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Abstract. 

Objectives: To evaluate the transmission dynamics and health systems burden of COVID-19 with and without 
interventions, using an Agent Based Modeling (ABM) approach on a localized synthetic population.  

Study design: A synthetic population of Rangareddy district, Telangana state, India, with 5,48,323 agents and 
simulated using an ABM approach for three different scenarios. 

Methods: The patterns and trends of the COVID-19 in terms of infected, admitted, critical cases requiring intensive 
care and/ or ventilator support, mortality and recovery were examined. The model was simulated over a period of 365 
days for a no lockdown scenario and two Non-Pharmaceutical Intervention (NPI) scenarios i.e., 50% lockdown and 
75% lockdown scenarios. Sensitivity Analysis was performed to compare the effect of change of parameters on 
disease dynamics.  

Results: Results revealed that the peak values and slope of the curve declined as NPI became more stringent. The 
peak values could facilitate policymakers to plan the required capacity to accommodate influx of hospitalizations.  

Conclusions: ABM provides better insight into projections compared to compartmental models. The results could 
provide a platform for researchers and modelers to explore using ABM approach for COVID-19 projections with 
inclusion of interventions and health system preparedness.   
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1. Introduction 

The first reported case of the novel coronavirus (COVID-19 or SARS-CoV-2) in India dates back to 
January 30, 2020 when it was also announced as pandemic by WHO [52; 78]. Since then, epidemic has 
spread across India infecting 44,94,389 people with 9,27,545 active cases, 34,90,908 recovered cases and 
75,328 deaths as on Sep 10, 2020 [17]. Globally, COVID-19 has spread across 213 nations, infecting 
28,035,700 people worldwide and claiming 908,991 lives as on Sep 10, 2020, posing a global health 
emergency [18; 42; 75].  
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In a country like India having a denser population, the situation poses a serious challenge [37]. There 
are several underlying factors such as age, comorbidities, exposure to air pollution, amount of exposure to 
virus, etc., that determine transmission dynamics [43]. Travel restrictions and  [15; 44] other Non-
Pharmaceutical Interventions (NPIs) such as restrictions on public gatherings, intra-city movements, etc., 
may flatten the curve. It is important to understand the time required between exposure and complete 
recovery, using these interventions, to take timely responsive actions against COVID-19 [80].  

Modelling is an effective tool to provide real-time projections and obviates the burden of investing 
time, cost and risks [48]. Several models on COVID-19 projections exist and most of them are 
compartmental models. Since compartmental models assume homogeneity in the compartments they do 
not account for individual level variations and interactions within the system, Agent Based Modeling 
(ABM) is a tool which considers these factors and may provide better insights [26]. ABM considers the 
interaction between agents whilst also distinguishing them based on their individual parameters [12; 71]. 
Advancements in computational capabilities have increased interest among researchers across various 
verticals, including public health in recent times on ABM [33; 31; 32].  

ABM incorporates actions of agents within the system, helping the model comprehend infection spread 
dynamics better [5; 60]. ABM follows a bottom-up approach wherein result of behaviour of individuals, 
defined as agents within the system [13; 27]. ABM allows to define unique characteristics to the agents to 
make each of them behave distinctly [13]. Mixing patterns among the agents within a system play a vital 
role in dynamic transmission models for close contact infections [8].  

In the past, ABMs have been employed to address various infectious diseases such as, a bioterrorist 
introduction of smallpox [34], design of vaccination strategies for influenza [16], curtail transmission of 
measles through contact tracing and quarantine [23], control of tuberculosis [54], implementation of 
distancing measures and antiviral prophylaxis to control H5N1 influenza A (bird flu) [25] and devise 
evacuation strategies in the event of airborne contamination [24]. 

An evaluation of use of ABM on COVID-19 globally suggests its use to measure the effects of 
lockdown on transmission dynamics [39; 50; 69; 72], post-lockdown measures [36], use of control 
measures (face mask, social distancing) [36; 41], isolation of vulnerable proportion of population [36; 
35], contact tracing, intelligence of agents (based on awareness level [69] or protection level), contact 
tracing measures [41; 69], good practices such as sneezing into one's hands [39], both direct (upon 
contact) and indirect transmission (through suspended particles) [39], scheduled-based contacts [20; 36; 
39] with close circle and in work, transport and public places [35; 39; 51], viral-load based 
transmissibility [41], examination of genomic sequencing to determine the spread [66], etc.  

