ Human Single-Cell Multiplexing Kit) 694 

following the manufacturer's protocol. Briefly, a total number of 1x106 cells were resuspended in 695 

180µl of Stain Buffer (FBS) (BD Pharmingen). The sample tags were added to the respective 696 

samples and incubated for 20 min at room temperature. After incubation, 200µl stain buffer was 697 

added to each sample and centrifuged for 5 minutes at 300g and 4°C. Samples were washed one 698 

more time. Subsequently cells were resuspended in 300µl of cold BD Sample Buffer and counted 699 

using Improved Neubauer Hemocytometer (INCYTO). Labelled samples were pooled equally in 700 

650µl cold BD Sample Buffer. For each pooled sample two BD Rhapsody cartridges were super-701 

loaded with approximately 60,000 cells each. Single cells were isolated using Single-Cell Capture 702 

and cDNA Synthesis with the BD Rhapsody Express Single-Cell Analysis System according to 703 

the manufacturer’s recommendations (BD Biosciences). cDNA libraries were prepared using the 704 

BD Rhapsody™ Whole Transcriptome Analysis Amplification Kit following the BD Rhapsody™ 705 

System mRNA Whole Transcriptome Analysis (WTA) and Sample Tag Library Preparation 706 

Protocol (BD Biosciences). The final libraries were quantified using a Qubit Fluorometer with the 707 

Qubit dsDNA HS Kit (ThermoFisher) and the size-distribution was measured using the Agilent 708 

high sensitivity D5000 assay on a TapeStation 4200 system (Agilent technologies). Sequencing 709 

was performed in paired-end mode (2*75 cycles) on a NovaSeq 6000 and NextSeq 500 System 710 

(Illumina) with NovaSeq 6000 S2 Reagent Kit (200 cycles) and NextSeq 500/550 High Output Kit 711 

v2.5 (150 Cycles) chemistry, respectively. 712 

 713 

Data pre-processing of 10x Genomics Chromium scRNA-seq data 714 

 715 

CellRanger v3.1.0 (10x Genomics) was used to process scRNA-seq. To generate a digital gene 716 

expression (DGE) matrix for each sample, we mapped their reads to a combined reference of 717 

GRCh38 genome and SARS-CoV-2 genome, and recorded the number of UMIs for each gene in 718 

each cell.  719 

 720 

Data pre-processing of BD Rhapsody scRNA-seq data 721 

 722 

After demultiplexing of bcl files using Bcl2fastq2 V2.20 from Illumina and quality control, paired-723 

end scRNA-seq reads were filtered for valid cell barcodes using the barcode whitelist provided by 724 

BD. Cutadapt 1.16 was then used to trim NexteraPE-PE adapter sequences where needed and 725 

to filter reads for a PHRED score of 20 or above. Then, STAR 2.6.1b was used for alignment 726 

against the Gencode v33 (GRCh38.p13) reference genome. dropseq-tools 2.0.0 were used to 727 

quantify gene expression and collapse to UMI count data. For hashtag-oligo based demultiplexing 728 

of single-cell transcriptomes and subsequent assignment of cell barcodes to their sample of origin 729 
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the respective multiplexing tag sequences were added to the reference genome and quantified 730 

as well. 731 

 732 

ScRNA-seq data analysis of 10x Chromium data of cohort 1 733 

  734 

ScRNA-seq UMI count matrices were imported to R 3.6.2 and gene expression data analysis was 735 

performed using the R/Seurat package 3.1.4 (Butler et al., 2018; Hafemeister and Satija, 2019). 736 

Demultiplexing of cells was performed using the HTODemux function implemented in Seurat. 737 

 738 

Data quality control. 739 

We excluded the cells based on the following criteria: more than 5% mitochondrial reads, less 740 

than 200 expressed genes or more than 6000 expressed genes. We further excluded genes that 741 

were expressed in less than five cells. In addition, mitochondrial genes have been excluded from 742 

further analysis.  743 

  744 

Data integration. 745 

First, we SCTransformed (Seurat function) the data and then selected 2,000 features with largest 746 

variance among the data sets and identified integration anchors using these features. PCA 747 

(principal component analysis) was then performed on the integrated data sets, followed by a 748 

Shared Nearest Neighbour (SNN) Graph construction using PC1 to PC30 and for the k-Nearest 749 

Neighbours (KNN) Graph construction. The clustering analysis was performed using the Louvain 750 

algorithm with a resolution of 0.6. Uniform Manifold Approximation and Projection (UMAP) was 751 

utilized to visualize the cell clusters. 752 

Data of control (healthy) samples were obtained from https://satijalab.org/seurat/vignettes.html 753 

and https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/. 754 

 755 

Normalization.  756 

LogNormalization (Seurat function) was applied before downstream analysis. The original gene 757 

counts for each cell were normalized by total UMI counts, multiplied by 10,000 (TP10K) and then 758 

log transformed by log10(TP10k+1). 759 

  760 

Differential expression tests and cluster marker genes.  761 

Differential expression (DE) tests were performed using FindMarkers/FindAllMarkers functions in 762 

Seurat with Wilcoxon Rank Sum test. Genes with >0.25 log-fold changes, at least 25% expressed 763 

in tested groups, and Bonferroni-corrected p-values<0.05 were regarded as significantly 764 

differentially expressed genes (DEGs). Cluster marker genes were identified by applying the DE 765 

tests for upregulated genes between cells in one cluster to all other clusters in the dataset. Top 766 

ranked genes (by log-fold changes) from each cluster of interest were extracted for further 767 

illustration.  768 

  769 

Cluster annotation.  770 

Clusters were annotated based on a double-checking strategy: 1) by comparing cluster marker 771 

genes with public sources, and 2) by directly visualizing the expression pattern of CyTOF marker 772 

genes.  773 
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GO enrichment analysis.  774 

