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 Abstract 14 

Background: Applying heavy nationwide restrictions is a powerful method to curtail COVID-19 15 

transmission but poses a significant humanitarian and economic crisis. Thus, it is essential to 16 

improve our understanding of COVID-19 transmission and develop more focused and effective 17 

strategies. As human mobility drives transmission, data from cell phone devices can be utilized to 18 

achieve these goals.   19 

 20 

Methods: We analyzed aggregated and anonymized mobility data from the cell-phone devices 21 

of>3 million users between February 1, 2020, to May 16, 2020 – in which several movement 22 

restrictions were applied and lifted in Israel. We integrated these mobility patterns into age-, risk- 23 

and region-structured transmission model. Calibrated to coronavirus incidence in 250 regions 24 

covering Israel, we evaluated the efficacy and effectiveness in decreasing mortality of applying 25 

localized and temporal lockdowns (stay-at-home order).  26 

 27 

Results: Poorer regions exhibited lower and slower compliance with the restrictions. Our 28 

transmission model further indicated that individuals from poverty areas were associated with high 29 

transmission rates. Model projections suggested that, counterintuitively, school closure has an 30 

adverse effect and increases COVID-19 mortality in the long run, while interventions focusing on 31 

the elderly are the most efficient. We also found that applying localized and temporal lockdowns 32 

during regional outbreaks reduce mortality compared to nationwide lockdowns. These trends were 33 

consistent across vast ranges of epidemiological parameters, possible seasonal forcing, and even 34 

when we assumed that vaccination would be commercially available in 1-3 years. 35 

 36 

Conclusions: More resources should be devoted to helping impoverished regions. Utilizing 37 

cellphone data despite being anonymized and aggregated can help policymakers worldwide 38 

identify hotspots and apply designated strategies against future COVID-19 outbreaks. 39 

  40 
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Background 41 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was identified in Wuhan, China, 42 

in December 2019. It has since developed into a pandemic wave affecting over 200 countries, 43 

causing over 6.9 million cases and claiming over 390 thousand lives, as of June 8, 2020 [1]. The 44 

rapid growth of the SARS-CoV-2 pandemic led to unprecedented control measures on a global 45 

scale. Travel bans, restrictions on mobility of varying degrees, and nationwide lockdowns have 46 

emerged sharply in over 200 countries [2]. In Israel, since March 9, 2020, travelers from any 47 

country are being denied entry unless they can prove their ability to remain under home isolation 48 

for 14 days. From March 16 onward, daycare and schools were shut, and work was limited to less 49 

than a third of the capacity. On March 26, inessential travel was limited to 100 meters away from 50 

home, and three lockdowns were applied in most regions in Israel to prevent crowding due to 51 

holiday celebrations [3]. 52 

 53 

These massive measures have led to a sharp decline in transmission but pose a significant 54 

humanitarian and economic crisis [4–7]. Recent estimates have suggested that 1.5-3 month 55 

lockdowns will lead to an enormous economic loss, with high variability across countries ranging 56 

between 1.7-13.1% decline in the gross domestic product[4]. Restrictions to mitigate the outbreak 57 

also led to various types of psychological distress, including anxiety, helplessness, and depression 58 

[5–7]. Furthermore, social isolation is a primary public health concern in the elderly, as it also 59 

amplifies the burden of neurocognitive, mental, cardiovascular, and autoimmune problems [7]. 60 

Thus, given that pandemics rarely affect all people in a uniform manner [8], it is essential to 61 

improve our understanding of the COVID-19 transmission dynamics to customize control efforts.  62 

 63 
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As human mobility is an intrinsic property of human behavior, it serves as a key component of the 64 

transmission of respiratory infections, including COVID-19 [9–13]. The four billion mobile 65 

phones in use worldwide are ubiquitous sensors of individuals’ locations and can be utilized not 66 

only to track mobility patterns, but also to understand compliance with ongoing restrictions [12]. 67 

The importance of human mobility is further intensified by the 2.2-11.5 days of incubation, and 68 

the observation that as many as 95% of cases are unreported [14]. Thus, utilizing real-time data on 69 

human mobility is instrumental for early detection and prompt isolation of COVID-19 infection.  70 

 71 

A variety of factors besides human mobility affect the risk of infection and manifestations, 72 

including demographics, education, underlying conditions, and epidemiological characteristics 73 

[15]. The high variance in the severity of the disease for different age groups suggests that age-74 

based strategies might be useful in reducing mortality [16]. Age-stratified modeling studies show  75 

that interventions such as school closure can help delay the outbreak peak [11]. However, this will 76 

not necessarily result in a reduction in the total number of deaths, particularly in light of the 77 

estimated time for vaccine availability being >1 year [17]. In addition to age, individuals with 78 

comorbidities are 2.8-21.4 times more likely to become hospitalized following COVID-19 79 

infection [18]. Another factor may be socioeconomic status. Impoverished populations often live 80 

in denser regions and have reduced access to health services, thereby being most vulnerable during 81 

a crisis [8]. The considerably high rate of household transmission for respiratory infections [19] 82 

may also suggest a higher risk for larger families, regardless of lockdowns.  83 

We analyzed a large-scale data of location records from mobile phones to explore the 84 

spatiotemporal effect of human mobility and population behavior on transmission. We integrated 85 

these mobility data into regional age- and risk-structured transmission model and used our model 86 
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to identify efficient and effective strategies for reducing COVID-19 mortality. Our methodology 87 

can help policymakers worldwide utilize aggregate and anonymized cellphone data to develop 88 

designated strategies against future outbreaks. 89 

 90 

Methods 91 

Human mobility 92 

Our data include mobility records based on cellular data of >3 million users from one of the largest 93 

telecommunication companies in Israel. With the exception of children <10 years of age, the users 94 

are well representative of Israel demographically, ethnically, and socioeconomically. In 95 

accordance with the General Data Protection Regulation (GDPR), the data include aggregated and 96 

anonymized information. The data specifies movement patterns within and between 2,630 zones 97 

covering Israel, on an hourly basis, from February 1, 2020, until May 16, 2020. To ensure privacy, 98 

if less than 50 individuals were identified in the zone in a given hour, the number of reported 99 

individuals was set to zero. 100 

 101 

We determined the location of individuals based on the triangulation of cell towers, which was 102 

found to be accurate to 300 meters in most cases but varied by up to 1 km in less populated areas. 103 

To prevent signal noise and identify stay points, we tracked only locations where users stayed for 104 

at least 15 minutes within a distance threshold of 1.5 km. We defined users as residents of a zone 105 

based on the location at which they had the highest number of signals on most nights during 106 

February 2020. We define a mobility index (MI) as the daily proportion of individuals who traveled 107 

>1.5 km away from their home. To calculate the MI for each zone, we counted the daily number 108 

of individuals in each group that showed a signal away from their home location.  109 
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 110 

Next, we integrated data from the Central Bureau of Statistics (CBS) that specifies several 111 

socioeconomic characteristics, including population size, household size, age distribution, 112 

socioeconomic score, and dominant religion, for each zone. Each zone includes ~3,500 residents. 113 

For each zone, we scaled the number of resident users of the telecommunication company to match 114 

the actual number of residents in the zone, as reported by the Israeli CBS. The CBS specifies for 115 

each zone a socioeconomic cluster from 1 to 10. Based on these clusters, we defined three SES 116 

groups that were nearly equal in size: low (clusters 1-3), middle (clusters 4-7), and high (clusters 117 

8-10). We aggregated the MI according to SES to test the mobility trends on a national level (Fig. 118 

1A). To evaluate the travel patterns based on an individual's SES (Fig. 1B and 1C), we counted 119 

the mean daily number of travels between the 2,630 zones, including for those individuals who 120 

stayed in their origin zone. Grouping by SES and scaling the daily number of travels to one for 121 

each zone, we created an origin-destination travel probability matrix. 122 

 123 

To analyze the relationship among poverty, mobility, and transmission (Fig. 2), we divided the 124 

data into three periods: 13 Feb-26 Mar, 27 Mar-19 Apr, and 20 Apr-15 May, corresponding to 1) 125 

the early phase before restrictions started, 2) the time from restrictions until they were first lifted, 126 

and 3) after the restrictions were lifted. For each period, we ranked municipalities with a population 127 

of >10,000 residents based on the number of new cases per person observed in each period. For 128 

improved clarity of Fig. 2, we present the 50 most prevalent municipalities. We calculated for each 129 

city the number of newly reported cases, the SES, and the distribution of travels to the other 49 130 

municipalities. 131 

 132 
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Transmission model 133 

We developed a dynamic model for age-, risk- and region-stratified SARS-CoV-2 infection 134 

progression and transmission in Israel. Our model is a modified susceptible exposed infected 135 

recovered (SEIR) compartmental framework [20], whereby the population is stratified into health-136 

related compartments, and transitions between the compartments change over time (Fig. 3A). To 137 

model age-dependent transmission, we stratified the population into age groups: 0-4 years, 5-9 138 

years, 10-19 years, 20-29 years, 30-39 years, 40-49 years, 50-59 years, 60-69 years and ≥70 years. 139 

We distinguished high-risk and low-risk individuals in each age group based on the ACIP case 140 

definition [21, 22]. We also distinguished the 250 regions covering Israel in the model. 141 

 142 

The mean incubation period of SARS-CoV-2 is 6.4 days (95% CI, 5.6 to 7.7 days) [23, 24], but 143 

early evidence shows that viral shedding occurs during a presymptomatic stage [25, 26]. Thus, we 144 

considered an exposure period E and an early infectious period 𝐼𝑒𝑥𝑝𝑜𝑠𝑒𝑑. Underreporting arises 145 

from asymptomatic cases or mild cases in individuals who do not seek care. Thus, following the 146 

early infectious phase, individuals in the model transition either to an infectious and reported 147 

compartment 𝐼𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑 or to an infectious and unreported compartment 𝐼𝑢𝑛𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑 [27, 28]. 148 