In India, several COVID-19 models have been conducted based on Susceptible (S), Exposed (E), 
Infective (I) and Recovered (R) (SEIR) [14; 67; 74; 79], Susceptible (S), Exposed (E), Symptomatic (I), 
Purely Asymptomatic (P), Hospitalized or Quarantined (H), Recovered (R) and Deceased (D) (SIPHERD) 
[49], mathematical models [2; 68], etc., to compare the spread during lockdown and no lockdown 
scenarios.  Nation-wide models restrict the policymakers locally to devise strategies based on the results 
as they might not fit properly to the locality [10]. In countries like India where people are diverse in all 
respects like population dynamics, contact network, migrating population, nature of work, etc., local 
models might prove effective and would assist policymakers to take local decisions for disease mitigation. 
The present study aims at an ABM to examine the patterns and trends of spread and the effect of NPIs in 
a synthetic population of a region in Telangana state of India.  

2. Methods 

2.1. Study Design 

A synthetic population of Telangana state, India, has been developed, the details of it are presented 
elsewhere [62]. We used 5,48,323 agents from this population from the Rangareddy district. The 
modeling follows an ABM approach using AnyLogic 8.5.2 University edition to model the interaction 
environment [6]. The entire simulation and reporting follows the International Society for 
Pharmacoeconomics and Outcomes Research (ISPOR-SMDM) Modeling Good Research Practices and 
ethical good practice in modelling [9; 11; 65]. These guidelines were used so that the assumptions, scope 
and shortcomings of the model are transparent to the readers and policymakers.  
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2.2. Synthetic population 

Synthetic population is one of the commonly used approaches to represent a group of people, 
preserving the confidentiality of individuals. Synthetic population has statistical equivalence with the 
original population being represented and is indistinguishable from the census data [1]. For this study, we 
used a synthetic population developed for Rangareddy, Telangana state consisting of 5,48,323 people 
(representing  10.35 % of Rangareddy’s population (n- 52,96,741) as per Census of India 2011), to 
demonstrate the ABM [62; 63].  The population was categorized based on age as less than 5, 5 to 59, and 
above 60 with 47,039, 4,59,372 and 41,912 agents respectively [8; 43]. 

2.3. Transmission rates of COVID-19 

Based on the WHO report on COVID-19 (16 to 24 Feb 2020), the transmission rates were set to vary 
from 1 to 10 percent [4].  

2.4. Contact network 

The contact network plays a vital role in transmission dynamics. For contact rate estimation, we used a 
study from Ballabgarh, India, which determined the contact rates for close contact infections [46]. The 
dataset representing the number of people met by each individual was input into the ‘Input Analyzer’ tool 
of Arena (Version 16.00.00002). Input Analyzer provides fitting distributions with associated errors of 
fitting. The contact rates of each group were found to follow normal distributions using "Input Analyzer" 
(Table 1).  

Table 1: Contact rate distribution of Ballabgarh [46] 

Years Number of 
respondents 

Average no. of 
people met per day 

Mi
n 

M
ax 

Distribution of contact 
rate(s) 

Square 
Error 

<5 378 15.108 4 48 NORM(15.1,  6.82) 0.00656 

5 to 59 2185 17.194 1 67 NORM(17.2,  8.01) 0.003202 

60+ 380 12.863 1 41 NORM(12.9,  5.49) 0.002328 

The population densities of various townships of India were calculated based on Indian population 
proportion (table 2) [7; 57]. The population density of Ballabgarh was 551 people per square kilometer 
[46]. This was used to proportionately determine the contact rates of towns based on their respective 
population densities, assuming Density-Dependent (DD) contact rate  [38; 58]. 

Contact rate 
  Slope � 
���������	 

��
�
  …(1) 

For estimation of overall average contact rate, weights equal to the corresponding proportions of 
people living in different townships were multiplied to their corresponding multiplication factors (slope in 
equation (1)) (table 2). Contact rate was thus derived as the product of this slope and the ratio of the 
population density of a particular township to the population density of Ballabgarh.  

Table 2: Classification of Indian towns with population proportions and densities [7]  

Census 
classification 

Population density per km2 
Proportion of Indian 

population (%) 
Multiplication factor 

Statutory town 3977 26.3 7.22 

Census town 2069 4.5 3.75 

Outgrowth 1241 0.4 2.25 

Village 292 68.9 0.53 

The number of contacts made by people under each town category were multiplied by their respective 
multiplication factors as reported in Table 2. These values were integrated to Input Analyzer and their 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 19, 2020. ; https://doi.org/10.1101/2020.06.04.20121848doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.04.20121848
http://creativecommons.org/licenses/by-nc-nd/4.0/


respective contact rate distributions were then determined. Contact rate for the present study followed 
Lognormal distributions (Lognormal(μ, σ, Min)) (table 3).  

