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Abstract

Hawkes processes are used in machine learning for event clustering and causal
inference, while they also can be viewed as stochastic versions of popular com-
partmental models used in epidemiology. Here we show how to develop accurate
models of COVID-19 transmission using Hawkes processes with spatial-temporal
covariates. We model the conditional intensity of new COVID-19 cases and
deaths in the U.S. at the county level, estimating the dynamic reproduction
number of the virus within an EM algorithm through a regression on Google
mobility indices and demographic covariates in the maximization step. We vali-
date the approach on both short-term and long-term forecasting tasks, showing
that the Hawkes process outperforms several benchmark models currently used
to track the pandemic, including an ensemble approach and an SEIR-variant.
We also investigate which covariates and mobility indices are most important
for building forecasts of COVID-19 in the U.S.

Keywords: COVID-19 forecasting, Hawkes processes, Mobility indices, Spatial
covariate

1. Introduction

Mathematical modeling and forecasting are playing a pivotal role in the on-
going SARS-CoV-2 (COVID-19) pandemic. In mid-March 2020, a report out of
Imperial College London [1] forecasted severe consequences in the U.S. and U.K.
without significant public health interventions. In both nations, governments5

responded by closing schools, non-essential businesses and releasing general stay-
at-home (shelter-in-place) orders. In the U.S., state and local policymakers are
using mathematical models and projections to inform decisions about when and
how to relax public health measures that have been put in place. By and large,
compartmental models that explicitly incorporate transmission characteristics10
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Figure 1: The framework of the Hawkes process model for COVID-19 transmission. Demo-
graphic features at the county level impact the reproduction number of the Hawkes process.
Lagged changes in mobility impact future secondary infections through a convolution with
the inter-infection distribution w(t). The output of the model includes: (1) forecasts of fu-
ture cases and mortality through simulation of the Hawkes process intensity, (2) an estimate
of the dynamic reproduction number of the virus, and (3) regression results that allow for
interpretation of the covariates that influence transmission differences across counties.

of infectious diseases have been favored over machine learning approaches. High
profile Susceptible-Exposed-Infected-Removed (SEIR) models include those out
of Columbia University [2], MIT [3], The Johns Hopkins University [4], and
UCLA [5] (in the case of the UCLA model, an SEIR-variant with an unreported
compartment is fit using least-squares to reported infection and recovery data).15

A major exception is the well-known IHME model [6], which employs Gaussian
curve fitting to COVID-19 case and death count time series in locations further
along (e.g., China, Europe) to estimate curves in locations where the outbreak
is more recent (e.g., the United States). The IHME model has been called
into question by epidemiologists because it lacks explicit transmission dynam-20

ics in the model [7]. Our goal in this paper is to show that Hawkes processes,
widely used in the machine learning community to model contagion patterns
in event data, are well suited for modeling and forecasting COVID-19 case and
mortality data. They have several advantages that we will highlight, including
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being highly flexible in accommodating auxiliary spatio-temporal features such25

as county-level demographics and temporal mobility patterns, yet mathemat-
ically they are connected to compartmental models [8] and allow for explicit
incorporation of transmission dynamics (which we briefly review in the follow-
ing section). Furthermore, extensive research has been conducted in the past
several years on a couple of machine learning techniques with the point process30

framework. Non-parametric Hawkes processes can be constructed where the
triggering kernel is learned [9] and more recently, fully neural network based
point processes have been developed [10, 11]. Sparse linear combinations of
Hawkes processes were a winning solution in the 2017 NIJ Crime Forecasting
Challenge [12]. In certain cases a mixture of Hawkes processes may be needed35

to model more complex event contagion with high dimensional marks through
Dirichlet processes [13, 14]. Hawkes processes can also be used for causal in-
ference on networks [15] and recent efforts have also focused on training point
processes through reinforcement learning [16, 17]. We believe all of these meth-
ods have potential applications to modeling infectious diseases that are highly40

complex due to heterogeneity in the population, environment, and disparate
public policies across regional and local jurisdictions. Despite these advantages,
to our knowledge, the only U.S. state where a Hawkes process is being used to
inform COVID-19 policy is in New Jersey (a collaboration with Facebook AI
Research) 1.45