Significantly differentially expressed genes (DEGs) between each monocyte cluster and the rest 775 

of monocyte subpopulations were identified by FindMarkers function from the Seurat package 776 

using Wilcoxon Rank Sum test statistics for genes expressed in at least 25% of all monocyte 777 

clusters. P-values were corrected for multiple testing using Bonferroni correction and genes with 778 

corrected P-values lower or equal 0.05 have been taken as significant DEGs for GO enrichment 779 

test by R package/ClusterProfiler v.3.10.1 (Yu et al., 2012). 780 

 781 

Subset analysis of the neutrophils within the PBMC data set of cohort 1 782 

The neutrophil space was investigated by subsetting the PBMC dataset to those clusters identified 783 

as neutrophils and pre-neutrophils (cluster 9 and 13). Within those subsets, we selected top 2000 784 

variable genes and repeated a clustering using the SNN-graph based Louvain algorithm 785 

mentioned above with a resolution of 0.6. The dimensionality of the data was then reduced to 10 786 

PCs, which served as input for the UMAP calculation. To categorize the observed neutrophil 787 

clusters into the respective cell cycle states, we applied the CellCycleScoring function of Seurat 788 

and visualized the results as pie charts. 789 

A gene signature enrichment analysis using the ‘AUCell’ method (Aibar et al., 2017) was applied 790 

to link observed neutrophil clusters to existing studies and neutrophils of cohort 2. We set the 791 

threshold for the calculation of the area under the curve (AUC) to marker genes from collected 792 

publications and top 30 of the ranked maker genes from each of neutrophil clusters from cohort 793 

2. The resulting AUC values were normalized the maximum possible AUC to 1 and subsequently 794 

visualized in violin plots or UMAP plots. 795 

 796 

  797 

ScRNA-seq data analysis of Rhapsody data of cohort 2 798 

General steps for Rhapsody data downstream analysis 799 

ScRNA-seq UMI count matrices were imported to R 3.6.2 and gene expression data analysis was 800 

performed using the R/Seurat package 3.1.2 (Butler et al., 2018). Demultiplexing of cells was 801 

performed using the HTODemux function implemented in Seurat. After identification of singlets, 802 

cells with more than 25% mitochondrial reads, less than 250 expressed genes or more than 5000 803 

expressed genes were excluded from the analysis and only those genes present in more than 5 804 

cells were considered for downstream analysis. The following normalization, scaling and 805 

dimensionality reduction steps were performed independently for each of the data subsets used 806 

for the different analyses as indicated respectively. In general, gene expression values were 807 

normalized by total UMI counts per cell, multiplied by 10,000 (TP10K) and then log transformed 808 

by log10(TP10k+1). Subsequently, the data was scaled, centered and regressed against the 809 

number of detected genes per cell to correct for heterogeneity associated with differences in 810 

sequencing depth. For dimensionality reduction, PCA was performed on the top 2000 variable 811 

genes identified using the vst method implemented in Seurat. Subsequently, UMAP was used for 812 

two-dimensional representation of the data structure. No batch effect removal or data integration 813 

analysis was performed on the BD Rhapsody data. Cell type annotation was based on the 814 

respective clustering results combined with data-driven cell type classification algorithms based 815 

on reference transcriptomes data (Aran et al., 2019) and expression of  known marker genes.  816 
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scRNA-seq analysis of the complete BD rhapsody data set of cohort 2 including data from 817 

frozen and fresh PBMC and whole blood 818 

ScRNA-seq count data of 162,797 cells derived from fresh and frozen PBMC samples purified by 819 

density gradient centrifugation and whole blood after erythrocyte lysis of cohort 2 (Bonn, BD 820 

Rhapsody) were combined, normalized and scaled as described above. After variable gene 821 

selection and PCA, UMAP was performed based on the first 25 principal components (PCs). No 822 

batch correction or data integration strategies were applied to the data. Separate visualization of 823 

the cells showed overlay of cells unaffected by the technical differences in sample handling. Data 824 

quality and information content was visualized as violin plots showing the number of detected 825 

genes and transcripts (UMIs) per sample handling strategy split by PBMC and granulocyte 826 

fraction. 827 

scRNA-seq analysis of fresh and frozen PBMC samples 828 

ScRNA-seq count data of 93,297 cells derived from fresh and frozen PBMC samples of cohort 2 829 

(Bonn, BD Rhapsody) purified by density gradient centrifugation were normalized and scaled as 830 

described above. After variable gene selection and PCA, UMAP was performed and the cells 831 

were clustered using the Louvain algorithm based on the first 15 PCs and a resolution of 0.5. 832 

Cluster identities were determined by reference-based cell classification and inference of cluster-833 

specific marker genes using the Wilcoxon rank sum test using the following cutoffs: genes have 834 

to be expressed in more than  20% of the cells of the respective cluster,  exceed a logarithmic 835 

fold change cutoff to at least 0.25, and exhibited a difference of > 10% in the detection between 836 

two clusters.  837 

Quantification of the percentages of cell clusters in the PBMC scRNA-seq data of both 838 

cohorts separated by disease group  839 

To compare shifts in the monocyte and neutrophil populations in the PBMC compartment of 840 

COVID-19 patients, the percentages of the cellular subsets - as identified by clustering and cluster 841 

annotation explained above for the two independent scRNA-seq data sets (cohort 1 and cohort 842 

2) - of the total number of PBMC in each data set were quantified per sample and visualized 843 

together in box plots. Statistical significance was inferred using t-test. 844 

Subset analysis of the monocytes within the PBMC data set of cohort 2 845 

The monocyte space was investigated by subsetting the PBMC dataset to those clusters identified 846 

as monocytes (cluster 1, 3 ,5 ,9, and 12) and repeating the variable gene selection (top 2000 847 

variable genes), regression for the number of UMIs and scaling as described above. The 848 

dimensionality of the data was then reduced to 8 PCs, which served as input for the UMAP 849 

calculation. The SNN-graph based Louvain clustering of the monocytes was performed using a 850 

resolution of 0.48. Marker genes per cluster were calculated using the Wilcoxon rank sum test 851 

using the following cutoffs: genes have to be expressed in > 20% of the cells,  exceed a 852 

logarithmic fold change cutoff to at least 0.25, and exhibited a difference of > 10% in the detection 853 

between two clusters.  854 
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Time kinetics analysis of identified monocyte clusters 855 