2.5. State chart 

A state chart represents the various states in which an agent would exist (figure 1) [30]. The initial state 
of all agents healthy, during the start of simulation. The agents would interact with other agents in the 
population and transmit the infection. Infected agents undergo an incubation period and turn out to be 
either symptomatic or asymptomatic. They continue to contact other agents and transmit till they get 
admitted or recover. Once admitted, agents undergo treatment and either decease or recover whilst in any 
of the three levels of infections represented by ‘admitted’, ‘ICU’ and ‘ventilator’ states [27].  

 
Figure 1: State chart for agent(s) (people) 

2.6. Model parameters  

Models of Infectious Disease Agent Study (MIDAS) has been used as a source of acquiring parameters 
through the pre-prints and manuscripts available [53]. Table 3 details the various parameters used for the 
model.  

Table 3: Parameters for the model 

Parameters <5 5-59 >59 References 

Number of contacts per day (age-wise) 

<5 Lognormal(2.774.0.899,6)  

[7; 46] 5 to 59 Lognormal(2.883,0.856,6) 

60+ Lognormal(2.599,0.844,5) 

Probability of getting infected through contact Random (1 to 10) percent [4] 

Proportion of people remaining asymptomatic  0.8 [22; 76] 

Average incubation period (in days) 5 [13],[80] 

Average treatment duration (in days) 14 [80] 

Proportion of hospitalized cases in ICU 0.11 [3; 28] 
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Treatment duration in ICU (in days) Triangular(7,8,9) [28; 80] 

Proportion of people moving from ICU to critical illness 
(Ventilator assistance) 

0.88 [28] 

Treatment duration in ventilator state (in days) Triangular(5,7,12) [80] 

Time between symptom arrival and admission (with no 
intervention) (in days) 

5 [77] 

Time between symptom arrival and admission (with 
intervention) (in days) 

3 [77] 

Proportion of people who die Number of deaths/ Number of 
infections (as per Indian statistics) 

[17] 

2.7. Model scenarios 

In order to study the effect of minimization of number of contacts among the agents, three different 
scenarios were simulated for 365 days, results of which are discussed subsequently. First scenario, the  
“no lockdown” scenario includes no NPI put in place. In order to study the effect of lockdown, the contact 
rate of people needs to be reduced. To achieve this, the results of a study that presented the proportion of 
contacts made by individuals of different age groups were utilized. The number of contacts made at 
different locations namely home, school, work and others, as designated by the authors of the study was 
used to enact the lockdown [61]. To simulate the NPI scenarios, the number of people met in work and 
other places were reduced by 75 percent and 50 percent for the two scenarios whereas the contacts in 
school was completely discarded owing to the closure of schools. These resulted in reduced diffusion of 
the infection across the population, results of which are discussed subsequently.  

3. Results  

Simulations were run for different age groups as per the categorization for all the three scenarios. 
Detailed day-wise data of the number of people in each health state are provided in the supplementary 
files. The results of the same and their interpretations are discussed below. 
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Figure 2: a) Number of uninfected people – all age groups b) Number of infected people – all age groups 

(Cumulative) c) Number of infected people (for a given instant) 

It was observed that (Figure 2), number of uninfected people declines as the stringency of the imposed 
lockdown increases. After a duration of one year, proportion of people who remain uninfected was 28.53, 
76.33 and 93.8 percent in No lockdown, 50% lockdown and 75% lockdown scenarios respectively. It was 
observed that (Figure 2 b) the spread of the infection observed as  peak infections in scenarios 2 & 3 were 
129779 and 33973 which would be reached in a period of just 33 and 25 days in a no lockdown condition. 
The peak values 191907, 37790 and 7986 in figure 2 c corresponds to 35%, 6.89% and 1.46% 
respectively of the initial uninfected population.  
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Figure 3: a) Number of asymptomatic people – all age groups b) Number of admitted people– all age 

groups c) Number of people in ICU – all age groups d) Number of people on ventilators – all age groups 

The peak values in figure 3 a) corresponds to 31.71%, 6.28% and 1.33% of the initial uninfected 
population respectively for the three scenarios. There is an occurrence of a maximum equal to 173892 on 
44th day, 34414 on 84th day and 7281 on 90th day for the no lockdown, 50% and 75% lockdown scenarios 
respectively. The peak admissions correspond to 6.42%, 1.33% and 0.28% of the initial healthy 
population respectively for the three scenarios. The peak number of patients in ICU, 2390, 496 and 94 
respectively for the three scenarios, which indicate the minimum number of intensive care setups required 
for the three scenarios. Similarly, figure 3 d) indicates the minimum number of ventilator setups, 1929, 
405 and 78 for the three scenarios respectively.  