The outline of the paper is as follows. In Section 2, we introduce our Hawkes
process model whose productivity (reproduction number) is dynamic and de-
pends on spatio-temporal covariates. Unlike recently introduced models that
incorporate covariates into the background rate of a Hawkes process [18, 19],
our Hawkes process model may be viewed as a convolution of lagged mobility50

with an inter-infection time distribution to estimate the intensity of secondary
infections in the future. This is important as phased reopening in the U.S. leads
to mobility changes, the effects of which are not realized in the case and mor-
tality data until days or weeks later. Hence the model can be used to forecast
changes in transmission and new cases in real-time as mobility changes (see Fig-55

ure 1). We estimate the intensity along with the dynamic reproduction number
of the virus within an EM algorithm through a regression on Google mobility
indices and demographic covariates in the maximization step. In Section 3, we
validate the approach on both short-term and long-term forecasting tasks, show-
ing that the Hawkes process outperforms several benchmark models from “The60

COVID-19 Forecast Hub Network 2.” The benchmark models include SEIR
models from the Columbia University [2], Johns Hopkins University Applied
Physics Lab [4], and an ensemble model from Berkeley that uses combined lin-
ear and exponential predictors with spatial covariates [20]. We also investigate
which covariates and mobility indices are most important for building forecasts65

1https://ai.facebook.com/blog/using-ai-to-help-health-experts-address-the-covid-19-
pandemic

2https://covid19forecasthub.org/community/
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of COVID-19 in the U.S. In Section 4, we discuss directions for future research
and how the machine learning community may be able to help improve Hawkes
process models of COVID-19 as the pandemic continues to unfold.

2. Hawkes process model of COVID-19 transmission

In this section, we introduce a Hawkes process with spatio-temporal covari-70

ates for modeling COVID-19 case and death data. We then discuss the connec-
tion of the model to compartment models used in epidemiology and develop an
expectation-maximization algorithm for inference.

2.1. Incorporating covariates into the Hawkes process

We propose a novel Hawkes process model that simultaneously estimates the
intensity of events and tracks the dynamic reproduction number of the virus.
Given the timestamps (or dates), T = {t1, t2, · · · tn}, of daily reported positive
test cases or deaths, we model the rate of new cases (or deaths) in each country
c as follows:

λc(t) = µc +
∑
t>tj
tj∈T

Rtjc (dc, θd)×Rtjc (mtj−∆
c , θm)w(t− tj),

(1)

where µc is the background rate modeling imported infections, w(t) is the inter-75

infection time distribution, mt
c = [mt

1,m
t
2, · · · ]ᵀ are mobility indices on day

t, and dc = [d1, d2, · · · ]ᵀ are static demographic features. The time-varying
reproduction number Rtc can be interpreted as the average number of secondary
infections caused by a primary infection. Because we are modeling reported
infections rather than time of exposure, we introduce the parameter ∆ to capture80

a potential lag between a mobility change and the time tj of a reported primary
infection.

We then model the dynamic reproduction number Rtc through a Poisson
regression,

Rtjc = exp(θᵀ xtj−∆
c ),where xtj−∆

c =

[
dc

m
tj−∆
c

]
. (2)

Here we have combined the spatial and temporal covariates to simplify notation
in the rest of the paper. Our approach is related to those in recent preprints
that incorporate mobility into compartment models [21, 4], however those ap-85

proaches typically involve large-scale Monte Carlo simulations when performing
inference. As we will show, the Hawkes process likelihood can be maximized
without simulation via an efficient expectation-maximization algorithm.

2.2. Mathematical connection between Hawkes processes and compartmental mod-
els90

Here we briefly review several variations of the Hawkes process in Equation
1 that can be connected to SEIR-type compartment models. The first variant

4
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is the SIR-Hawkes process. This model captures the long-term evolution of a
pandemic by incorporating a pre-factor that accounts for the dynamic decrease
in the number of susceptible individuals [8]:

λSIR(t) = (1− Ic(t)

N
)
(
µ+

∑
ti<t

R0w(t− ti)
)
. (3)

Here Ic(t) is the cumulative number of infections that have occurred up to time
t and N is the total population size. The point process governed by Equation 3
is a continuous time analog of a discrete stochastic SIR model when w(t) is spec-
ified to be exponential [8]. When w(t) is chosen to be gamma distributed, the
Hawkes process also can approximate staged compartment models, like SEIR,95

if the average waiting time in each compartment is equal [22]. More complex
parametric (or non-parametric) inter-infection time distributions w(t) may be
employed within the Hawkes process framework in situations where disease dy-
namics cannot be captured by a SIR or SEIR model. In the early exponential
growth stage of an epidemic, before finite population effects play a role (which100

is the case with current U.S. data), the Hawkes process in Equation 1 without
the prefactor can be used to model new infections arising from SIR and SEIR

models, as Ic(t)
N will be small.