For each patient and time point of sample collection, the proportional occupancy of the monocyte 856 

clusters was calculated, and the relative proportions were subsequently visualized as a function 857 

of time. 858 

Analysis of the scRNA-seq data from fresh PBMC and whole blood samples of cohort 2 859 

ScRNA-seq count data derived from fresh PBMC samples purified by density gradient 860 

centrifugation and whole blood after erythrocyte lysis of cohort 2 (BD Rhapsody) were normalized, 861 

scaled, and regressed for the number of UMI per cell as described above. After PCA based on 862 

the top 2000 variable genes, UMAP was performed using the first 15 PCs. Cell clusters were 863 

determined using Louvain clustering implemented in Seurat based on the first 15 principle 864 

components and a resolution of 0.5.  Cluster identities were assigned as detailed above using 865 

reference-based classification and marker gene expression. Subsequently, the dataset was 866 

subsetted for clusters identified as neutrophils and pre-neutrophils, and re-scaled and regressed. 867 

After PCA on the top 2000 variable genes, UMAP was performed on the first 15 PCs. Clustering 868 

was performed as described above on the top 15 PCs using a resolution of 0.5. Clusters featuring 869 

high counts in hemoglobin genes and expression of the eosinophil specific marker gene CLC 870 

were excluded from subsequent analyses. After filtering and rescaling of the neutrophil 871 

compartment a division of the cells according to experimental batches was observed in the 872 

two-dimensional UMAP representation. Comparing experimental procedures of different 873 

experiments pointed to short-term storage of whole blood on ice for a single experimental 874 

batch as a technical influence potentially explaining the transcriptional differences. Therefore, 875 

cells from the respective experiment were excluded, reducing the number of samples to a 876 

total of 15 (30,019 cells, 10 controls, 5 COVID-19 patients) to prevent any technical bias from 877 

skewing the analysis. After exclusion, the remaining data were processed as described above 878 

and clustered using Louvain clustering based on the first 15 PCs with a resolution of 0.7 was 879 

performed. 880 

Differentially expressed genes between clusters were defined using a Wilcoxon rank sum test for 881 

differential gene expression implemented in Seurat. Genes had to be expressed in >10% of the 882 

cells of a cluster, exceed a logarithmic threshold >0.1 and to have >10% difference in the minimum 883 

detection between two clusters.   884 

Quantification of the percentages of cell subsets in the fresh whole blood scRNA-seq data 885 

of cohort 2 886 

After cell type classification of the combined scRNA-seq data set of fresh PBMC and whole blood 887 

samples of cohort 2 described above, 69.500 cells derived from whole blood samples after 888 

erythrocyte lysis were subsetted. Percentages of cell subsets in those whole blood samples of 889 

the total number of cells were quantified per sample and visualized r in box plots separated by 890 

disease stage and group.  891 

Confusion matrix 892 
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For each cluster of neutrophils, the relative proportion across disease severity and time point was 893 

visualized as a fraction of samples from the respective condition contributing to the cluster. 894 

GO enrichment 895 

Gene set enrichment was performed on gene sets from the Kyoto Encyclopedia of Genes and 896 

Genomes (KEGG) database (Kanehisa, 2019), Hallmark gene sets (Liberzon et al., 2015) and 897 

Gene Ontology (GO) (Ashburner et al., 2000; Carbon et al., 2019) using the R 898 

package/ClusterProfiler v.3.10.1 (Yu et al., 2012). 899 

Cell cycle state analysis of scRNA-Seq data 900 

To categorize the cells within the neutrophil clusters into the respective cell cycle states, we 901 

applied the CellCycleScoring function of Seurat and visualized the results as pie charts. 902 

Trajectory analysis 903 

Trajectory analysis was performed using the destiny algorithm (Angerer et al., 2016). In brief, the 904 

neutrophil space was subsetted to only severe patients (early and mild) and only the most 905 

prominent clusters of the latter (clusters 9,8,2,0,6). The normalized data were scaled and 906 

regressed for UMIs and a diffusion map was calculated based on the top 2.000 variable genes 907 

with a sum of at least 10 counts over all cells. Based on the diffusion map, a diffusion pseudo 908 

time was calculated (without fixing a starting point) to infer a transition probability between the 909 

different cell states of the neutrophils. Subsequently, the density of the clusters along the 910 

pseudotime and marker gene expression for each cluster were visualized. 911 

Enrichment of gene sets was performed using the ‘AUCell’ method (Aibar et al., 2017) 912 

implemented in the package (version 1.4.1) in R. We set the threshold for the calculation of the 913 

AUC to the top 3% of the ranked genes and normalized the maximum possible AUC to 1. The 914 

resulting AUC values were subsequently visualized in violin plots or UMAP plots. 915 

Transcription factor prediction analysis 916 

The Cytoscape (version v3.7.1, doi: 10.1101/gr.1239303) plug-in iRegulon (Janky et al., 2014) 917 

(version 1.3)  was used to predict the transcription factors potentially regulating cluster-specifically 918 

expressed gene sets in the neutrophil subset analysis in cohort 2. The genomic regions for TF-919 

motif search were limited to 10 kbp around the respective transcriptional start sites and filtered 920 

for predicted TFs with a normalized enrichment score > 4.0. Next, we filtered for TFs, which 921 

exceeded a cumulative normalized expression cutoff of 50 in the respective neutrophil cluster. 922 

Subsequently, we selected transcription factors of known relevance in the context of neutrophil 923 

biology and constructed a network linking target genes among the cluster-specifically expressed 924 

marker genes and their predicted and expressed regulators for visualization in Cytoscape. 925 

Mass cytometry data analysis 926 
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Cytobank.org was used for de-barcoding of individual samples and manually gating of cell events 927 

to remove doublets, normalization beads and dead cells (Kotecha et al., 2010). For semi-928 

automated gating of populations of interest, high-resolution SPADE clustering was conducted on 929 

all indicated markers (supplementary table 2) with 400 target nodes. Individual SPADE nodes 930 

were then aggregated and annotated to cell subsets (bubbles) according to the expression of 931 

lineage‐specific differentiation markers. 932 

To generate tSNE maps viSNE analysis was performed using the indicated markers 933 