 
Figure 4: Number of people deceased – all age groups 

Maximum deaths as seen in figure 4 correspond to 0.42%, 0.14% and 0.04% of the initial uninfected 
population respectively for three of the scenarios.  

Table 4 indicates the peak values for various states possessed by the agents. The peak values also 
decrease for all these states as the stringency of lockdown is increased, indicating the effectiveness of 
lockdown measures.  The values (in %) indicate the percentage with respect to the initial healthy 
population. A significant drop in peak number of ICUs required from 2390 for a no lockdown condition 
to 94 for a 75% lockdown is evident. Concurrently, the peak number of ventilators decline from 1929 for 
a no lockdown condition to 78 for a 75% lockdown condition.  

Table 4: Peak values for various health conditions 

  No lockdown 50% lockdown 75% lockdown 

  Value % 
Da

y 
Value % Day Value % 

Da
y 

Uninfected 548320 100 1 548321 100 1 548321 100 1 
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Infected 191907 35.00 43 37790 6.89 84 7986 1.46 90 

Asymptomat
ic 173892 

31.71 44 
34414 

6.28 84 
7281 

1.33 90 

Symptomatic 23269 4.24 36 3450 0.63 78 723 0.13 85 

Admitted 35186 6.42 49 7271 1.33 91 1510 0.28 97 

ICU 2390 0.44 60 496 0.09 104 94 0.02 125 

Ventilator 1929 0.35 68 405 0.07 114 78 0.01 132 

Deceased 2288 0.42 224 760 0.14 209 199 0.04 231 

Recovered 389572 71.05 226 129018 23.5 216 33773 6.16 230 

4. Sensitivity Analysis 

The uncertainties about the nature of COVID-19 has posted a great challenge to the healthcare fraternity. 
Yet, theories such as Swiss Cheese model that believes in partial curtailing of the spread through multiple 
strategies prove effective [29; 56]. The combined effect of multiple intervention scenarios such as closure 
of schools, work places, imposing lockdowns, use of control measures [29] and setting up of multiple 
defense mechanisms in healthcare facilities are in practice [56]. Recent studies in India showed longer 
means for incubation period (6.93 days) [59] and higher proportion of asymptomatic people (91%) [45]. 
Sensitivity analysis has been carried out by varying the asymptomatic proportion of infection and 
incubation period. A total of four scenarios have been compared using two different combinations of 
incubation period and asymptomatic proportion (Table 5).  

Table 5: Parameters for Sensitivity Analysis scenarios and results 

Scenario IN5A80 IN5A91 IN7A80 IN7A91 

Incubation period (days) 5 5 7 7 

Asymptomatic proportion (%) 80 91 80 91 

Peak Values 

Asymptomatic 37971 39297 56610 64091 

Symptomatic 5169 2063 8165 3585 

Infected 43066 41242 64526 67631 

Admitted 7621 3045 10122 4466 

ICU 508 196 640 270 

Ventilator 400 151 523 225 

Deceased 611 289 767 327 

Cumulative Infected 291326 288634 364270 360795 
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Figure 5: a) Number of Infected People, b) Number of Admitted People, c) Number of People in ICU, d) 

Number of People on Ventilator, e) Number of Cumulative infections
 

It is clear from the results of sensitivity analysis that the total infections are higher during longer 
incubation periods as people are assumed to spread the infection until they are either admitted or 
recovered. Just an increase of 2 days results in 25.03% and 25.11% increase in overall infections for 
scenarios with incubation period of 5 and 7 days respectively. Higher number of asymptomatic people 
(91%) increases demands increase of testing as they remain to be carriers until they recover. Lower 
number of admissions in scenarios with 91% asymptomatic people is since the asymptomatic proportion 
are assumed to recover without getting admitted. These projections are conservative in terms of showing 
the variations in spread due to change in driving parameters.   