 149 

Multiple infections with SARS-CoV-2 are not yet fully understood. A recent study indicated that 150 

there is protective immunity following infection [29]. This result is consistent with a previous 151 

study indicating that for SARS-CoV-1, memory T cells persist for up to 11 years [30]. In addition, 152 

similar to other respiratory infections, it is likely that if reinfection occurs, it is less severe and less 153 

transmissive [31]. Thus, we assumed that upon recovery, individuals are fully protected, which is 154 

consistent with other SARS-CoV-2 transmission models [32] (Additional file 1: Supplementary 155 
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information). Altogether, our model includes 5 ∗ 9 ∗ 2 ∗ 250 =  22,500 compartments (ℎ𝑒𝑎𝑙𝑡ℎ −156 

𝑐𝑜𝑚𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡𝑠 ∗ 𝑎𝑔𝑒 − 𝑔𝑟𝑜𝑢𝑝𝑠 ∗ 𝑟𝑖𝑠𝑘 − 𝑔𝑟𝑜𝑢𝑝𝑠 ∗ 𝑟𝑒𝑔𝑖𝑜𝑛𝑠).  157 

 158 

Force of infection and seasonality 159 

The rate at which individuals transmit depends on (i) contact mixing patterns between the infected 160 

individual and his or her contact, (ii) age-specific susceptibility to infection, (iii) region-based 161 

behavioral susceptibility, and (iv) potential seasonal forcing. 162 

Age-specific contact rates were parameterized using data from an extensive survey of daily 163 

contacts [33] and data from CBS regarding the household size in each region. In addition, we 164 

utilized the aggregate mobility data regarding movement patterns within and between 250 regions 165 

as observed in the data during routine and following restrictions (Additional file 1: Supplementary 166 

information). We specifically distinguished the contact patterns of infected individuals for 167 

different locations, namely, at home, at work and during leisure, such that the number of contacts 168 

was based on the extensive survey [33] and the household size, whereas the mixing patterns were 169 

based on the locations of the individuals as analyzed using the mobile data. These contact data 170 

reveal frequent mixing between similar age-groups, moderate mixing between children and people 171 

their parents’ age, and infrequent mixing among other groups. The data based on mobility reveal 172 

more frequent mixing between individuals of similar SES, at similar geographical distances, and 173 

with cultural similarities (Additional file 1: Supplementary information). 174 

We distinguished between in-home and out-of-home transmission. We evaluated the in-home 175 

transmission is independent of age, and based on a previous retrospective studies, that suggested 176 
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a value of 0.16 [19]. The age-specific susceptibility rate for out-of-home individuals 𝛽𝑗 was 177 

parameterized by calibrating our model with daily COVID-19 records. 178 

To account for behavioral susceptibility, we explicitly considered in our model a parameter 179 

reflecting the order to maintain physical distancing, 𝜅𝑝. The high regional variations in 180 

susceptibility were parameterized based on fertility rates and socioeconomic characteristics. 181 

Specifically, we computed for each region the relative change in mobility compared to routine. 182 

Our analysis indicated that for regions of low SES, the change was lower, which was reflected in 183 

our model by higher susceptibility (Additional file 1: Supplementary information). The use of 184 

regional fertility and relative change in mobility allowed us to refrain from calibrating the model 185 

to an excessive number of unknown parameters and avoid overfitting. 186 

Seasonal patterns have been observed in common circulating human coronaviruses (HCoVs), 187 

mostly causing infections in humans between December and May in the Northern Hemisphere 188 

[34]. The two HCoVs 229 E and OC43 show distinct winter seasonality. In addition, many 189 

coronaviruses in animals exhibit a distinct seasonal pattern of incidence in their natural hosts [35]. 190 

There is growing evidence that SARS-CoV-2 is also seasonal, with the optimal setting for 191 

transmission in Israel occurring during winter [36]. Thus, we considered in our base-case seasonal 192 

forcing by including general seasonal variation in the susceptibility rate of the model as 193 

𝑇(𝑡) = (1 + 𝑐𝑜𝑠(
2𝜋(𝑡+𝜑)

365
)), 194 

in which 𝜑 is the seasonal offset. This formulation was previously shown to capture the seasonal 195 

variations in several respiratory infections, including RSV and influenza [31, 37]. We incorporated 196 
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the possible values of 𝜑 to reflect peaks from December through February (Additional file 1: 197 

Supplementary information). 198 

Model calibration 199 

To empirically estimate unknown epidemiological parameters (Additional file 1: Table S5), we 200 

calibrated our model to daily age-stratified cases of COVID-19 confirmed by PCR tests in 30 201 

subdistricts covering Israel. The calibration was conducted on a 30-subdistrict level rather than in 202 

the 250 regions to ensure that there were sufficient time series data points in each location for each 203 

age-group. The data were reported by the Israeli Ministry of Health between February and May 204 

and include daily information for the patients, including age, residential zone, underlying 205 

conditions, and clinical outcomes, including hospitalizations and death. 206 

Due to the uncertainty regarding the proportion of unreported cases, we calibrated our model to 207 

different scenarios. Specifically, underreporting is affected by testing policy and testing 208 

capabilities for each country, as well as individuals' tendency to seek care once clinical symptoms 209 

appear. In addition, underreporting is affected by the severity of the infection, which is associated 210 

with age [18]. Thus, we chose different estimates for the proportion of underreporting, ranging 211 

from 5.5-14 unreported cases for a single reported case. These estimates are based on observations 212 

from screenings conducted in unpublished data from Israel and are consistent with data from 213 

Denmark, Czechia, Netherlands; Santa Clara, California [14, 18, 38] (Additional file 1: Table S1). 214 

Due to the uncertainty related to positive predictive values of serological screenings, we also tested 215 

a scenario of two unreported cases for a single reported case to confirm the robustness of our 216 

findings.  217 
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To account for the age variation, we considered the detailed serological data from Santa Clara [14]. 218 

We also calibrated our model with scenarios assuming different phases of seasonal peaking 219 

between December 21 and February 21, as well as scenarios with no seasonality. The final 220 

transmission model included five parameters without constraints imposed from previous data: 221 

reduced susceptibility due to physical distancing 𝜅𝑝 and susceptibility rate based on age groups j: 222 

0-19, 20-39, 40-59, and >60 (Additional file 1: Supplementary information). 223 

Model simulations 224 

We evaluated the effectiveness of temporal lockdown strategies in reducing mortality by 225 

simulating the model for one year and three years or until disease elimination. Each strategy 226 

considered includes a threshold for activation of a lockdown, and the groups considered for 227 

lockdown were as follows: 1) the entire population in the region, 2) daycare- and school-age 228 

children between 0-19 years of age (children), 3) high-risk groups and individuals >65 years of 229 

age (elderly). Specifically, to model the lockdown strategies, we defined an indicator for each 230 

region as the weekly number of new-reported cases per 10,000 people. Each week, we examined 231 

whether the indicator exceeds a certain threshold for each region. If so, a lockdown was activated 232 

for the following week. This process was continued for 1-3 years. 233 

We simulated the lockdowns in our model based on the mobility patterns we observed between 234 

March 26 and April 16 during which a stay-home orders were applied.  In this period, school and 235 

daycare centers were closed, and for non-essential workplace only 10% of employees from 236 

private and public sectors were allowed to work. Individuals were required to stay in a radius of 237 

100 meters from their home except for grocery and health-related shopping.  238 
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We projected the number of individuals who will die under each strategy by utilized available 239 

detailed information from the Israeli Ministry of Health (Additional file 1: Table S2). Specifically, 240 

we calculated for each age- and risk-group the proportion of individuals who died out of the 241 

reported cases. We multiplied these proportions with the daily model projections of newly reported 242 

cases and summed this product to calculate the total projected number of deaths. We also 243 

accounted for the uncertainty regarding the estimated probabilities. We define the efficiency of a 244 

lockdown strategy as the total number of deaths averted per total lockdown days. The number of 245 

deaths averted is calculated as the projected number of deaths with no lockdowns minus the 246 

number of deaths projected when the considered strategy is applied. 247 

Results 248 

Human mobility and poverty 249 

We utilized aggregated and anonymized information about mobility based on cellular data. The 250 

data specifies movement patterns of >3 million users within and between 2,630 zones covering 251 

Israel, on an hourly basis, from February 1, 2020, to May 16, 2020. This period corresponds to the 252 

period from a month before the COVID-19 outbreak began in Israel until 16,600 cases were 253 

reported. Each zone includes ~3500 residents with available information regarding several 254 

socioeconomic characteristics, including household size, age distribution, mean socioeconomic 255 

score, and religion. 256 

 257 

During the aforementioned period, the government applied and lifted several movement 258 

restrictions. We define a mobility index (MI) as the daily proportion of individuals who traveled 259 

>1.5 km away from their home. While a sharp decline has been observed in the overall population 260 

following restrictions, the decline varied considerably among individuals of different 261 
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socioeconomic statuses (SESs). Specifically, during routine days, the low-SES population had the 262 

lowest MI. Shortly after the restrictions started, this trend changed, and populations of all SESs 263 

had similar MIs, while during the lockdowns, the high-SES population had the lowest MI (Fig. 264 

1A). 265 

 266 

Before the COVID-19 outbreak, the population was highly clustered such that people of a specific 267 

SES typically traveled to zones where the residents matched their SES and were therefore more 268 

likely to meet with each other (Fig. 1B; Additional file 1: Figs. S1 and S2). Likewise, people of 269 

similar demographic groups, such as those with the same religious affiliations, typically traveled 270 

to zones where the residents matched their group. These trends further intensified following the 271 

restrictions (Fig. 1C). Notably, the clustering was not attributable to only the geographical 272 

distance, as many high-SES zones are geographically close to the low-SES zone. 273 
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Fig. 1. Mobility patterns with and without restrictions. (A) Percentage of individuals who traveled >1.5km, 

stratified by socioeconomic groups, during routine and when mobility restrictions were applied and lifted: (1) 

closing schools and stores and limiting workplaces to 30% activity; (2) limiting nonessential travels to 100 meters 

away from home; (3) and (4) national daily lockdowns due to Passover; (5) opening stores; (6) lockdown due to 

Independence Day; (7) lifting the 100 meter limit for nonessential travels. (B) and (C) Travel patterns based on 

individuals’ SES during February 2-29 (B) and March 26-April 18 (C). 