While a pre-factor in the Hawkes process involving the cumulative number
of infections, i.e., Ic(t) in Equation 3, it is necessary to model long-term disease
dynamics [8]. In the early stages of transmission, a linear Hawkes process can
be used (as the prefactor will be close to 1),

λ(t) ≈ µ+
∑
ti<t

R0w(t− ti). (4)

To illustrate this, we simulate a SEIR differential equation as the following:

dS

dt
= −βSI

N
,

dR

dt
= γI

dE

dt
= β

SI

N
− µE, β = γR0

dI

dt
= µE − γI.

(5)

The parameters are chosen similar to those of COVID-19: γ = .1, R0 = 2, µ = 1,
and N = 5 · 108. We then fit the linear Hawkes process model in Equation 4105

to new infections, µE, generated by the SEIR model. We use a non-parametric
histogram estimator for w(t) and find a close fit between the Hawkes process
and the SEIR model in Figure 2.
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Figure 2: (Main figure) The red plot shows SEIR differential equation dS
dt

= −β SI
N

, dE
dt

=

β SI
N
− µE, dI

dt
= µE − γI, dR

dt
= γI, where β = γR0, γ = .1, R0 = 2, µ = 1, and N = 5 · 108.

The blue squares show that linear Hawkes process λt = µ+
∑
t>ti

R0w(t− ti) fit to the SEIR

curve of new infections. Inset: Non-parametric histogram estimate for w(t).

2.3. EM algorithm for parameter inference
We use an expectation–maximization (EM) algorithm to estimate the model

in Equation 1. First, we introduce latent random variables, pc(i, j), that rep-
resent the event that secondary infection i is caused by primary infection j
in county c. We let pc(i, i) represent the event that case i is imported. The
complete data log-likelihood is then given by,

L =

|C|∑
c=1

{
n∑
i=1

pc(i, i)log(µc)−
∫ T

0
µc dt+

n∑
j=1

{ n∑
i=j+1

pc(i, j) log
[
R
tj
c (x

tj−∆
c , θ)w(ti − tj |α, β)

]
−
∫ T

tj

R
tj
c (x

tj−∆
c , θ)w(t− tj |α, β) dt

}}
.

(6)

Here we use a Weibull distribution with shape α and scale β to model inter-110

infection times, which is used in other studies of epidemics [23, 24, 25] and we
find accurately captures transmission in the present data [26].

As the branching structure of the process is unobservable, we optimize the
complete data log-likelihood in Equation 6 by iteratively alternating between
an expectation step where the branching probabilities pc are estimated and a115

maximization step where model parameters are updated by maximizing Equa-
tion 6. The EM-algorithm is equivalent to a projected gradient ascent on the
likelihood of the Hawkes process [27].

2.3.1. Expectation step

During the expectation step, we estimate the latent variables pc(i, j) for each120

county. Given the parameters θ, α, β, and µc estimated from the last iteration,

6
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the probabilities that case i was caused by case j (Equation 7a) or was imported
(Equation 7b) are given by:

pc(i, j) =
R
tj
c (x

tj−∆
c , θ)w(ti − tj |α, β)

λc(ti)
, (7a)

pc(i, i) =
µc

λc(ti)
. (7b)

Note that the rate λc(ti) in Equation 1 is considered to be an aggregation of
triggering kernels from all previous historical events (i.e., all t < ti) and the125

background rate µc. Therefore, we can consider the probability of case i caused
by case j, pc(i, j), as the contribution of primary infection j in the event rate at
time ti, i.e., λc(ti), and pc(i, i) can be seen as the contribution of the background
rate.

2.3.2. Maximization step130

We then maximize the complete data log-likelihood with respect to the model
parameters, conditioned on the estimated branching structure pc(i, j). During
estimation we do not include event pairs (i, j) when j is within Ψ = 14 days 3 of
the last day of the dataset, as the offspring events i have not yet been realized
and the inclusion of these incomplete data biases parameter estimates.135

Given the latent variable pc(i, j), the maximization of Equation 6 can be
decoupled into three independent optimization problems. Starting with the
coefficient θ from Poisson regression, the maximization of likelihood function
can be rewritten as the following:

θ̂ := argmax
θ
Lθ =

|C|∑
c=1

{
n∑
j=1

{
Pc(j) log

[
Rtjc (xtj−∆

c , θ)w(ti − tj |α, β)
]
−

∫ T

tj

Rtjc (xtj−∆
c , θ)w(t− tj |α, β) dt

}}
,where Pc(j) =

n∑
i=j+1

pc(i, j).