5. Discussion 

This approach based on the synthetic population of 5,43,823 agents in Rangareddy District, for three 
different NPI scenarios (no lockdown, 50% lockdown and 75% lockdown) projects that the transmission 
rate of COVID-19 could be effectively brought down by stringency of lockdown measures. The study was 
performed at the district-level is a major strength of the study as it facilitates decision-making easier to 
policymakers at specific regions [10]. The simulation results are presented using ISPOR-SMDM 
Modeling Good Research Practices and ethical good practice in modelling.  

Synthetic populations are most often generated from open source data such as Open data from London 
Imperial College, etc., [36], US Census Bureau data, [35; 39], Australian Census data [66], etc. The 
geographical scope of the study governs the number of agents. For example, 10 million stochastic agents 
for the State of Delaware, US [39], a scaled-down simulation of New York with 10000 agents [69], 
synthetic population of NYC with 500,000 [35], 5000 agents in the premises of a University in Italy [20], 
24 million agent representing Australia [66], 750,805 agents representing Urmia, Iran [50], etc. In this 
study, we have scaled-down the synthetic population of Rangareddy district to 10.35% and used for the 
ABM.  

Contact networks augment variations in behavioral aspects of agents in each model. Classification of a 
group of people aged greater than 65 and/ or with underlying illness as obesity, chronic cardiac or 
respiratory illness, and diabetes [36], awareness level (that enhances protection), use of contact tracing 
mechanisms [41], schedule-based contacts with house members [35; 39; 69], close contacts [35], closed 
spaces such as office spaces, university [20; 69], indirect contact with suspended viral particles, public 
gatherings at café, gym, hospitals, transport, [39], touching contaminated surfaces, washing hands [19; 
41; 69], etc., have all been modeled. Present study modeled the contacts of agents based on the contact 
rates derived based on population densities.  

There are also a spectrum of scenarios analyzed by modelers with an aim to determine the ones that 
outperform others, such as the no lockdown scenario that is included in almost all studies to be used as a 
base for comparison, control measures such as face masks, physical distancing, shielding of vulnerable 
population [36], lockdowns for varying durations [36], reducing contacts in external settings whilst 
maintaining the close contacts constant [39], lifting lockdowns based on age-groups [35], and effect of 
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contact tracing of symptomatic individuals [35; 69]. NPIs such as 50 and 75 percent lockdowns have been 
used as scenarios in the present study.  

In the present study, a decrease in number of contacts at various locations such as in schools, works, 
etc., was incorporated to enact lockdown scenarios whilst maintaining the contacts made at house [74]. It 
is evident from the results of present study that as the percentage of lockdown imposed was increased, the 
magnitudes of peak infections reduced with a delay in their corresponding occurrences, which provides 
more time for the policymakers to increase their capacities to meet the influx of cases. A team of 
researchers from The Center For Disease Dynamics, Economics & Policy (CDDEP) and Princeton 
University using ABM estimated the state-wise capacity requirements to accommodate the influx of 
hospitalizations to help the policymakers to increase their capacities to match the influx based on 
estimates in India   [40; 73].  

Considering some other parameters such clustering in contact networks, especially in the context of 
spread of infections would provide more accurate results [21; 47; 64; 70]. GIS information and migration 
routes could be included to improve the projections in specific areas [27; 60]. Wearable devices could be 
integrated with mobiles to provide real-time monitoring of COVID-19 patients [55]. Exploring the contact 
network and dynamics of different regions would help us to represent the region-specific disease spread 
better [10]  

There are certain limitations to the study as parameters such as underlying health conditions, migration 
routes, adoption of control measures (face mask, social distancing, etc.), longitudinally varying lockdown 
phases, etc., have not been considered. The parameters which were used in the model were form different 
countries and may not represent the India or Rangareddy district scenario. The results of simulation model 
clearly indicate that the peak values could significantly be reduced by increasing the lockdown imposed. 
Thus, the importance of reducing the number of contacts, i.e., social distancing, is apparent through the 
results of this study and flattening the disease curve.  

6. Conclusions  

Majority of the ABM studies focus on specific regions that is a major strength of ABM as it allows 
defining characteristics at individual level [35].  We present this ABM using AnyLogic on a synthetic 
population in Rangareddy district, Telangana state, India. Further, data specific to India to parametrize 
such ABM will be critical. Having a synthetic population of a country can provide several options to 
create ABMs for several disease conditions apart from COVID-19 and may prove efficient for decision-
making. 

Data Availability 

Detailed output (age-wise), AnyLogic model file, synthetic population and input spreadsheet are 
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0bf37a45379a?mode=SETTINGS and  
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