 274 

 275 
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Human mobility and poverty explain transmission 276 

To explore the spatiotemporal effect of human mobility and poverty on transmission, we calculated 277 

the number of new cases and the amount of travel between zones observed during three periods: 278 

February 13-March 26, March 27-April 20, and April 20-May 20 (Fig. 2). These periods 279 

correspond to 1) the early phase before restrictions started, 2) between the time of restrictions and 280 

until the restrictions were lifted, and 3) after restrictions were lifted. Our analysis indicated that 281 

during the first period, the infection was evenly distributed among different SESs. During the 282 

second period, 71% of the cases were residents of zones with a low SES, particularly religious 283 

orthodox Jews. During the third period, 81% of the cases were residents of low SES, mainly 284 

residents of zones of Israeli Arabs and orthodox Jewish people. We also identified a high 285 

correlation ranging from 79.2-82.8% (p value<0.001) with a lag of 12-14 days between the MI and 286 

the disease growth factor, i.e., the number of new cases daily per active case (Additional file 1: 287 

Fig. S3). This lag includes the incubation period, the time from symptom onset until a test is 288 

conducted, and the time until the test results arrive. 289 
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Fig. 2. Association between mobility and poverty in COVID-19 transmission. Spatiotemporal transmission by 

socioeconomic status. We present the 50 municipalities with the highest incidence. Each circle represents one 

municipality. The radius (presented on a logarithmic scale for clarity) reflects the total number of new cases 

reported during the corresponding period. The colors reflect socioeconomic status. The lines between the 

municipalities represent the traffic of each municipality, wherein the line thickness represents the relative traffic 

intensity and the color matches the color of the SES of origin. We present below each map the number of reported 

cases among different SEGs for three periods corresponding to (A) the early phase before restrictions started, (B) 

from the time of restrictions and until the restrictions were lifted, and (C) after restrictions were lifted. 

 290 
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We integrated the daily mobility data into an age-, region-, and risk-stratified model for SARS-291 

CoV-2 transmission. Model parameters were calibrated to the number of new cases daily in 30 292 

subdistricts covering Israel. With only five free parameters, the model recapitulated SARS-CoV-293 

2 trends (Fig. 3). For example, the calibrated model showed that the national SARS-CoV-2 294 

infections peaked during March 17-25 (Fig. 3B) and yielded age and regional distributions of 295 

SARS-CoV-2 consistent with the data (Fig. 3C and D). Our calibration further indicated that a 296 

model ignoring mobility poorly captured the spatiotemporal dynamics and provided 297 

overestimation of disease transmission (Additional file 1: Table S5). We also found that a model 298 

that accounted for seasonal forcing yielded a higher, but not significant (p value<0.35), likelihood 299 

than a model that did not account for seasonal forcing (Additional file 1: Table S5).  300 
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Fig. 3. Structure and fit of the transmission model. (A) Compartmental diagram of the transmission model. 

Susceptible individuals S transition to the exposed compartment with a force of infection λ, where they are infected 

but not yet infectious, until moving to an early infectious compartment at rate σ, in which they do not show 

symptoms but may transmit. Infected individuals in the early stage move to a reported 𝐼𝑅𝑒𝑝𝑜𝑟𝑡𝑒𝑑  or unreported 

𝐼𝑈𝑛𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑  infectious period, in which they may have a mild or an asymptomatic infection until death or complete 

recovery. For clarity of depiction, age, risk, and region stratifications are not displayed. (B) Time series of reported 

daily COVID-19 cases and model fit countrywide. (C) Data and model fit to the age distribution among COVID-

19 infections. (D) Data and model fit to the 30 subdistricts covering Israel. 
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Focused lockdowns reduce mortality 301 

As transmission varied considerably among regions, we projected the number of total deaths for 302 

1-3 years under local and temporal lockdown strategies. Specifically, we simulated three strategies 303 

triggered by a threshold of daily COVID-19 incidence in each of the 250 regions. We evaluated 304 

the efficiency of the lockdown strategies, defined as the number of deaths averted per lockdown 305 

day (Fig. 4). We found that the local strategy of targeting the elderly was substantially more 306 

efficient than nationwide strategy. For example, assuming the proportion of unreported cases is 307 

85% and a lockdown threshold of 5/10,000 (cases/individuals), a strategy targeting the elderly is 308 

4.3-5.5 times more efficient than a global strategy (Fig. 4C and D).  309 

 

Fig. 4. Efficiency of lockdown strategies. Median and interquartile values of the projected number of 

deaths averted per 1 million lockdown days due to the implementation of lockdown strategies (A, C) 

after one year and (B, D) after three years. (A, B) The thresholds for lockdowns in a local region are 

1/10,000 [cases/individuals] and (C, D) 5/10,000 [cases/individuals]. 
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We evaluated the effectiveness of each strategy in reducing mortality (Fig. 5). We found that a 310 

strategy locally targeting the elderly yielded a lower number of deaths than a strategy targeting 311 

children. For example, assuming the proportion of unreported cases is 85% and a lockdown 312 

threshold of 5/10,000 (cases/individuals), a strategy targeting the high-risk group resulted in 313 

4,500-4,900 deaths while on targeting children resulted in 7,900-10,500 deaths after one year 314 

(Fig. 5A and C). In addition, for lockdown thresholds exceeded 5/10,000, which aligns with the 315 

current practice in Israel, a strategy locally targeting the elderly either is projected to be the most 316 

effective or is comparable to the most effective strategies. Although comparable on the 317 

effectiveness, such a policy includes 2.2-5.5 times fewer individuals under lockdowns (Fig. 5C 318 

and D).  These trends were consistent across vast ranges of epidemiological parameters, different 319 

plausible ranges of threshold values, and different considerations of seasonal forcing. 320 
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Fig. 5. Effectiveness of lockdown strategies. Median and interquartile values of the projected number 

of deaths after implementation of strategies (A, C) after one year and (B, D) after three years. (A, B) 

The thresholds for lockdowns in a local region are 1/10,000 [cases/individuals] and (C, D) 5/10000 

[cases/individuals]. 

 321 

Discussion 322 

Our key findings suggest that COVID-19 infection does not spread uniformly in the population, 323 

and thus, intervention strategies should focus primarily on protecting elderly and individuals with 324 

underlying conditions in regions of outbreaks. Such a strategy can reduce mortality while enabling 325 

daily routine for a vast majority of the population.  326 
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Our work demonstrates that to understand the spatiotemporal dynamics of transmission, models 327 

must account for mobility as well as behavioral aspects that are associated with sociodemographic 328 

and socioeconomic factors. In particular, we found that SARS-CoV-2 is more likely to spread in 329 

more impoverished regions and is affected by human mobility. The intensive interactions likely 330 

led to higher transmission in developed countries than in developing countries. However, our 331 

model suggested that people of low SES are at higher risk due to poorer compliance and larger 332 

household size. Thus, to contain the COVID-19 outbreak more resources should be devoted to 333 

helping improvised regions. 334 

 335 

Our analyses indicate that localized lockdowns with incidence thresholds as low as five reported 336 

cases in 10,000 individuals are essential to decrease mortality. This finding underscores the 337 

importance of maintaining a high level of testing [39], particularly in regions with elevated risk of 338 

transmission. However, with such a strategy, at least 2500 total years of lockdowns (equivalent to 339 

a one-day lockdown of 912,500 individuals) are required to prevent a single death. Considering 340 

that one day of lockdown is equivalent to a quality of life value that is ~0.85 times that in a routine 341 

day [40], even local lockdowns should be prudently considered from a health economic 342 

perspective. Thus, future modeling studies should also include localized and temporal massive 343 

screening efforts, which result in more focused quarantines and isolations than massive control 344 

measures. 345 

 346 

As in any modeling study, we made several assumptions. Nationwide and local lockdowns are 347 

powerful, yet heavy, control measures. Thus, the local strategies tested in our model should be 348 

applied only if containment cannot be achieved via less drastic measures to the economy such as 349 
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the use of contact tracing to break the chains of infection, requiring the use face masks and 350 

educating to maintain physical distancing. We denote that these measures were applied in Israel 351 

and were taken into consideration in our model indirectly by our calibration process. Thus, our 352 

model suggests the disease cannot be contained by these measures in the extent they were 353 

implemented.  354 

 355 

We assumed in our model that there is a long-lasting protective immunity following infection 356 

which is consistent with previous human coronavirus types [29, 30, 32]. However, a recent study 357 

suggested that people are unlikely to produce long-lasting protective antibodies against this virus 358 