(8)

Because the last Ψ days are removed from the dataset and we assume that all
possible offspring pairs (i, j) have been observed, we can therefore approximate
the integrals for the inter-infection time w(t) in Equation 6 as is done in [28]

by noting that
∫ T
tj
w(t − tj |α, β) ≈ 1. The optimization problem is therefore

a Poisson regression, where we regress the observations Pc(j) =
n∑

i=j+1

pc(i, j)

against the covariates x
tj
c :

θ̂ := argmax
θ
Lθ= argmax

θ

|C|∑
c=1

{
n∑
j=1

Pc(j)θ
ᵀxtj−∆

c − exp(θᵀxtj−∆
c )

}
. (9)

3We choose Ψ = 14 as the incubation period for COVID-19 is thought to extend to 14 days
given by the Clinical Care Guidance from the CDC: https://www.cdc.gov/coronavirus/2019-
ncov/hcp/clinical-guidance-management-patients.html.

7
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The same optimization strategy can be applied on the shape and scale pa-
rameters, α and β. The optimization problem can then be solved as a weighted
maximum likelihood estimation for the Weibull shape and scale parameters:

α̂, β̂ := argmax
α,β

Lα,β = argmax
α,β

|C|∑
c=1

{
n∑
j=1

{ n∑
i=j+1

pc(i, j) log
[
w(ti − tj |α, β)

]}}
.

(10)

where pc(i, j) is the weight of each inter-infection time observation ti − tj .
Third, the background rate µc is determined analytically:

µ̂c := argmax
µc

Lµc = argmax
µc

n∑
i=1

pc(i, i)log(µc)−
∫ T

0

µc dt, µ̂c =

n∑
i=1

pc(i, i)

T
. (11)

Pseudo code for the EM algorithm is presented in the Algorithm 1.

Algorithm 1 EM algorithm optimization

1: procedure HkPR+
m (T , x, ∆)

2: T ← max T , α← 2, β ← 2. . Initialization
3: µc ← 0.5, Rtc(t)← 1, ∀c ∈ C and 0 < t < T .
4: while ‖∆θ‖,|∆α|,|∆β|,‖∆µ‖ >tol do
5: Expectation step:
6: for ∀i ≥ j and 0 < i, j < T and ∀c ∈ C do
7: if i > j then

8: pc(i, j)← R
tj
c (x

tj−∆
c ,θ)w(ti−tj |α,β)

λc(ti)
.

9: else if i = j then
10: pc(i, i)← µc

λc(ti)
.

11: end if
12: end for
13:

14: Maximization step:

15: θ ← argmax
θ

|C|∑
c=1

{
n∑
j=1

Pc(j)θ
ᵀx

tj−∆
c − exp(θᵀx

tj−∆
c )

}
.

16: α, β ← argmax
α,β

∑|C|
c=1

{
n∑
j=1

{
n∑

i=j+1

pc(i, j) log
[
w(ti − tj |α, β)

]}}
.

17: for ∀c ∈ C do

18: µc ←
n∑
i=1

pc(i,i)
T .

19: end for
20: end while
21: end procedure

We note that the EM algorithm of the Hawkes process is also connected to
the dynamic reproduction number estimator of Wallinga and Teunis [29], as the
latter can be viewed as a 1-iteration EM algorithm where a histogram estimator140

8
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is used for Rtc with initial guess Rtc ≡ 1. More details are discussed in the
following section.

2.4. Connection of EM algorithm for Hawkes Process and dynamic R estimator
of Wallinga and Teunis

Here we make the connection between the EM algorithm for the Hawkes
process and the popular dynamic reproduction number estimator of Wallinga
and Teunis [30, 29, 23]. The dynamic R estimator of Wallinga and Teunis is
constructed as follows. The probability that individual i at time ti was infected
by individual j at time tj is defined to be,

pij =
w(ti − tj)∑

ti>tk
w(ti − tk)

, (12)

where the distribution of inter-infection times w(ti− tj) is typically modeled as
Weibull, Gamma, or log-normal [23]. The expected total number of individuals
that j infects is then given by:

Rj =
∑
i>j

pij . (13)

Wallinga and Teunis then obtain an estimate of the dynamic reproduction num-
ber R(t) by averaging Rj over all observed cases j where the time of infection
tj occurred on day t:

R(t) =
1

Nt

∑
t≤tj<t+1

Rj , (14)

(here Nt is the number of observed infections on day t).145

On the other hand, for the Hawkes process the intensity (rate) of infections
is modeled as

λ(t) = µ+
∑
t>ti

R(ti)w(t− ti), (15)

where w(t) and R(t) are the inter-infection time distribution and dynamic re-
production number respectively. Rather than modeling R(t) as dependent on
mobility, we can instead model R(t) as a piece-wise constant function:

R(t) =
B∑
k=1

rk1{t ∈ Ik}. (16)

Here the Ik are intervals discretizing time, B is the number of such intervals,
and rk is the estimated reproduction rate in interval k.