(supplementary table 2). Embedding parameters were set to at least 1000 iterations per 100.000 934 

analyzed cells, perplexity of 30 and theta of 0.5. For statistical analysis of cell population 935 

abundances, we fitted a generalized linear mixed-effects model (GLMM) for each population using 936 

the lme4 package as previously described by Nowicka et. al (Robinson et al., 2017). 937 

Data Analysis of Flow Cytometry Data 938 

Flow cytometry data analysis was performed with FlowJo V10.6.1. Relative cell percentage or 939 

mean fluorescence intensity (MFI) was used for visualization and statistical analysis. Cell type 940 

was defined as granulocytes (CD45+, CD66b+), non-classical monocytes (CD45+, CD66b-, CD19-941 

, CD3-, CD56-, CD14dim, CD16+). 942 

Data visualization 943 

In general, the R packages Seurat and the ggplot2 package (version 3.1.0, Wickham, 2016) were 944 

used to generate figures. For visualization of mass cytometry data, cluster minimum-spanning 945 

trees were rendered using Cytobank, the ComplexHeatmap package was used to display subset 946 

phenotypes and GraphPad Prism to generate boxplots of quantitative data. 947 

Lead Contact 948 

Further information and requests for resources and reagents should be directed to the Lead 949 

Contact, Joachim L. Schultze 950 

Data Availability 951 

Data are deposited at the European Genome-phenome Archive (EGA) under access number 952 

EGAS00001004450, which is hosted by the EBI and the CRG.  953 

  954 
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KEY RESOURCES TABLE 955 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Antibodies 

HLA-DR BV421 (L243) Biolegend 307635 

(AB_10897449) 

CD4 BV510 (OKT4) Biolegend 317444 

(AB_2561866) 

CD16 BV605 (3G8) Biolegend 302039 

(AB_2561354) 

CD45 BV711 (HI30) Biolegend 304050 

(AB_2563466) 

CD8 BV785 (SK1) Biolegend 344740 

(AB_2566202) 

CD66b FITC (G10F5) Biolegend 305104 (AB_314496) 

CD14 PerCp-Cy5.5 (MφP9) Becton Dickinson 562692 

(AB_2737726) 

CD56 PE (MY31) Becton Dickinson 345810 (AB_396511) 

CD3 PE/Dazzle (UCHT1) Biolegend 300450 

(AB_2563618) 

CD11c PE/Cy5 (B-ly6) Becton Dickinson 551077 (AB_394034) 

Siglec8 PE/Cy7 (7C9) Biolegend 347112 

(AB_2629720) 

CD203c APC (NP4D6) Biolegend 324609 

(AB_2099774) 

CD1c AlexaFluor700 (L161) Biolegend 331530 

(AB_2563657) 

CD19 APC/Fire 750 (HIB19) Biolegend 302258 

(AB_2629691) 

CD45 89Y (HI30) Fluidigm 3089003B  
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HLADR purified (L243) Biolegend 307602  

CD3 purified  (UCHT1) Biolegend 300443  

CD196 141Pr (G034E3)  Fluidigm  3141003A  

CD19 142Nd (HIB-19) Fluidigm  3142001B  

CD123 143Nd (6H6) Fluidigm  3143014B  

CD15 144Nd (W6D3) Fluidigm  3144019B  

CD138 145Nd (DL101) Fluidigm  3145003B  

CD64 146Nd (10.1) Fluidigm  3146006B  

CD21 purified (Bu32) Biolegend 354902  

CD226 purified  (REA1040) Miltenyi Biotec Produced at request 

IgD purified  (IgD26) Biolegend 348235  

ICOS 148Nd (C398.4A) Fluidigm 3148019B  

CD206 purified (152) Biolegend 321127  

CD96 purified (REA195) Miltenyi Biotec Produced at request 

KLRG1 purified (REA261)  Miltenyi Biotec Produced at request 

TCRgd purified (11F2)  Miltenyi Biotec Produced at request 

FcεRI 150Nd (AER-37)  Fluidigm 3150027B  

CD155 purified (REA1081) Miltenyi Biotec Produced at request 

CD95 purified (DX2)  Biolegend 305631  
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TIGIT 153Eu (MBSA43)  Fluidigm 3153019B  

CD62L 153Eu (DREG56)  Fluidigm 3153004B  

CD62L purified (DREG56) Biolegend 304835  

CD1c purified (L161) Biolegend 331502  

CD27 155Gd (L128) Fluidigm 3155001B  

CXCR3 156Gd (G025H7)  Fluidigm 3156004B  

KLRF1 purified (REA845)  Miltenyi Biotec Produced at request 

CD10 158Gd (HI10a)  Fluidigm 3158011B  

CD33 158Gd (WM53) Fluidigm 3158001B  

CD14 160Gd (RMO52) Fluidigm 3160006B  

CD28 purified (L293) BD Bioscience 348040  

CD69 162Dy (FN50)  Fluidigm 3162001B  

CD294 163Dy (BM16)  Fluidigm 3163003B  

RANKL APC Miltenyi Biotec 130-098-511  

Anti-APC 163Dy Fluidigm 3163001B  

CXCR5 164Dy (51505)  Fluidigm 3164029B  

Siglec 8 164Dy (7C9) Fluidigm 3164017B  

CD34 166Er (581) Fluidigm 3166012B  

CD38 167Er (HIT2)  Fluidigm 3167001B  
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Ki67 168Er (Ki-67) Fluidigm 3168007B  