[41]. If, indeed, a rapid waning is possible, this highlights the importance to protect the elderly in 359 

regions of high outbreaks.   360 

 361 

Our local lockdowns correspond to regions with a population of ~36,000 people. A smaller 362 

lockdown may be more efficient but could not be tested by our model. Additionally, with the 363 

growing evidence of a disproportionate risk from COVID-19 to the elderly [18, 42], focused 364 

control measures are likely to be conducted in retirement homes and facilities with populated 365 

communities at high risk, which we did not explicitly account for in our model [43]. Although the 366 

transmission dynamics are unlikely to change with such focused interventions, the overall 367 

mortality is expected to be lower than what we have found. 368 

 369 

While there is a debate in the literature regarding the extent of infectiousness and transmissibility 370 

in children [44], our results highlighted a not less important question: to whom do children 371 
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transmit? Our findings reveal that children are less likely to transmit to populations at risk, and 372 

thus, a differential lockdown strategy that targets children may be even harmful. 373 

 374 

Conclusion 375 

 We showed that using aggregated and anonymized human mobility data from cellular phones 376 

under the General Data Protection Regulation (GDPR) guidelines is a powerful tool to improve 377 

the understanding of transmission dynamics and to evaluate the effectiveness of control measures. 378 

Our transmission model predicted that rather than nationwide lockdowns, applying temporal and 379 

localized lockdowns that focus on elderly can substantially reduce mortality. Such focused 380 

measures will enable a vast majority of the population to maintain a daily routine.   381 
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1. Model   24 

1.1. The model  25 

We developed a dynamic model for age-, risk- and regions-stratified SARS-Cov-2 infection 26 

progression and transmission in Israel. Our model is a modified Susceptible-Exposed-Infected-27 

Recovered (SEIR) compartmental framework [1], whereby the population is stratified into health-28 

related compartments, and transitions between the compartments occurs over time (Main text, Fig. 29 

3). To model age-dependent transmission, we stratified the population into nine age groups: 0–4 30 

years, 5-9 years, 10-19 years, 20-29 years, 30-39 years, 40-49 years, 50-59 years, 60-69 years and 31 

≥70 years. [2–4]. We distinguished between high-risk and low-risk individuals for each age group 32 

based on the ACIP case definition [5,6]. We also distinguish in the model between 250 regions 33 

covering Israel.  34 

 35 

Multiple infections with SARS-Cov-2 is yet fully understood. A recent study indicated that there 36 

is a protective immunity following infection in humans [7] and animals [8]. This result is in-line 37 

with a previous study indicating that for SARS-Cov-1, Memory T cells persist for up to 11 years 38 

[9]. In addition, similarly to other respiratory infections, it is likely that if re-infection occurs, it is 39 

less severe and less transmissive [10]. Thus, we assumed that upon recovery individuals are fully 40 

protected for the entire season wich consistent with other SARS-COV-2[11,12]. 41 

The mean incubation period of SARS-Cov-2 is 6.4 days (95% CI, 5.6 to 7.7 days) [13,14], but 42 

first evidence shows viral shedding occurs during a pre-symptomatic stage [15,16]. Thus, we 43 

considered an exposed period 𝐸, and an early infectious period 𝐼𝑒𝑥𝑝𝑜𝑠𝑒𝑑. Underreporting arises 44 

from asymptomatic cases or mild cases of individuals that do not seek care [17–20]. Thus, 45 
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following the early infectious phase, individuals in the model transition either to an infectious and 46 

reported compartment 𝐼𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑, or to infectious and unreported compartment 𝐼𝑢𝑛𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑. 47 

To enable in our model for a subset of the population to go for intervention (e.g., 30% of the 48 

individuals from specific regions, age groups or risk-group to go under lockdown during a selected 49 

time period), we also specifically distinguish between those who undergo and those who did not 50 

undergo an intervention. 51 

Accordingly, we stratified the population into six health-related compartments: 52 

susceptible 𝑆𝑗,𝑘,𝑟,𝑞(𝑡), exposed but not yet infectious 𝐸𝑗,𝑘,𝑟,𝑞(𝑡), infectious at early 53 

stage 𝐼𝑗,𝑘,𝑟,𝑞
𝑒𝑥𝑝𝑜𝑠𝑒𝑑(𝑡), reported infectious 𝐼𝑗,𝑘,𝑟,𝑞

𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑(𝑡), unreported infectious  𝐼𝑗,𝑘,𝑟,𝑞
𝑢𝑛𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑(𝑡) and 54 

recovered  𝑅𝑗,𝑘,𝑟,𝑞(𝑡), such that at any given time t (in days) the population is fixed and scaled to 55 

one. Namely,  56 

 

∑ ∑ ∑ ∑[𝑆𝑗,𝑘,𝑟,𝑞(𝑡) +  𝐸𝑗,𝑘,𝑟,𝑞(𝑡) +    𝐼𝑗,𝑘,𝑟,𝑞
𝑒𝑥𝑝𝑜𝑠𝑒𝑑(𝑡) +   𝐼𝑗,𝑘,𝑟,𝑞

𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑(𝑡)

𝑞𝑟𝑘𝑗

+ 𝐼𝑗,𝑘,𝑟,𝑞
𝑢𝑛𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑(𝑡) + 𝑅𝑗,𝑘,𝑟,𝑞(𝑡)] =  ∑ ∑ ∑ ∑ 𝑁𝑗,𝑘,𝑟,𝑞

𝑞𝑟𝑘𝑗

 = 1, 

(1) 

where the index 𝑗 ∈  {0 − 4𝑦, 5 − 10𝑦, … , > 70𝑦} represents the age-group of each individual, 57 

index 𝑘 ∈ {1,2, … ,250} specifies the home region of each individual,  index 𝑟 ∈  {𝐿, 𝐻} specifies 58 

the risk-group of each individual (i.e. High-risk, or low-risk) and index 𝑞 ∈59 

{𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛, 𝑛𝑜𝑛 − 𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛} represent the intervention-group of each individual.  60 

 61 

 62 
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1.2. Model transitioning  63 

 64 

Susceptible individuals 𝑆𝑗,𝑘,𝑟,𝑞(0), transition to the exposed compartment 𝐸𝑗,𝑘,𝑟,𝑞(𝑡), with force of 65 

infection  𝜆𝑗,𝑘,𝑞(𝑡), depending on their age-group j home region-group k and their intervention-66 

group q. At this compartment individuals are infected but not yet infectious until they move at rate 67 

𝜎  to an infectious compartment 𝐼𝑗,𝑘,𝑟,𝑞
𝑒𝑥𝑝𝑜𝑠𝑒𝑑(𝑡) , where they are at the early stage of the infectious 68 

period. Infected individuals at early stage of their infectious period, then move at rate 𝛿 to the late 69 

infectious period, where they can  become to a unreported case (having non to mild symptoms) 70 

with probability 𝑓𝑗,𝑟   which results in transition to 𝐼𝑗,𝑘,𝑟,𝑞
𝑢𝑛𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑(𝑡). With probability of (1 − 𝑓𝑗,𝑟) 71 

they can become to a reported case (having moderate to severe symptoms), which results in 72 

transition to 𝐼𝑗,𝑘,𝑟,𝑞
𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑(𝑡). After infectious period, individuals’ transition into the recovered 73 

compartment at rate 𝛾, 𝑅𝑗,𝑘,𝑟,𝑞(𝑡),. (See Section, 2.3 Epidemiological parameters). We also 74 

consider a function of the initial spreaders with time   𝜀𝑗,𝑘,𝑟(𝑡), that reflects the individuals exposed 75 

to the virus the entered Israel from overseas between February 21 2020 - and March 9, 2020. Thus, 76 

the transmission model is composed of the following system of difference equations:  77 

  78 
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𝑆𝑗,𝑘,𝑟,𝑞(𝑡) = 𝑆𝑗,𝑘,𝑟,𝑞(𝑡 − 1) − 𝜆𝑗,𝑘,𝑞(𝑡) ∙ 𝑆𝑗,𝑘(𝑡 − 1), 

𝐸𝑗,𝑘,𝑟,𝑞(𝑡) = 𝐸𝑗,𝑘,𝑟,𝑞(𝑡 − 1) + 𝜆𝑗,𝑘,𝑞(𝑡) ∙ 𝑆𝑗,𝑘(𝑡 − 1) − 𝜎 ∙ 𝐸𝑗,𝑘,𝑟,𝑞(𝑡 − 1) + 𝜀𝑗,𝑘,𝑟𝑞(𝑡), 

𝐼𝑗,𝑘,𝑟,𝑞
𝑒𝑥𝑝𝑜𝑠𝑒𝑑(𝑡) = 𝐼𝑗,𝑘,𝑟,𝑞

𝑒𝑥𝑝𝑜𝑠𝑒𝑑(𝑡 − 1) + 𝜎 ∙ 𝐸𝑗,𝑘,𝑟,𝑞(𝑡 − 1) − 𝛿 ∙  𝐼𝑗,𝑘,𝑟,𝑞
𝑒𝑥𝑝𝑜𝑠𝑒𝑑(𝑡 − 1), 

𝐼𝑗,𝑘,𝑟,𝑞
𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑(𝑡) =  𝐼𝑗,𝑘,𝑟,𝑞

𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑(𝑡 − 1) + (1 − 𝑓𝑗,𝑟)𝛿 ∙ 𝐼𝑗,𝑘,𝑟,𝑞
𝑒𝑥𝑝𝑜𝑠𝑒𝑑(𝑡 − 1) − 𝛾 ∙ 𝐼𝑗,𝑘,𝑟,𝑞

𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑(𝑡 − 1), 

𝐼𝑗,𝑘,𝑟,𝑞
𝑢𝑛𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑(𝑡) =  𝐼𝑗,𝑘,𝑟,𝑞

𝑢𝑛𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑(𝑡 − 1) + 𝑓𝑗,𝑟𝛿 ∙ 𝐼𝑗,𝑘,𝑟,𝑞
𝑒𝑥𝑝𝑜𝑠𝑒𝑑(𝑡 − 1) − 𝛾 ∙ 𝐼𝑗,𝑘,𝑟,𝑞

𝑢𝑛𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑(𝑡 − 1), 

𝑅𝑗,𝑘,𝑟,𝑞(𝑡) =  𝑅𝑗,𝑘,𝑟,𝑞(𝑡 − 1) + 𝛾 ∙ (𝐼𝑗,𝑘,𝑟,𝑞
𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑(𝑡 − 1) + 𝐼𝑗,𝑘,𝑟,𝑞

𝑢𝑛𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑(𝑡 − 1)), 

with initial conditions: 

𝑆𝑗,𝑘,𝑟,𝑞(0) =  𝑁𝑗,𝑘,𝑟,𝑞 . 