Given initial guesses for the model parameters and rk, the EM algorithm for
the Hawkes process iteratively updates the parameters and branching probabil-
ities by alternating between the150

E-step update:
pij = R(tj)w(ti − tj)/λ(ti) (17)

9
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pii = µ/λ(ti) (18)

and M-step update:

w(t) ∼MLE({ti − tj ; pij}) (19)

µ =
∑
i

pii/T (20)

rk =
∑
ti>tj

pij1{tj ∈ Ik}/Nk (21)

where T is the total length of the observation period, Nk is the total number of
events in interval k, and the w(t) is estimated via weighted MLE (for either a
Gamma, Weibull or log-normal) using the inter-event times as observations and
branching probabilities as weights.

Finally, we can compare Equation 17 to Equation 12. The dynamic R(t)155

estimator in Equation 12 is what you obtain with 1 step of the EM algorithm
in Equation 17 with initial guess R(t) ≡ 1, µ = 0 and 1 day chosen as the bin
width for the histogram estimator.

2.5. Hawkes process forecasting

Finally, we forecast future events using the branching process representation160

of the Hawkes process. In particular, for each event in the history of the process
we simulate a Poisson random variable with mean R

tj
c (x

tj
c , θ) representing the

number of secondary infections caused by event j. For each of these infections we
simulate the time of infection by drawing inter-event times from the estimated
Weibull distribution. Events falling in the future (past the forecasting date) are165

then used to update the forecasted intensity through Equation 1. We simulate
multiple realizations of this process to estimate a mean intensity forecast along
with confidence intervals.

3. Experiments and Results

In this section we first provide details on the datasets and baseline models170

used in our experiments. We then discuss the experimental results of several
COVID-19 retrospective forecasting tasks at the U.S. county level. The source
code and dataset are included in the supplemental material and are available
online in a anonymous repository, respectively 4.

4https://anonymous.4open.science/r/d425dcf9-3cfb-4f82-a08c-ee583ab36291/
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3.1. Datasets175

3.1.1. Covid-19 daily cases and deaths reported by The New York Times

The New York Times (NYT) [31] 5 releases a daily report of the cumula-
tive numbers of COVID-19 cases in the United States at the county level and
over time. While NYT data closely tracks data aggregated by a project at
Johns Hopkins University [32], NYT county level reporting started earlier and180

is therefore used in this study. In total, there are 3, 217 counties with cases
and/or deaths in the dataset. The time series data are compiled from state
and local government health departments. In order to have sufficient data for
statistical inference, we select the counties with confirmed cases greater than
and equal to 10 (denoted by Dconf) and the counties with at least 1 death (de-185

noted by Ddeath) by 11/10/2020 when the dataset is curated. In total, there
are 2, 824 and 2, 545 counties in these two datasets. Parameter sharing may
improve models in counties with less data through variance reduction, but can
potentially bias estimates in more populated counties with more cases.

We therefore assess model performance over different subsets of counties190

grouped by case volume. We first rank counties by the number of confirmed cases
and deaths by the cut-off date, 11/30/2020, and we then evaluate forecasting
accuracy on the top-10% of counties ( denoted by Qtop

10%), the top-25% counties

( denoted by Qtop
25%), and counties between the top-25% and top-50% quantiles

( denoted by Q25%
50%).
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Figure 3: Distribution of cumulative cases reported at 11/30/2020 at different quantiles

195

In Figure 3a and 3b, we present the distribution of the cumulative confirmed
cases and deaths at three different quantiles up to the cute-off date 11/30/2020.
As the counties at the top-50% have more than 1,000 confirmed cases and 10
deaths, some urban counties, mostly at the top-10%, had already surpassed
10,000 confirmed cases and accumulated more than 300 deaths. In Figure 4a200

and 4b, we show the daily reported confirmed cases and deaths of top-3 counties
in Qtop

10% and Q25%
50% from Dconf and Ddeath, respectively. Given different demo-

graphics and different COVID-19 regulations, each state went through different

5https://github.com/nytimes/covid-19-data
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Figure 4: Example of the daily # of confirmed cases/deaths

phases. For example, while Cook, IL seemed to contain the first spike after
May, the confirmed cases in Los Angeles, CA seem steadily increase and only205

slow down after July. The daily death toll of Maricopa, AZ only hit its record
high only after August unlike Los Angeles, CA, which had already had their
first wave in terms of deaths in April. Overall, the deaths are increasing as the
U.S. heads into the winter months. Such differences in infection rates suggest
that different public health and social measures may need to be tailored county210

by county. Therefore, the proposed county-level forecasting model may aid lo-
cal government policymakers in understanding the demographic and mobility
factors that play a role in local reproduction of the virus.