CD25 169Tm (2A3) Fluidigm 3169003B  

CD24 169Tm (ML5) Fluidigm 3169004B  

Lag3 purified (11C3C65)  Biolegend 369302  

RANK purified (80704) R&D Systems MAB683 

CD161 purified (HP-3G10)  Biolegend 339919  

CD11b purified (ICRF44)  Biolegend 301337  

CD45RO purified (4G11)  DRFZ Berlin  

CD44 purified (BJ18)  Biolegend 338811  

CD137 173Yb (4B4-1)  Fluidigm 3173015B  

PD-1 175Lu (EH12.2H7)  Fluidigm 3175008B  

PD-L1 175Lu (29.E2A3) Fluidigm 3175017B  

CD56 176Yb (NCAM16.2)  Fluidigm 3176008B  

CD8A purified (GN11)  DRFZ Berlin  

IgM purified (MHM-88)  Biolegend 314502  

CD11c purified (Bu15) Biolegend 337221  

B2M purified (2M2) Biolegend 316302  

CD16 209Bi (3G8) Fluidigm  3209002B  

  A0251 anti-human Hashtag 1 
Biolegend 394601 
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A0252 anti-human Hashtag 2 Biolegend 394603 

A0253 anti-human Hashtag 3 Biolegend 394605 

A0254 anti-human Hashtag 4 Biolegend 394607 

A0255 anti-human Hashtag 5 Biolegend 394609 

A0256 anti-human Hashtag 6 Biolegend 394611 

A0257 anti-human Hashtag 7 Biolegend 394613 

CD235ab Biotin (HIR2) Biolegend 306618  

   

Bacterial and Virus Strains 

      

Biological Samples     

      

Chemicals, Peptides, and Recombinant Proteins 

BD Horizon Brilliant™ Stain Buffer Becton Dickinson 563794 

RBC lysis buffer 10X Biolegend 420301 

Pierce™ 16% Formaldehyde (w/v), Methanol-

free 

Thermo Fisher 28908 

RPMI 1640 Medium  Gibco 11875093 

Fetal Bovine Serum 
PAN Biotec  3302 
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Stain Buffer (FBS) Becton Dickinson 554656 

Pancoll human, Density: 1.077 g/ml  Pan Biotech P04-601000 

Dulbecco'S Phosphate Buffered Saline, MO  Sigma-Aldrich D8537 

FcR Blocking Reagent, human Miltenyi 130-059-901 

Live/Dead mDOTA 103Rh In-house  

Cell-ID Intercalator-Ir Fluidigm 201192A 

Permeabilization buffer 10X eBioscience 00-8333-56 

Maxpar PBS Fluidigm 201058 

Maxpar Cell Staining buffer Fluidigm 201068 

Maxpar X8 Multimetal Labeling Kit Fluidigm 201300 

Proteomic stabilizer  Smart Tube Inc. PROT1 

Nuclease-Free Water  Invitrogen AM9937 

KAPA HiFi HotStart Ready Mix Roche KK2601 

Human Tru Stain FcX Biolegend 422301 

TE Buffer Thermo Fisher 120900115 

SPRIselect Reagent Invitrogen AM9937 

10% Tween 20 BIO-RAD 1662404 

Buffer EB  Qiagen 19086 

Ethanol, Absolute Fisher Bioreagents BP2818-500 
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Glycerol, 85%  Merck 1040941000 

Bovine Serum Albumin Jackson Immuno 

Research 

 

001-000-161 

Tween20 Sigma-Aldrich P1379-500M 

MagniSort™ Negative Selection Beads 

Thermo Fisher MSNB-6002-74 

Critical Commercial Assays 

 LIVE/DEAD Fixable Yellow Dead Cell Stain Kit  Thermo Fisher  L34967 

 Human Single-Cell Multiplexing Kit    BD  633781 

 BD Rhapsody™ WTA Amplification Kit    BD  633801 

 BD Rhapsody Cartridge Kit  BD  633733 

 BD Rhapsody cDNA Kit  BD  633773 

 High Sensitivity D5000 ScreenTape Agilent 5067-5592 

 Qubit dsDNA HS Assay Kit ThermoFisher Q32854 

  Chromium Next GEM Single Cell 3′ GEM,      

  Library & Gel Bead Kit v3.1 

10x genomics 1000121 

  Chromium Next GEM Chip G Single Cell Kit 
10x genomics 1000120 

  Single Index Kit T Set A 
10x genomics 1000213 

  High Sensitivity DNA Kit 
Agilent 5067-4626 

 NovaSeq 6000 S1 Reagent Kit (100 cycle) 
Illumina 200012865 

 NovaSeq 6000 S2 Reagent Kit (100 cycle) 
Illumina 20012862 
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 NovaSeq 6000 S2 Reagent Kit (200 cycles) 
Illumina 20040326 

 NovaSeq 6000 S2 Reagent Kit (200 cycles) 
Illumina 20040326 

 NextSeq 500/550 High Output Kit v2.5  

 (150 Cycles) 

Illumina 20024907 

Deposited Data 

RNA-Seq raw data  This paper EGAS00001004450 

      

Experimental Models: Cell Lines 

      

Experimental Models: Organisms/Strains 

      

Oligonucleotides 

 SI-PCR primer  IDT  

AATGATACGGCG

ACCACCGAGATC

TACACTACACTCT

TTCCCTACACGAC

GC*T*C 

 HTO additive primer  IDT  

GTGACTGGAGTT

CAGACGTGTGC*T

*C 

 D701_S  IDT  

CAAGCAGAAGAC

GGCATACGAGAT

CGAGTAATGTGA

CTGGAGTTCAGA

CGTGT*G*C 
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 D702_S  IDT  

CAAGCAGAAGAC

GGCATACGAGAT

TCTCCGGAGTGA

CTGGAGTTCAGA

CGTGT*G*C 

 

 D703_S  IDT  

CAAGCAGAAGAC

GGCATACGAGAT

AATGAGCGGTGA

CTGGAGTTCAGA

CGTGT*G*C 

 D705_S IDT CAAGCAGAAGAC

GGCATACGAGAT

TTCTGAATGTGAC

TGGAGTTCAGAC

GTGT*G*C 

 

Recombinant DNA 

      

Software and Algorithms 

 Seurat (R package)  CRAN v3.1.4  

 Seurat (R package)  CRAN v3.1.2 

 ClusterProfiler (R package)  CRAN v3.10.1 

 DirichletReg (R package)  CRAN  v0.6.3.1 

 AUCell (R package)  CRAN  v1.6.1 

Cytobank (software) Kotecha N, et al., 

Curr Protoc Cytom. 