𝐸𝑗,𝑘,𝑟,𝑞(0) = 𝐼𝑗,𝑘,𝑟,𝑞
𝑒𝑥𝑝𝑜𝑠𝑒𝑑(0) = 𝐼𝑗,𝑘,𝑟,𝑞

𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑(0) = 𝐼𝑗,𝑘,𝑟,𝑞
𝑢𝑛𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑(0) = 𝑅𝑗,𝑘,𝑟,𝑞(0) = 0. 

(2) 

 79 

1.3. Force of infection 80 

The rate at which individuals transmit SARS-Cov-2 at time t is 𝜆𝑗,𝑟,𝑞(𝑡). This rate depends on the 81 

combination of (i) contact mixing patterns between an infected individual and his or her contacts, 82 

(ii) age-specific susceptibility to infection, (iii) region-based behavioral susceptibility, and (iv) a 83 

potential seasonal forcing. 84 

 85 

We incorporate age- and region-specific contact patterns between individuals, represented by 86 

contact rate between an infected individual in age-group 𝑖, region-group 𝑙 and each of their contacts 87 

with susceptible in age-group 𝑗,region-group 𝑘, for different locations: at home, at work and during 88 
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leisure, for each day 𝑡denoted by 𝐶(𝑙,𝑖),(𝑘,𝑗)
𝜏 (𝑡), such that i𝜏 ∈ {𝐻𝑜𝑚𝑒, 𝑊𝑜𝑟𝑘, 𝐿𝑒𝑖𝑠𝑢𝑟𝑒}, is the 89 

location index of the contact location index. The contact matrix 𝐶(𝑙,𝑖),(𝑘,𝑗)
𝜏 (𝑡) is detailed in section 90 

2.1 Contact mixing patterns.  91 

 92 

We distinguish between in-home versus out-of-home transmission. Consistent with a previous 93 

study [21], we assume the in-home transmission to be fixed and independent of age, 𝛽𝐻𝑜𝑚𝑒. (See 94 

Section 2.3 Epidemiological parameters). To account for the reduced probability of infection in 95 

house following a recovery of other house members, we multiple the susceptibility inside 96 

household, 𝛽𝐻𝑜𝑚𝑒, by decay function 𝜓𝑘(𝑡) =
𝑆𝑘(𝑡−1)

𝑆𝑘(0)
.  This function serve as an unbiased estimator 97 

to the proportion of susceptible individuals in the house Age-specific susceptibility rate for 98 

individuals out-of-home 𝛽𝑗, was parameterized by calibrating our model with daily COVID-19 99 

records (See Section 3. calibrated parameters). 100 

 101 

 To account for behavioral susceptibility, we explicitly considered in our model a parameter 102 

reflecting the order to maintain physical distancing, 𝜅𝑝, as vast number of countries, including 103 

Israel, adopted measures such as physical-distancing to control the susceptibility of SARS-CoV-2 104 

[22]. This parameter was calibrated to the epidemiological data of COVID-19 in Israel. Moreover, 105 

the high regional variations in susceptibility were parameterized based on fertility rates and 106 

socioeconomic characteristics relative to the national average, using the data from Central Bureau 107 

of Statistics (CBS), 𝛼𝑘. Specifically, we computed for each region the relative reduction in travels 108 

>1.5 km compared to routine 𝑀𝑗,𝑘,𝑞(See Section 2.2 Relative reduction in travels). Our analysis 109 
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indicated that for regions of low SES the change was lower, which was reflected by our model 110 

with higher susceptibility.  111 

 112 

Seasonal patterns have been observed in common circulating HCoVs, mostly causing infections 113 

in humans between December and May in the Northern Hemisphere [23]. The two human 114 

coronaviruses 229 E and OC43 show distinct winter seasonality. In addition, many coronaviruses 115 

in animals do exhibit a distinct seasonal pattern of incidence in their natural hosts [24]. There is 116 

growing evidence that SARS-CoV-2 is also seasonal, with the optimal setting for transmission in 117 

Israel during winter [25,26]. Thus, we considered in our base-case seasonal forcing by including 118 

general seasonal variation in the susceptibility rate of the model as 119 

 𝑇(𝑡) = 1 + cos (
2𝜋(𝑡 + 𝜙)

365
). (3) 

 120 

in which 𝜑 is seasonal offset. This formulation was previously shown to capture the seasonal 121 

variations of several respiratory infections including RSV and influenza [10,27]. We incorporated 122 

possible values of 𝜑 to reflect peak from December thru February (See Section 2.3 123 

Epidemiological parameters).   124 

Taken together, the force of infection 𝜆𝑗,𝑘,𝑞(𝑡) is given by  125 

  126 
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𝜆𝑗,𝑘,𝑞(𝑡) =  𝑀𝑗,𝑘,𝑞 ∙ 𝜅𝑝 ∙ 𝑇(𝑡) ∙ (𝛽ℎ𝑜𝑚𝑒 ∙ 𝜓𝑘(𝑡) ∙

∑ ∑ ∑ 𝐶(𝑙,𝑖),(𝑘,𝑗)
𝐻𝑜𝑚𝑒 (𝑡) ∑ (𝐼𝑗,𝑘,𝑟,𝑝

𝑒𝑥𝑝𝑜𝑠𝑒𝑑(𝑡 − 1) + 𝐼𝑗,𝑘,𝑟,𝑝
𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑(𝑡 − 1) + 𝐼𝑗,𝑘,𝑟,𝑝

𝑢𝑛𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑(𝑡 −𝑟𝑝𝑙𝑖

1)) + 𝛽𝑗 ∙ 𝛼𝑘 ∙ [∑ ∑ ∑ ∑ 𝐶(𝑙,𝑖),(𝑘,𝑗)
𝜏 (𝑡) ∑ (𝐼𝑗,𝑘,𝑟,𝑝

𝑒𝑥𝑝𝑜𝑠𝑒𝑑(𝑡 − 1) +𝑟𝜏∈{𝑊𝑜𝑟𝑘,𝐿𝑒𝑖𝑠𝑢𝑟𝑒}𝑝𝑙𝑖

𝐼𝑗,𝑘,𝑟,𝑝
𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑(𝑡 − 1) + 𝐼𝑗,𝑘,𝑟,𝑝

𝑢𝑛𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑(𝑡 − 1))])  

(4) 

 127 

2. Fixed parameters    128 

 129 

2.1. Contact mixing patterns 130 

At the core of the transmission model lies the contact mixing patterns between a susceptible 131 

individual and infectious individual 𝐶(𝑙,𝑖),(𝑟,𝑗)
𝜏 (𝑡). Similar to a previous study [21], the contact 132 

matrices depends on the age-group and region of residency for the susceptible individual (𝑙, 𝑖),  the 133 

age group and region of residency for an infectious individual (𝑟, 𝑗) at location 𝜏 ∈134 

{𝐻𝑜𝑚𝑒, 𝑊𝑜𝑟𝑘, 𝐿𝑒𝑖𝑠𝑢𝑟𝑒} on day 𝑡 . Here we detail the process of how we conducted the contact-135 

mixing.  136 

 137 

Household contacts  138 

We estimated the contact mixing at home for each region based on the average household size and 139 

its age distribution from the Israeli Central Bureau of Statistics (CBS) [28,29]. We assume all 140 

individuals in the same household will meet with each other daily regardless of the control 141 

measures applied by the country (e.g.  lockdowns). The CBS data suggest that low socioeconomic 142 

status is characterized by larger and younger household size.  143 

 144 
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Work and leisure contact patterns 145 

Age-specific contacts  146 

We parametrized the age-specific contact rates using data from a survey of daily contacts collected 147 

in eight European countries [30]. This contact data includes contact rates for different locations: 148 

works (or school for children <10), leisure. In addition, the data exhibits frequent mixing between 149 

similar age-groups, moderate mixing between children and adults in their thirties (likely their 150 

parents), and infrequent mixing between other groups. To generate the age-specific contact mixing 151 

used in our model, we used the means of each age-group over the eight countries. To ensure the 152 

matrices is symmetric and convert between age-groups used in the survey to those used in out 153 

model, we adjusted the contact matrices according to the means for reciprocal age group pairing 154 

[10].  155 

 156 

Origin-destination from mobility data  157 

 158 

Our data includes mobility records based on cellular data of >3 million users from one of the 159 

largest telecommunication companies in Israel. The data specifies movement patterns within and 160 

between 2,630 zones covering Israel, on an hourly basis, from February 1, 2020, and until May 161 

16, 2020. To ensure privacy, if in a given hour less than 50 individuals are identified in the zone, 162 

the number of reported individuals is set to zero. We determined the location of individuals based 163 

on the triangulation of cell towers, which was found accurate to 300 meters in most cases but 164 

varied to 1 km in less populated areas. We defined users as residents of a zone based on location 165 

in which they had the highest number of signals on most nights during February 2020.  166 