3.1.2. Google mobility index reports

We use Google daily mobility index reports at the county level [33] to esti-215

mate a dynamic reproduction number that tracks changes in movement patterns
due to stay at home orders (and their staged removal). In total, there are 6 mo-
bility types, including grocery & pharmacy, parks, transit stations, retail &
recreation, residential and workplaces. Mobility indices for each category and
county are calculated with respect to a baseline value for that day of the week 6.220

We drop “workplace” mobility from our analysis due to high collinearity with
“residential” mobility. Some mobility data are missing when data is sparse for
a given date. To deal with missing values, we adopt multivariate feature im-
putation 7, which estimates each missing mobility entry as a function of other
mobility types on the same day in the same county. We show some heatmaps225

of mobility patterns across counties and time in the Figure 5, where a major
change can be observed coinciding with stay at home orders (the first state-
wide stay-at-home order was issued at 03/21/2020). Also, the reopening phase
in most of the counties can be seen after May. For counties hit by COVID-19 the
most ( i.e., those in the top-10 %), we can also observe some strict regulations230

6The baseline is the median value, for the corresponding day of the week calculated during
the 5-week period, 01/03/2020 to 02/06/2020.

7https://scikit-learn.org/stable/modules/impute.html#multivariate-feature-imputation
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Figure 5: Heat map of mobility indices across counties in Dconf and over time.

in the “Retail and recreation” areas and better compliance with stay-at-home
orders based on high mobility in “Residential” area.

3.1.3. County-level demographic covariates

We incorporate spatial demographic features that may be predictive of symp-
tomatic cases of COVID-19 (which are more likely to result in testing and mor-235

tality). The dataset is available in a curated form [20] and is derived from
CDC and census datasets. The data is at the county level and includes popu-
lation, median age, number of hospitals and ICU beds, percentage of smokers
and diabetes, and heart disease mortality.

(a) Population density estimated at 2019 (b) Diabetes percentage (%)

Figure 6: Examples of spatial demographic and health features at the county-level.

In Figure 6, we present two examples of spatial demographic features at the240

county-level used to model variations in the reproduction number. In Figure
6a we observe that both the east and west coasts of the United States are
more densely populated compared to midwestern and western regions. Diabetes
percentage (shown in Figure 6b), on the other hand, is mostly higher in southern
regions of the U.S.245
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3.2. Baseline models and experimental setup for retrospective forecasting com-
parison

We compare the Hawkes process model in Equation 1 with several bench-
marks including an SEIR model used in a pandemic tracking dashboard 8 out of
Columbia University [2] (denoted by PROJ), an geospatial SEIR Model from250

the Johns Hopkins University Applied Physics Lab [4] (denoted by BUCKY),
and an ensemble model with linear and exponential predictors from University
of California, Berkeley [20] (denoted by CLEP). Note that all three bench-
marks are tested directly from the released source code and we follow the same
experimental protocol as for our proposed model. A simplified Hawkes process,255

denoted by Hawkes, where the reproduction number is held constant is used
for comparison to demonstrate the effectiveness of tracking the reproduction
number dynamically. We also compare our full Hawkes process model, denoted
by HkPR+

m, to a Hawkes process, HkPRm, with only mobility features to
determine the marginal improvement of adding demographics.260

We backtest the six competing models on the Dconf and Ddeath datasets us-
ing the “walk-forward” validation approach. In particular, for 7-day forecasts
we first train the models based on cases and deaths before the first cut-off date,
04/15/2020, and then forecast through 04/21/2020. We then slide the forecast-
ing window, training on data before 4/22/2020 and forecasting from 04/22/2020265

to 04/28/2020. We repeat this process until the final date of 05/19/2020 (a sim-
ilar approach is used for 14 and 28 day forecasts). The multivariate imputation
models are also trained in the same walk forward fashion to avoid possible data
leakage. The hyper-parameter of the lag parameter ∆ ranges from 7, 14, 21,
and 28 days in our experiments.270

We evaluate the models according to mean absolute error, MAE, averaged
across counties and forecasting windows of the same length, along with per-
centage error, PE. Mean absolute error (MAE) and the percentage error (PE) are
calculated as follows:

MAE =

∑|C|
c=1 |nc − n̂c|
|C| , PE =

|∑|C|c=1 nc −
∑|C|
c=1 n̂c|∑|C|

c=1 n̂c
, (22)

where n̂c, and n̂c are the number of reported events and predicted events, re-
spectively. We also compare the ranking quality of the competing models using
Normalized Discounted Cumulative Gain (NDCG) [34], which can be used to
evaluate the power of recommendations for counties with potential COVID-19
spikes in the near future.275

3.3. Experimental results

In Table 1 and Table 2, we present the experimental results for 7, 14, and
28 days window forecasts of MAE for all models applied to both confirmed cases
(Dconf) and deaths (Ddeath), and in Table 3 and Table 4, we report the results

8https://covid19forecasthub.org/community/
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Table 1: MAE on predicted confirmed cases Dconf

Model
7-days 14-days 28-days

Qtop
10%

Qtop
25%

Q25%
50%

Qtop
10%

Qtop
25%

Q25%
50%

Qtop
10%

Qtop
25%

Q25%
50%

PROJ 809.40 415.88 55.30 1664.90 857.93 117.86 3432.57 1779.56 252.43
CLEP 238.30 134.83 33.86 585.81 324.32 88.87 1963.52 1090.36 207.81
BUCKY 404.49 212.80 37.45 883.69 459.77 89.85 2085.88 1116.91 229.33
Hawkes 224.35 120.61 24.02 569.49 300.06 55.45 1803.63 935.83 165.92
HkPRm 211.59 114.34 22.44 519.00 271.86 49.83 1573.58 835.59 136.60
HkPR+

m 210.72 114.69 22.38 522.92 276.28 49.86 1611.48 893.65 132.79

The best performance is marked in bold.

Table 2: MAE on predicted confirmed cases Ddeath

Model
7-days 14-days 28-days

Qtop
10%

Qtop
25%

Q25%
50%

Qtop
10%

Qtop
25%

Q25%
50%

Qtop
10%

Qtop
25%

Q25%
50%

PROJ 15.56 7.89 1.12 30.66 15.55 2.20 56.85 29.37 4.41
CLEP 10.96 5.83 1.16 19.10 10.58 2.31 78.17 42.99 8.56
BUCKY 8.23 4.55 1.00 16.07 8.70 1.83 29.55 16.56 3.98
Hawkes 8.49 4.59 1.04 17.38 9.18 1.98 47.13 24.29 4.32
HkPRm 7.19 4.07 1.01 13.40 7.55 1.78 33.30 18.23 3.74
HkPR+

m 7.24 4.07 1.01 13.68 7.53 1.77 35.99 19.18 3.60

The best performance is marked in bold.

for PE. In terms of MAE and PE, both of our proposed models, HkPRm and280

HkPR+
m, outperform the benchmarks, PROJ and CLEP, by a large margin

in all three forecasting periods and across quantile subsets of the data.The
improvements of MAE and PE can also be seen in the simplistic baseline Hawkes
process, Hawkes. This suggests that the Hawkes process approach has a good
potential on modeling infectious disease due to the self-exciting properties that285

lie in the COVID-19 cases.
We found that adding mobility indices improves Hawkes, where forecast-

ing accuracy of HkPRm also increases across the subsets and all forecasting
window. For example, the improvements on MAE over Hawkes can go up to
13%, 11%, and 18% for 28 days forecast when HkPRm is applied to Qtop

10%,290

Qtop
25%, and Q25%

50% in Dconf, respectively. Similar decrease on MAE can be observed
when HkPRm is applied to three quantile subsets in Ddeath, where HkPRm

outperforms Hawkes by 29%, 25%, and 13% in MAE, respectively. In terms
of PE, HkPRm stays ahead of Hawkes with only one exception at Q25%

50% of
Ddeath in 28 days forecasting. This shows that by modeling the reproduction295

number through daily mobility indices we can enhance the forecasting accuracy
and obtain more precise estimation on the spikes in the future.

By adding demographic features, we can marginally boost the MAE and PE of
HkPR+

m over HkPRm in some cases. In general, the variation, HkPR+
m, also

shows similar improvements over the benchmarks. In particular, HkPR+
m has300

the best PE enhancement over HkPRm at Q25%
50% in Ddeath for 28 days forecast,
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Table 3: PE on predicted confirmed cases Dconf

Model
7-days 14-days 28-days

Qtop
10%

Qtop
25%

Q25%
50%

Qtop
10%

Qtop
25%

Q25%
50%

Qtop
10%

Qtop
25%

Q25%
50%

PROJ 91.00 90.40 84.07 94.41 94.63 92.83 95.76 96.17 96.94
CLEP 10.23 12.08 41.09 24.60 29.42 90.24 41.19 47.74 515.17
BUCKY 19.61 20.12 35.58 28.05 27.90 69.61 47.91 49.24 97.86
Hawkes 11.52 11.31 14.36 17.33 17.02 19.60 41.25 40.06 39.11
HkPRm 11.72 10.75 15.44 13.92 15.10 15.08 38.77 38.20 46.38
HkPR+

m 10.16 10.35 12.95 15.30 13.45 16.91 41.96 33.33 41.31

The best performance is marked in bold.