2010 

https://doi.org/10.10

02/0471142956.cy1

017s53 
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https://www.cytoban

k.org 

SPADE (Cytobank) Qiu P, et al., Nat 

Biotechnol. 2011 

https://doi.org/10.10

38/nbt.1991 

viSNE (Cytobank) Amir el-AD, et al., 

Nat Biotechnol. 

2013 

https://doi.org/10.10

38/nbt.2594 

flowCore (R package) Bioconductor v1.48.1 

CytoML (R package) Bioconductor v1.8.1 

flowFP (R package) Bioconductor v1.40.1 

ComplexHeatmap (R package) Bioconductor v1.20.0 

 lme4 (R package) CRAN v1.1-21 

 Prism (software) www.graphpad.com  v8 

Other 
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Figures, figure titles and legends  1303 

 1304 
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Figure 1. Cohort definition and single-cell multi-omics analysis strategy.  1306 

A, Processing pipeline for healthy and COVID-19 blood samples strategies used in this study. 1307 

PBMC are isolated after Ficoll, labeled with cell hashing antibodies and loaded on a droplet-based 1308 

single-cell RNA-seq (scRNA-seq) platform. Red blood cells (RBC) are lysed and immune cells 1309 

are labeled with two panels of metal-labeled antibodies and processed with CyTOF platform. 1310 

Number of subjects analyzed for each cohort included in this study is summarized on the right 1311 

boxes.  1312 

B, Features of the cohort classified according to WHO-defined clinical grades (3 to 8) and the 1313 

time after first symptoms.  1314 

C, Visualization of t-distributed stochastic neighbor embedding (viSNE)-automated analysis of 1315 

CD45+ leukocytes, down-sampled to 70,000 cells, from our mass cytometry analyses using 1316 

antibody panel 2 based on similarities in expression of 29 markers as defined in supplementary 1317 

table 2. Cells are colored according to donor origin (blue = healthy controls, yellow = mild COVID-1318 

19, red = severe COVID-19) and major lineage subtypes.  1319 

D, Box plots summarising differences in major immune cell lineage subtype composition of whole 1320 

blood samples from COVID-19 patients with mild (n=5) or severe disease (n=6) course, age-1321 

matched healthy controls utilized in mass cytometry (HC CyTOF, n=7) or measured by 1322 

conventional or multi-colour flow cytometry (HC flow, n=18) as previously reported (Kverneland 1323 

et al., 2016). *p<0.05, **p<0.01, ***p<0.001    1324 
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Supplemental Figure 1. Overview of sample analysis pipeline, major leukocyte lineages 1327 

definition and quantification by CyTOF and MCFC.  1328 

A, Overview summarising sample analysis pipeline for single cell transcriptomics and proteomics 1329 

of COVID-19 samples. 1330 

B, High resolution SPADE analysis with 400 target nodes and individual nodes aggregated to the 1331 

indicated major immune cell lineages according to the expression of lineage specific cell marker 1332 

such as CD14 for monocytes and CD15 for neutrophils of whole blood samples collected from 1333 

COVID-19 patients and healthy controls and stained with CyTOF panel 1 and 2, respectively. 1334 

C, Box plots summarising differences in major immune cell lineage subtype composition of whole 1335 

blood samples from the second cohort of COVID-19 patients showing either mild (n=2) or 1336 

severe/critical disease (n=3) course, age-matched healthy controls (n=7) measured by 1337 

conventional fluorochrome-based cytometry. **p<0.01. 1338 

  1339 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 5, 2020. ; https://doi.org/10.1101/2020.06.03.20119818doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.03.20119818
http://creativecommons.org/licenses/by-nc-nd/4.0/


50 
 

  1340 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted June 5, 2020. ; https://doi.org/10.1101/2020.06.03.20119818doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.03.20119818
http://creativecommons.org/licenses/by-nc-nd/4.0/


51 
 

Figure 2. scRNA-seq of PBMC from patients of two independent cohorts reveals dynamic 1341 

changes in the composition and the transcriptional states of myeloid cells in the 1342 

peripheral blood in COVID-19 1343 

Abbreviations: HC: Healthy control.  1344 

A, UMAP visualization of 10x chromium scRNA-seq profiles of 48.085 PBMC purified by density 1345 

gradient centrifugation of peripheral blood from 21 samples of different time points of 4 mild 1346 

and 8 severe patients in cohort 1 colored according to the indicated cell type classification based 1347 

on Louvain clustering, reference-based cell-type annotation and marker gene expression 1348 

patterns.  1349 

B, UMAP shown in (a) colored according to disease severity (yellow = mild COVID-19, red = 1350 

severe COVID-19).  1351 

C, Dot plot representation of the top 10 marker genes sorted by average log fold change 1352 

determined for the indicated myeloid cell subsets in the PBMC data set of cohort 1 plotted across 1353 

the subsets of both cohorts.  1354 

D, UMAP visualization of BD rhapsody scRNA-seq profiles of 93.297 PBMC purified by density 1355 

gradient centrifugation from peripheral blood from 35 samples of 6 mild and 5 severe and 2 control 1356 

patients of different time points in cohort 2 colored according to the indicated cell type 1357 

classification based on Louvain clustering, reference-based cell-type annotation and marker gene 1358 

expression patterns (Suppl. Fig. 2A).  1359 

E, Box plots visualizing the percentages of the indicated cell subsets of the total number of PBMCs 1360 

assessed per patient in the respective data set. Boxes are colored according to disease group 1361 

and dots according to the respective cohort of the sample. For neutrophils and immature 1362 

neutrophils only fresh PBMC samples were included. 1363 
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Supplemental Figure 2. Cluster-specific marker gene expression shows inflammatory 1366 

activation signatures of monocyte subsets and the appearance of neutrophil subsets in 1367 

the PBMC fraction 1368 

A, Dot plot representation of the top 10 marker genes sorted by average log fold change 1369 

determined for the clusters depicted in the UMAP in Figure 2A.  1370 

 1371 

B, Dot plot representation of the top 10 marker genes sorted by average log fold change 1372 

determined for the clusters depicted in the UMAP in Figure 2C.  1373 
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Figure 3. Subjects with different COVID-19 stages display unique phenotypical and 1376 

transcriptional monocyte signatures.  1377 

A, Heatmap revealing differences in marker expression determined by mass cytometry (CyTOF) 1378 

using antibody panel 1 of monocyte and dendritic cell cluster. Cell clusters are displayed in 1379 

columns and marker identity is indicated in rows. MSI = marker staining intensity respective 1380 

expression level, significance level for the comparisons i) healthy controls (HC, n=7) versus 1381 