 167 
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We used this data to develop aggregated origin-destination (OD) matrices between and within 168 

zones. To refrain from signal noises and identify stay points, we track only locations where users 169 

stayed for at least 15 minutes within a distance threshold of 1.7 km. The OD matrices serve as a 170 

proxy to the flow from each region to another.  171 

 172 

Next, we integrated data from the Central Bureau of Statistics (CBS) that specifies for each zone 173 

several socioeconomic characteristics, including population size, household size, age distribution, 174 

socioeconomic score, and dominant religion. Each zone includes ~3,500 residents. For each zone, 175 

we scaled the number of resident users of the telecommunication company to match with the actual 176 

number of residents in the zone, as recorded by the Israeli CBS. Grouping the zones by SES, and 177 

scaling for each zone the daily number of travels to one, we created an origin-destination traveling 178 

probability matrix. We found that the population is clustered, such that people of specific SES are 179 

more likely to travel to zones of the same SES during routine and even more likely during 180 

movement restrictions. These findings remain consistent when partitioning the population into 181 

resolution of 10 socioeconomic clusters, comprising the different SESs. Additionally, a similar 182 

phenomenon is observed when partitioning the population by Religious Affiliations to Arab, 183 

orthodox and non-orthodox Jewish, and also for the combination of both religious affiliation and 184 

socioeconomic clusters (Figs. S1 and S2).  185 

 186 
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 187 

Fig. S1. Traveling patterns during routine. Traveling patterns during February 2-29 based on (A) religious 188 

affiliation, (B) socioeconomic status, and (C) religious affiliation and socioeconomic status. 189 
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 190 

Fig. S2. Traveling patterns during COVID-19 outbreak. Traveling patterns during March 26-April 18 based on 191 

(A) religious affiliation, (B) socioeconomic status, and (C) religious affiliation and socioeconomic status. 192 

 193 

We used this data to develop two aggregated origin-destination (OD) matrices between and within 194 

regions from during work time 08:01-17:00 and leisure time 17:01-23:00. To incorporate the time 195 

depended travels following restrictions periods and routine we developed the two OD for the 196 

following periods: February 21 – March 13, March 14 – March 16, March 17 – March 25, March 197 

26 – April 2, April 3 – April 6, April 7 – April 16, April 17 – May 4, May 5 – May 11. 198 

 199 
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To integrate the age-specific contact matrices and the OD matrices we multiplied the number of 200 

contacts for each age-group by the travel distribution for each region in the OD matrices. We 201 

assumed that at work, children at the age of 0-9 years old, remains at their home region. We also 202 

assumed that at leisure time children at the age of 0-9 years old movement patterns are like their 203 

parents. 204 

 205 

2.2. Relative reduction in travels 206 

For each region, we computed the relative reduction in travels >1.5 km 𝑀𝑗,𝑘,𝑞. This measure was 207 

done scaling the daily proportion of travels more than 1.5 km out-of-home. 208 

 
𝑀𝑗,𝑘,𝑞 =

𝑀𝐼𝑞(𝑡) − min
t

(𝑀𝐼𝑞(𝑡))

max
t

(𝑀𝐼𝑞(𝑡)) − min
t

(𝑀𝐼𝑞(𝑡))
 

 

(5) 

 209 

To compute this minimal and maximal values and refrain from outliers, we averaged the three 210 

minimal and three maximal values. This measure was found to be highly correlative with disease 211 

growth factor ranging between 79.2-82.8% (p value<0.001) for a shift of 12-14 days (Fig. S3). 212 

Thus, we incorporated for each region this measure in the model. 213 

 214 
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 215 

Fig. S3. Mobility ahead of transmission. Percentage relative reduction in travels from home between March 8 and 216 

April 22 (red) and new cases per active cases between March 22 and May 8 (blue). Both plots show the weekly 217 

average. The correlation between the two is 97.0% (inserted graph).  218 

 219 

  220 
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2.3. Epidemiological parameters  221 

 222 

Unreported cases 223 

Under reporting arises from asymptomatic cases or mild cases of individuals that do not seek for 224 

care. The severity of SARS-Cov-2 infection is associated with age- and risk- group [31].  In 225 

addition, underreporting is affected by testing policy and testing-capabilities for each country, as 226 

well as the tendency of individuals to seek for care once clinical symptoms appear. PCR or 227 

serological screenings have yet to be conducted in Israel. Thus, we evaluated unreported cases 228 

based on PCR and serological screenings from the Czech Republic, Denmark, and Santa Clara, 229 

California, and Iceland. Similarly, to Israel, as to May 14th, 2020 these countries are characterized 230 

with high rates of testing and low number of severe cases.  In addition, hospitals were not 231 

overwhelmed.  Serological screenings from the Czech Republic suggested that each reported case 232 

corresponds to ~5.5 unreported cases [18,20], whereas estimates from Santa Clara suggested at 233 

least 14 unreported cases for each single reported case [17]. Taken together we chose to present 234 

estimates of unreported ratios 1:5.5 (Scenario A), 1:9 (Scenario B), and 1:14 (Scenario C). It is not 235 

clear how much reutilizing antibodies are sufficient to ensure protection, and thus it is possible 236 

serological screenings serve as over estimation to determine exposure. Thus, to determine the 237 

robustness of our findings, we also considered an extreme scenario of 1:2 (Scenario D).  238 

We estimated the proportion of under reporting for each age-group by scaling the estimates from 239 

Santa-Clara Study to the age reported cases in this region [32]. This analysis suggested that 240 

younger age-groups are more likely to be unreported. Conservatively, we assumed that all cases 241 

among individuals at high-risk are reported. Using these estimates and based on the reported cases 242 
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in Israel between February 20th - May 14th ,2020, we obtained that overall proportion of unreported 243 

cases is 85% for scenario A, 89% for scenario B, 93% for scenario C and 69% for scenario D.  244 

Table S1. proportion of unreported cases. proportion of unreported cases among individuals at high risk and low 245 

risk stratified by age and overall reported cases based on the reported cases observed in Israel between February 20 246 

and May 14, 2020.  247 

Scenario  Risk \ Age 0-19 20-64 ≥65 

A  Low  0.97 0.85 0.68 

High  0.97 0.85 0.68 

Total   0.85 

B  Low  0.95 0.89 0.80 

High  0.95 0.89 0.80 

Total   0.89 

C  Low  0.99 0.93 0.84 

High  0.99 0.93 0.84 

Total   0.93 

D Low  0.92 0.67 0.43 

High  0.92 0.67 0.43 

Total   0.69 

 248 

Case fatality  249 

The probability of death for each age-and risk-group given a reported case was evaluated based on 250 

the Israeli Ministry of Health case report data (Table S2).   251 

 252 

 253 
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Table S2. Probability of death for each age-and risk-group given a reported case. 254 

Age-

group 

Risk-

group 

Base-case 

value 

Distribution 

0-19 High 0  

20-59 High 0.89% 𝐵𝑒𝑡𝑎(4,410) 

60-69 High 1.48% 𝐵𝑒𝑡𝑎(5,312) 

≥ 𝟕𝟎 High 12.03% 𝐵𝑒𝑡𝑎(52,378) 

0-19 Low 0  

20-59 Low 0.06% 𝐵𝑒𝑡𝑎(5,7759) 

60-69 Low 1.06% 𝐵𝑒𝑡𝑎(11,995) 

≥ 𝟕𝟎 Low 11.33% 𝐵𝑒𝑡𝑎(95,741) 

 255 

Initial morbidity(aboard) 256 

The initial morbidity in Israel was imported by 491 citizens who returned from overseas. The first 257 

infected traveler identified on February 20, and by March 9th ,2020 a self-quarantine was 258 

mandatory for all returning. Most of the flights to Israel arrive from the developed countries. Thus, 259 

we distributed the these cases in each day of the 18 days proportionally to the daily new cases in 260 

Italy, which had the hardest hit among developed countries [33]. To account for under reporting, 261 

we multiplied the number of cases in each day according to the unreported scenarios we considered 262 

(Table S1). We entered these initial spreaders, 𝜀𝑗,𝑘,𝑟,𝑖(𝑡), to the exposed compartment. 263 

 264 

 265 

 266 
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Susceptibility at-home 267 

 We distinguish between in-home versus out-of-home transmission. Consistent with a previous 268 

study [21]. We specifically distinguish between the susceptibility of those settings. We estimated 269 

the in-home susceptibility rate, 𝛽ℎ𝑜𝑚𝑒 , based on a previous study that showed a secondary attack 270 

rate of 16.3% throughout the entire infectious period [34].  271 

 272 

  273 
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Table S3. Fixed parameters used in the transmission model.  274 

Parameter Description Value Reference 

𝑵𝒋,𝒌,𝒓,𝒒 Population size of risk-group r age-group j in 

region k 

Varies 

between 

regions 

[5] 

 

𝟏

𝝈
 

Mean duration of exposed period 4.1 𝑑𝑎𝑦𝑠 [13] 

[14] 

[16] 

[15] 

𝟏

𝜹
  

Mean duration of early infectious period 2.3 𝑑𝑎𝑦𝑠 [13] 

[14] 

[16] 

[15] 

𝒇𝒋,𝒓 Unreported probabilities Table S1  [31] 

[17] 

[19] 

𝝋 Seasonal phase December 21 

(𝜑 = 60), 

January 21 

(𝜑 = 29), 

February 21 

(𝜑 = 0). 

[24] 

[12] 

[25] 

[26] 

[35] 
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𝟏

𝜸
 

Mean duration of late infectious period (in 

reported and unreported cases) 

7 𝑑𝑎𝑦𝑠 [16] 

 𝑪(𝒍,𝒊),(𝒓,𝒋)
𝝉 (𝒕) Contact rate between an infected individual in 

age-group 𝑖, region-group 𝑙 and each of their 

contacts with susceptible in age-group 𝑗,region-

group 𝑘, for different location 𝜏, for each day 𝑡. 

 [30] 

[3] 

[28] 

[29] 

 

𝜶𝒌 Fertility rate for each region k relative to the 

nation’s mean. 

 [36] 

[29] 

𝝆𝒋,𝒓 Probability of death for each age-and risk-group 

given a reported case 

Table S2  [37] 

𝜷𝒉𝒐𝒎𝒆 In-home susceptibility rate 0.018 [34] 

 275 

3. Calibrated parameters  276 

  277 

To estimate empirically unknown epidemiological parameters, we calibrated our model to daily 278 

age-stratified cases of COVID-19 confirmed by PCR tests in 30 subdistricts covering Israel 279 

between March 1 until May 10. We shifted the data 11 days backward, to compensate for the lag 280 

between the date of infection and the date of first positive SARS-CoV2 test result, which was 281 

found to be 10.5 days on average according to MOH’s epidemiological investigations. We applied 282 

a central moving average with window of three days before and after the data point, on the data to 283 

reduce noise caused by weekly patterns. 284 
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The calibration was conducted on a 30-subdistrict level rather than 250 regions to ensure there are 285 

sufficient time-series data points in each location for each age group. The stratification is based on 286 

the 16 formal districts, which we further stratified such that the sub districts will be homogenous 287 

in terms of their SES and religious affiliation (Table S4). To calibrate the model to the incidence data, 288 

we maximized the likelihood assuming a normal distribution of the error between model predictions and 289 

incidence data. This was achieved by using the truncated Newton (TNC) algorithm. We calibrated the 290 

model for 16 different scenarios of unreported cases and seasonal forcing. The final transmission model 291 

included five parameters without constraints imposed from previous data: reduced susceptibility 292 

due to physical distancing 𝜅𝑝, and susceptibility rate based on age-groups j: 0-19, 20-39, 40-59, 293 

and >60  (Table S5).  294 

We used an F-test of equality of variances to compare between models 1) with vs. without 295 

consideration of seasonal forcing, 2) with and without consideration of human mobility, 3) with 296 

and without consideration of regional fertility. We denote that in all three comparisons, the number 297 

of calibrated parameters is constant and equal to five. Our tests suggested that models that do not 298 

include the mobility data (p.value<0.01), and the regional fertilities (p.value<0.01) were 299 

significantly worse. We also found that models that accounted for seasonal forcing yielded higher, 300 

but not significant (p value<0.35), likelihood than models that did not account for the seasonal 301 

forcing.    302 
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Table S4. 30 subdistricts calibrated. 303 

Sub-district number Name Population Size 

1 Jerusalem and sub. 778,503 

2 Bet Shemesh 120,164 

3 Jerusalem and sub. (Orthodox Jewish) 265,313 

4 Zefat 138,618 

5 Zefat (Israeli Arabs) 23,772 

6 Kinneret (Jewish) 98,178 

7 Jezreel Valley (Israeli Arabs) 159,112 

8 Jezreel Valley (Jewish) 351,446 

9 Akko (Israeli Arabs) 357,341 

10 Akko (Jewish) 314,607 

11 Ramat Hagolan 51,980 

12 Haifa (Israeli Arabs) 35,637 

13 Haifa (Jewish) 589,951 

14 Hadera (Israeli Arabs) 115,000 

15 Hadera (Jewish) 315,593 

16 Sharon (Israeli Arabs) 85,729 

17 Sharon (Jewish) 412,638 

18 Petah Tiqwa (Israeli Arabs) 27,455 

19 Petah Tiqwa (Orthodox Jewish) 49,549 

20 Petah Tiqwa (Secular Jewish) 680,836 

21 Ramla 323,352 

22 Rehovot 661,079 
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23 Tel Aviv – Yafo 820,271 

24 Bnei Brak 211,259 

25 Tel Aviv suburbs 464,974 

26 Ashqelon 559,556 

27 Beer Sheva (Israeli Arabs) 196,311 

28 Beer Sheva (Jewish) 504,831 

29 Judea and Samaria 267,832 

30 Judea and Samaria (Orthodox Jewish) 155,095 

  304 
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Table S5. Calibrated parameters. 305 

Model 

configuration 

Seasonal 

forcing peak  

Unreported 

[%] 

 Physical 

distancing 

Coefficient

𝜿𝒑𝒉𝒚𝒔𝒊𝒄𝒂𝒍 

Susceptibil

ity among 

age-group 

0-19[y] 

𝜷𝟎−𝟏𝟗 

Susceptibil

ity among 

age-group 

20-39[y] 

𝜷𝟐𝟎−𝟑𝟗 

Susceptibil

ity among 

age-group 

40-59[y] 

𝜷𝟒𝟎−𝟓𝟗 

Susceptibilit

y among 

age-group 

60+[y] 

𝜷𝟔𝟎+ 

Likelihood 

of 

calibration 

to data 

− 𝐥𝐨𝐠(𝒍) 

Full model No-

seasonality 

69 

0.248 0.094 0.054 0.042 0.311 -25.766 

 

Full model No-

seasonality 

85 0.232 0.119 0.053 0.052 0.166 -25.743 

Full model No-

seasonality 

89 0.234 0.057 0.076 0.047 0.116 -25.494 

Full model No-

seasonality 

93 0.246 0.119 0.036 0.054 0.184 -25.876 

Full model December 

21 

69 

0.272 0.038 0.023 0.020 0.128 -25.856 

Full model December 

21 

85 0.306 0.044 0.021 0.024 0.109 -25.862 

Full model December 

21 

89 0.355 0.025 0.021 0.025 0.144 -25.998 

Full model December 

21 

93 0.274 0.058 0.015 0.023 0.083 -25.917 

Full model January 21  69 0.364 0.043 0.025 0.024 0.151 -25.835 

Full model January 21  85 0.420 0.049 0.027 0.024 0.148 -25.787 

Full model January 21 89 0.349 0.035 0.031 0.029 0.167 -25.957 

Full model January 21 93 0.295 0.059 0.020 0.030 0.112 -25.898 

Full model February 21 69 0.347 0.063 0.039 0.033 0.248 -25.822 
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  306 

Full model February 21 85 0.464 0.051 0.036 0.034 0.199 -25.813 

Full model February 21 89 0.417 0.052 0.045 0.041 0.229 -25.916 

Full model February 21 93 0.411 0.100 0.030 0.034 0.157 -25.827 

Without 

mobility 

January 21 85 0.127 0.022 0.035 0.022 0.162 -25.129 

Without 

mobility 

January 21 89 0.133 0.031 0.029 

  

0.022 0.133 -25.206 

  

Without 

mobility 

January 21 93 0.098 

  

0.049 

  

0.030 

  

0.023 

  

0.121 

  

-25.139 

Without 

fertility 

January 21 85 0.633 0.056 0.027 0.018 0.013 -25.311 
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4. Further simulation results    307 

We found that a global lockdown strategy had a larger temporal effect than local lockdowns and 308 

had by greater oscillations (Fig. S4). We present here a model with seasonal forcing. Our model 309 

projections suggested that global lockdowns were less efficient and effective compared to a 310 

strategy that targets locally the elderly. However, due to high variability between the 250 regions 311 

considered, some regions undergo multiple lockdowns, while others will not undergo lockdowns. 312 

Local lockdowns that specifically target children decreases the local morbidity, but in the long run 313 

increases mortality, while lockdowns of individuals at high-risk has a moderate impact on 314 

transmission but decreases mortality. 315 

These findings where robust across all settings considered (Tables S3 and S5), when we accounted 316 

for seasonal forcing (Main text, Figs. 4 and 5), and without seasonal forcing (Fig. S5).  317 

 318 

Fig. S4. Model demonstration for a threshold of 1 per 10000 for the lockdown strategies with seasonal forcing 319 

peaking on January 21. (A – C) projected daily new reported cases for different lockdown strategies. (D – F) 320 

Projected daily percentage of population under lockdown. (A, D) for a unreported cases of 85%. (B, E) for 89%, and 321 

(C, F) for 93%. 322 

 323 
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 324 

Fig. S5. Effectiveness and efficiency of temporal-local lockdowns without seasonal forcing. Median and 325 

interquartile values of model projections after implementation of strategies (A, C, E, G) after one year and (B, D, F, 326 

H) after three years. (A, B, E, F) The thresholds for lockdowns in a local region are 1/10,000 [cases/individuals] and 327 

(C, D, G, H) 5/10000 [cases/individuals]. Effectiveness (A – D), efficiency (E – G). 328 

 329 

5. References 330 

1.  Vynnycky E, White R. Introduction. The basics: infections, transmission and models. An 331 

Introduction to Infectious Disease Modelling. 2010.  332 

2.  Yamin D, Gavious A, Solnik E, Davidovitch N, Balicer RD, Galvani AP, et al. An 333 

Innovative Influenza Vaccination Policy: Targeting Last Season’s Patients. PLoS Comput 334 

Biol. 2014. doi:10.1371/journal.pcbi.1003643 335 

3.  Medlock J, Galvani AP. Optimizing influenza vaccine distribution. Science (80- ). 2009. 336 

doi:10.1126/science.1175570 337 

4.  Ndeffo Mbah ML, Medlock J, Meyers LA, Galvani AP, Townsend JP. Optimal targeting 338 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 19, 2020. ; https://doi.org/10.1101/2020.06.04.20112417doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.04.20112417


28 
 

of seasonal influenza vaccination toward younger ages is robust to parameter uncertainty. 339 