COVID-19 (upper row) as well as ii) mild (n=5) versus severe (n=6, lower row) are indicated using 1382 

a grey scale on top of the heatmap. 1383 

B, t-SNE plots of monocytes and dendritic cells, down-sampled to 70,000 cells, based on their 1384 

similarities in expression of 35 markers as defined in supplementary table 2. Cells are colored 1385 

according to parental subclusters (classical monocytes, non-classical monocytes, intermediate 1386 

monocytes, myeloid dendritic cells, plasmacytoid dendritic cells), donor origin (blue = healthy 1387 

controls, yellow = mild COVID-19, red = severe COVID-19) and expression intensity of CD226, 1388 

HLA-DR and CD11c. 1389 

C, Dot plot representation of marker genes calculated for the clusters within the monocyte 1390 

space of cohort 1. 1391 

D, Gene ontology enrichment analysis of complete marker genes obtained for each identified 1392 

monocyte population of cohort 1. 1393 

E, UMAP visualization of 29,334 cells within the monocyte space of cohort 2. Cells are colored 1394 

according to the identified clusters. 1395 

F, Cluster occupancy per patient over time. Coloring according to the clusters identified in 1396 

Figure 3E. Vertical dashed lines indicate the time points at which the samples were taken. The 1397 

violet bar below the individual patient data indicates the respective WHO classification. Patient 1398 

IDs are shown on the right. 1399 
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Supplemental Figure 3. Phenotypical and transcriptional differences of monocytes from 1402 

mild and severe COVID-19 1403 

A, Box plots summarizing differences in CD226, HLA-DRhigh, CD11c and CXCR3 expression 1404 

within classical monocytes measured by mass cytometry in whole blood samples from cohort 1 1405 

distinguishing between healthy controls (n=7), COVID-19 patients with mild (n=5) or 1406 

severe/critical disease (n=6) course. *p<0.05, **p>0.01 1407 

B, Violin plots representing expression of selected genes in monocyte clusters of cohort 1. 1408 

Coloring according to cluster color in Figure 2 1409 

C, Violin plots representing expression of selected genes in monocyte clusters of cohort 2.  1410 

D, Back mapping of identified monocyte clusters of cohort 2 onto the PBMC UMAP in Figure 2. 1411 

E, Dot plot representation of marker genes found in monocyte clusters of cohort 2. 1412 

F, Visualization of the expression of selected genes in the UMAP of the monocyte space in cohort 1413 

2. 1414 

G, AUCell-based enrichment of gene signature derived from sepsis-associated monocytes 1415 

(Reyes et al., 2020) in monocytes of cohort 2 and plotting of the ‘Area Under the Curve’ (AUC) 1416 

scores as violin plots. The horizontal lines in the violin plots represent the median of the respective 1417 

AUC scores per cluster. 1418 

H, Time-dependent change of IFI6 and ISG15 expression in monocytes of cohort 1. Significant 1419 

changes determined by the Wilcoxon rank sum test are indicated (*** = pvalue < 0.001; n.s. = not 1420 

significant). 1421 
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 1423 

Figure 4. Immature and dysfunctional low-density neutrophils emerge in PBMC fractions. 1424 

A, UMAP representation and clustering of the neutrophils identified in PBMC from cohort 1 1425 

(clusters 9 and 13 in Figure 2A). 1426 

B, Dot plot visualization of the expression of the cluster-specific marker genes associated to 1427 

each of clusters identified in panel A.  1428 

C, Signature enrichment score of neutrophil progenitors derived from previous single-cell data. 1429 

AUC: Area under the curve.  1430 

D, Violin plots giving the expression of selected activation genes across the neutrophil clusters 1431 

identified in panel A.  1432 

E, Expression of ARG1 and PD-L1 projected on the UMAP from panel A.    1433 
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 1434 
 1435 

 1436 

Supplemental Figure 4. Additional analysis of dysfunctional neutrophils in PBMC 1437 

fraction.  1438 

A, Dot plot representation of marker genes associated to pre-neutrophils (pre-neutr), immature 1439 

and mature neutrophils.    1440 

B, Pie charts giving the proportion of cells in each cell cycle stage. The numbers refer to 1441 

clusters as identified in the UMAP in Figure 4A.  1442 
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 1443 

 1444 

Figure 5. Disbalance between increase in activated and potentially immunosuppressive 1445 

neutrophils discriminates between mild and severe COVID-19 patients. 1446 

A, Heatmap revealing differences in marker expression determined by mass cytometry (CyTOF) 1447 

using antibody panel 2 of identified neutrophil cell subcluster (1 to 7). Neutrophil cell clusters 1448 

belonging to the identified subcluster are displayed in columns and marker identity is indicated in 1449 

rows. MSI = marker staining intensity respective expression level, significance level for the 1450 

comparisons i) healthy controls (HC) versus COVID-19 (upper row) as well as ii) mild versus 1451 

severe (lower row) are indicated using a grey scale on top of the heatmap. 1452 

B, t-SNE plots of neutrophils, down-sampled to 70.000 cells, based on their similarities in 1453 

expression of 29 markers as defined in supplementary table 2. Cells are colored according to 1454 
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neutrophil subcluster, donor origin (blue = healthy controls, yellow = mild COVID-19, red = severe 1455 

COVID-19) and expression intensity of CD34, CD64, Siglec 8, RANK, RANKL, CD45, CD62L, 1456 