Vaccine. 2013. doi:10.1016/j.vaccine.2013.04.052 340 

5.  Molinari NAM, Ortega-Sanchez IR, Messonnier ML, Thompson WW, Wortley PM, 341 

Weintraub E, et al. The annual impact of seasonal influenza in the US: Measuring disease 342 

burden and costs. Vaccine. 2007. doi:10.1016/j.vaccine.2007.03.046 343 

6.  Fiore AE, Fry A, Shay D, Gubareva L, Bresee JS, Uyeki TM, et al. Antiviral agents for 344 

the treatment and chemoprophylaxis of influenza --- recommendations of the Advisory 345 

Committee on Immunization Practices (ACIP). MMWR Surveill Summ  Morb Mortal 346 

Wkly report Surveill Summ / CDC. 2011.  347 

7.  Ni L, Ye F, Cheng M-L, Feng Y, Deng Y-Q, Zhao H, et al. Detection of SARS-CoV-2-348 

specific humoral and cellular immunity in COVID-19 convalescent individuals. 349 

Immunity. 2020 [cited 13 May 2020]. doi:10.1016/j.immuni.2020.04.023 350 

8.  Bao L, Deng W, Gao H, Xiao C, Liu J, Xue J, et al. Reinfection could not occur in SARS-351 

CoV-2 infected rhesus macaques. bioRxiv. 2020; 2020.03.13.990226. 352 

doi:10.1101/2020.03.13.990226 353 

9.  Ng OW, Chia A, Tan AT, Jadi RS, Leong HN, Bertoletti A, et al. Memory T cell 354 

responses targeting the SARS coronavirus persist up to 11 years post-infection. Vaccine. 355 

2016;34: 2008–2014. doi:10.1016/j.vaccine.2016.02.063 356 

10.  Yamin D, Jones FK, DeVincenzo JP, Gertler S, Kobiler O, Townsend JP, et al. 357 

Vaccination strategies against respiratory syncytial virus. Proc Natl Acad Sci U S A. 2016. 358 

doi:10.1073/pnas.1522597113 359 

11.  Designed Research; S APGMM. Projecting hospital utilization during the COVID-19 360 

outbreaks in the United States. 2020;117: 9122–9126. doi:10.1073/pnas.2004064117/-361 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 19, 2020. ; https://doi.org/10.1101/2020.06.04.20112417doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.04.20112417


29 
 

/DCSupplemental 362 

12.  Kissler SM, Tedijanto C, Goldstein E, Grad YH, Lipsitch M. Supplementary Materials for 363 

Projecting the transmission dynamics of SARS-CoV-2 through the postpandemic period. 364 

doi:10.1126/science.abb5793 365 

13.  Lauer SA, Grantz KH, Bi Q, Jones FK, Zheng Q, Meredith HR, et al. The Incubation 366 

Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed 367 

Cases: Estimation and Application. Ann Intern Med. 2020. doi:10.7326/M20-0504 368 

14.  Linton NM, Kobayashi T, Yang Y, Hayashi K, Akhmetzhanov AR, Jung S, et al. 369 

Incubation Period and Other Epidemiological Characteristics of 2019 Novel Coronavirus 370 

Infections with Right Truncation: A Statistical Analysis of Publicly Available Case Data. 371 

J Clin Med. 2020;9: 538. doi:10.3390/jcm9020538 372 

15.  Gandhi M, Yokoe DS, Havlir D V. Asymptomatic Transmission, the Achilles’ Heel of 373 

Current Strategies to Control Covid-19. N Engl J Med. 2020. doi:10.1056/nejme2009758 374 

16.  He X, Lau EHY, Wu P, Deng X, Wang J, Hao X, et al. Temporal dynamics in viral 375 

shedding and transmissibility of COVID-19. Nat Med. 2020;26: 672–675. 376 

doi:10.1038/s41591-020-0869-5 377 

17.  Bendavid E, Mulaney B, Sood N, Shah S, Ling E, Bromley-Dulfano R, et al. COVID-19 378 

Antibody Seroprevalence in Santa Clara County, California. medRxiv. 2020; 379 

2020.04.14.20062463. doi:10.1101/2020.04.14.20062463 380 

18.  (No Title). [cited 30 May 2020]. Available: 381 

https://www.zva.gov.lv/sites/default/files/inline-files/05_07_covid-19-rapid-risk-382 

assessment-coronavirus-disease-2019-ninth-update-23-april-2020-1.pdf 383 

19.  Gudbjartsson DF, Helgason A, Jonsson H, Magnusson OT, Melsted P, Norddahl GL, et al. 384 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 19, 2020. ; https://doi.org/10.1101/2020.06.04.20112417doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.04.20112417


30 
 

Spread of SARS-CoV-2 in the Icelandic Population. N Engl J Med. 2020. 385 

doi:10.1056/nejmoa2006100 386 

20.  Czech study shows very low COVID-19 incidence in population. [cited 30 May 2020]. 387 

Available: https://medicalxpress.com/news/2020-05-czech-covid-incidence-388 

population.html 389 

21.  Prem K, Liu Y, Russell TW, Kucharski AJ, Eggo RM, Davies N, et al. The effect of 390 

control strategies to reduce social mixing on outcomes of the COVID-19 epidemic in 391 

Wuhan, China: a modelling study. Lancet Public Heal. 2020;5: e261–e270. 392 

doi:10.1016/S2468-2667(20)30073-6 393 

22.  Anderson RM, Heesterbeek H, Klinkenberg D, Hollingsworth TD. How will country-394 

based mitigation measures influence the course of the COVID-19 epidemic? The Lancet. 395 

Lancet Publishing Group; 2020. pp. 931–934. doi:10.1016/S0140-6736(20)30567-5 396 

23.  Zimmermann P, Curtis N. Coronavirus infections in children including COVID-19: An 397 

overview of the epidemiology, clinical features, diagnosis, treatment and prevention 398 

options in children. Pediatric Infectious Disease Journal. Lippincott Williams and Wilkins; 399 

2020. pp. 355–368. doi:10.1097/INF.0000000000002660 400 

24.  Gaunt ER, Hardie A, Claas ECJ, Simmonds P, Templeton KE. Epidemiology and Clinical 401 

Presentations of the Four Human Coronaviruses 229E, HKU1, NL63, and OC43 Detected 402 

over 3 Years Using a Novel Multiplex Real-Time PCR Method. J Clin Microbiol. 403 

2010;48: 2940–2947. doi:10.1128/JCM.00636-10 404 

25.  Wang J, Tang K, Feng K, Lv W. High Temperature and High Humidity Reduce the 405 

Transmission of COVID-19. SSRN Electron J. 2020. doi:10.2139/ssrn.3551767 406 

26.  Ficetola GF, Rubolini D. Climate affects global patterns of COVID-19 early outbreak 407 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 19, 2020. ; https://doi.org/10.1101/2020.06.04.20112417doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.04.20112417


31 
 

dynamics. medRxiv. 2020; 2020.03.23.20040501. doi:10.1101/2020.03.23.20040501 408 

27.  Bock Axelsen J, Yaari R, Grenfell BT, Stone L. Multiannual forecasting of seasonal 409 

influenza dynamics reveals climatic and evolutionary drivers. [cited 24 May 2020]. 410 

doi:10.1073/pnas.1321656111 411 

28.  HOUSEHOLDS AND FAMILIES: DEMOGRAPHIC CHARACTERISTICS 2018 Based 412 

on Labour Force Surveys. [cited 8 Jun 2020]. Available: 413 

https://www.cbs.gov.il/en/publications/Pages/2020/HOUSEHOLDS-FAMILIES-414 

LabourForce-2018.aspx 415 

29.  (No Title). [cited 8 Jun 2020]. Available: https://www.idi.org.il/media/12168/the-416 

yearbook-of-ultra-orthodox-society-in-israel-2018-he.pdf 417 

30.  Mossong J, Hens N, Jit M, Beutels P, Auranen K, Mikolajczyk R, et al. Social contacts 418 

and mixing patterns relevant to the spread of infectious diseases. PLoS Med. 2008. 419 

doi:10.1371/journal.pmed.0050074 420 

31.  Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for 421 

mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort 422 

study. Lancet. 2020;395: 1054–1062. doi:10.1016/S0140-6736(20)30566-3 423 

32.  Coronavirus (COVID-19) Data Dashboard - Novel Coronavirus (COVID-19) - County of 424 

Santa Clara. [cited 24 May 2020]. Available: 425 

https://www.sccgov.org/sites/covid19/Pages/dashboard.aspx 426 

33.  Italy Coronavirus: 232,664 Cases and 33,340 Deaths - Worldometer. [cited 30 May 2020]. 427 

Available: https://www.worldometers.info/coronavirus/country/italy/ 428 

34.  Li W, Zhang B, Lu J, Liu S, Chang Z, Cao P, et al. The characteristics of household 429 

transmission of COVID-19. [cited 24 May 2020]. doi:10.1093/cid/ciaa450/5821281 430 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 19, 2020. ; https://doi.org/10.1101/2020.06.04.20112417doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.04.20112417


32 
 

35.  Dowell SF, Shang Ho M. Seasonality of infectious diseases and severe acute respiratory 431 

syndrome - What we don’t know can hurt us. Lancet Infectious Diseases. Lancet 432 

Publishing Group; 2004. pp. 704–708. doi:10.1016/S1473-3099(04)01177-6 433 

36.  Subjects - Live Births. [cited 8 Jun 2020]. Available: 434 

https://www.cbs.gov.il/en/subjects/Pages/Live-Births.aspx 435 

37.  COVID-19 Datasets- Government Data. [cited 30 May 2020]. Available: 436 

https://data.gov.il/dataset/covid-19 437 

    438 

 439 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 19, 2020. ; https://doi.org/10.1101/2020.06.04.20112417doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.04.20112417