CD123 and PD-L1. 1457 

C, Bar graphs summarizing CD34, CD62L, CD123 and PD-L1 expression as % positive cells 1458 

within neutrophils of whole blood samples from COVID-19 patients with mild (n=5) or severe 1459 

disease (n=5) course and age-matched healthy controls (n=7). *p<0.05, **p<0.01 1460 

D-F, Box plots summarizing time-dependent differences in total granulocytes and monocytes, 1461 

non-classical monocytes (D) CD34, CD62L, CD123 and PD-L1 expressing neutrophils (E) as well 1462 

as CD11c and CXCR3 expressing classical monocytes (F) measured by mass cytometry in whole 1463 

blood samples from cohort 1 distinguishing between COVID-19 patients with mild (days 0-10: 1464 

n=3, days 11-25: n=10) or severe/critical disease (days 0-10: n=5, days 11-25: n=5) course. 1465 

*p<0.05, ****p<0.0001 1466 
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Figure 6. Delineation of suppressive mature neutrophils in late stage severe COVID-19. 1469 

A, UMAP visualization of fresh blood samples from cohort 2 (PBMC and whole blood combined, 1470 

88,177 cells, controls (ctrl = 12), COVID-19 mild (mild = 6), COVID-19 severe (severe = 8).  1471 

B, UMAP visualization of the immature and mature neutrophils (30,019 cells) from Figure 6A after 1472 

exclusion of one experimental batch (see Methods, controls (ctrl = 10), COVID-19 early mild = 1, 1473 

COVID-19 severe (early =  2, late = 2)). 1474 

C, Dot plot of selected top 6 marker genes ordered by average log fold-change highlighting the 1475 

heterogeneity of the neutrophil space in b.  1476 

D, Overview of functional nomenclature and marker genes for each cluster in the neutrophil space 1477 

in COVID-19 and control patients. 1478 

E, UMAP visualization of neutrophils showing the scaled expression of PD-L1 (CD274) with a 1479 

clear enrichment in the Covid-19 specific clusters 2 and 0. 1480 

F, Confusion matrix for each cluster in Figure 6B divided by disease severity and time point 1481 

showing the enrichment of each patient group for each cluster; the scale is normalized for each 1482 

cluster.  1483 

G, Density plot of cell frequency by disease severity and time point overlaid on UMAP visualization 1484 

of the neutrophil space.  1485 

H, Dot plot of genes from different functional classes showing the differences of the neutrophil 1486 

states (based on literature research).  1487 

I, Transcription factor binding prediction results for clusters 0, 2 and 5 shown as networks of 1488 

transcription factors and their targets among the specifically expressed genes for the given 1489 

cluster. Edges represent predicted transcriptional regulation. Transcription factors in the inner 1490 

circle and their predicted target genes in the outer circle are represented as nodes sized and 1491 

colored according to the scaled expression level across all clusters. Top 10 highest connected 1492 

transcription factors and those exclusively predicted for the cluster as well as the top 5 highest 1493 

connected target genes together with a literature-based selection of targets are labeled. 1494 
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Supplemental Figure 6. Overview of scRNA-seq dataset from cohort 2 and additional 1497 

characterization of suppressive neutrophils. 1498 

A, UMAP (right) of the complete scRNA-seq dataset from cohort 2 (frozen PBMC, fresh PBMC, 1499 

fresh whole blood) and violin plot of number of genes and transcripts expressed in the PBMC VS. 1500 

granulocyte fraction across the different data sets of cohort 2 (right). Violin plots are split into 1501 

granulocytes (left) and PBMC (right). The table below indicates the number of cells per 1502 

experimental condition with the number of samples in brackets. 1503 

B, Box plot of cell type frequencies identified by scRNA-seq in fresh whole blood samples after 1504 

erythrocyte lysis comparing 23 samples from 11 control individuals, 4 samples from mild and 8 1505 

samples from severe COVID-19 patients at early and late timepoints. 1506 

C, Comparison between cell frequencies identified by scRNA-seq and MCFC, pearson’s 1507 

correlation between the mean of each cell population (left) and stacked bar chart sorted by 1508 

disease severity. 1509 

D, Enrichment of signature genes from the neutrophil clusters from cohort 2 on the UMAP 1510 

visualization of cohort 1. 1511 

E, Dot plot representation of marker genes taken from literature classifying different neutrophil 1512 

subsets. 1513 

F, UMAP representation of neutrophils showing the scaled expression of CD62L (SELL) and 1514 

CD64 (FCGR1A) with a clear enrichment in the COVID-19 specific clusters 2 and 0. 1515 

G, Dot plot visualization of selected significantly enriched Gene Ontology terms and KEGG 1516 

pathways for each cluster from the neutrophil space. 1517 

H, Diffusion map dimensionality reduction of the main neutrophil clusters 9, 8, 2, 0 and 6 from the 1518 

severe COVID-19 patients (top) and diffusion pseudotime visualized on the diffusion map 1519 

indicating the transition probability of the different clusters in the following order: 9 - 8 - 2 - 0 - 6 1520 

(bottom).  1521 

I, Genes specific for each cluster visualized along the diffusion pseudotime (top) with the density 1522 

of each cluster along the pseudotime (bottom) highlighting the proposed order of differentiation of 1523 

the different neutrophil subsets. 1524 

H, Transcription factor binding prediction results for clusters 8 and 9 shown as networks of 1525 

transcription factors and their targets among the specifically expressed genes for the given 1526 

cluster. Edges represent predicted transcriptional regulation. Transcription factors in the inner 1527 

circle and their predicted target genes in the outer circle are represented as nodes sized and 1528 

colored according to the scaled expression level across all clusters. Top 10 highest connected 1529 

transcription factors and those exclusively predicted for the cluster as well as the top 5 highest 1530 

connected target genes together with a literature-based selection of targets are labeled. 1531 
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Supplemental Tables 1532 

 1533 

Supplemental Table 1. Cohort outline used to perform scRNA-seq, mass cytometry and 1534 

MCFC (multi-colour flow cytometry).  1535 

 1536 

Supplemental Table 2. Detailed information on antibody panels used for mass cytometry 1537 

analysis.  1538 

 1539 

Supplemental Table 3. List of antibodies used for MCFC. 1540 
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