Table 4: PE on predicted confirmed cases Ddeath

Model
7-days 14-days 28-days

Qtop
10%

Qtop
25%

Q25%
50%

Qtop
10%

Qtop
25%

Q25%
50%

Qtop
10%

Qtop
25%

Q25%
50%

PROJ 72.56 72.25 45.10 81.93 81.96 73.62 90.21 90.53 87.16
CLEP 23.39 26.35 18.05 19.23 19.27 24.74 73.77 78.90 173.88
BUCKY 17.64 16.08 14.71 15.63 13.93 20.22 15.36 13.20 36.19
Hawkes 17.97 16.99 15.81 20.03 20.71 16.17 48.79 44.15 28.17
HkPRm 16.77 15.59 13.80 20.40 17.38 13.72 33.03 52.51 22.04
HkPR+

m 17.53 16.92 14.05 18.18 15.23 16.93 38.31 44.78 17.66

The best performance is marked in bold.

which is 20%. This demonstrates that the major forecasting power comes from
the joint modeling of mobility indices in the reproduction number while the
choices of the background rate and inter-infection distribution may only play a
minor part.305

Moreover, we notice that model BUCKY is a competitive baseline in Ddeath

where it has better accuracy in a few cases, such as MAE and PE Qtop
10% and Qtop

25%
for 28 days forecast. Possible explanation for its advantage could be the CDC-
recommended parameters that has been introduced to aid the model training
especially for recovery and deaths compartments in its SEIR model. Those310

parameters include case fatality ratio, case hospitalization ratio, time between
death and reporting, etc. However, introducing such pre-trained parameters
from CDC may not be practical in real-time forecasting and may potentially
bring in the data leakage issue.

In Table 5 and Table 6, we present the NDCG results for the ranking eval-315

uation. Generally, the proposed models HawkPR have a better NDCG perfor-
mance when applied to confirmed cases for most of the quantile subsets. In
terms of NDCG on the Ddeath dataset, the baseline Hawkes process, Hawkes,
performs better in some cases but proposed method consistently comes in sec-
ond for most of the forecasting window. By generating rankings with good320

qualities, HawkPR can serve as a recommender system for the hotspot coun-
ties and the public health policymakers can tailor strategies specifically for each
region to contain the virus. We also note that in our model, we are estimating
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Table 5: NDCG on predicted confirmed cases Dconf

Model
7-days 14-days 28-days

Qtop
10%

Qtop
25%

Q25%
50%

Qtop
10%

Qtop
25%

Q25%
50%

Qtop
10%

Qtop
25%

Q25%
50%

PROJ 0.7225 0.7039 0.8232 0.6946 0.6793 0.8412 0.6696 0.6614 0.8589
CLEP 0.9626 0.9526 0.8620 0.9418 0.9402 0.8704 0.9015 0.8843 0.8739
BUCKY 0.9283 0.9279 0.8600 0.9269 0.9216 0.8768 0.9013 0.8957 0.8813
Hawkes 0.9738 0.9757 0.8680 0.9697 0.9704 0.8926 0.9414 0.9419 0.8879
HkPRm 0.9706 0.9728 0.8673 0.9715 0.9755 0.8956 0.9502 0.9521 0.8958
HkPR+

m 0.9734 0.9759 0.8672 0.9752 0.9758 0.8932 0.9493 0.9503 0.8918

The best performance is marked in bold.

Table 6: NDCG on predicted confirmed cases Ddeath

Model
7-days 14-days 28-days

Qtop
10%

Qtop
25%

Q25%
50%

Qtop
10%

Qtop
25%

Q25%
50%

Qtop
10%

Qtop
25%

Q25%
50%

PROJ 0.6746 0.6607 0.7057 0.6823 0.6529 0.7666 0.7003 0.6837 0.8050
CLEP 0.9126 0.9010 0.7451 0.9095 0.8945 0.7849 0.8696 0.8240 0.8043
BUCKY 0.9161 0.9160 0.7301 0.9217 0.9222 0.7797 0.9074 0.9095 0.8278
Hawkes 0.9506 0.9493 0.7548 0.9475 0.9469 0.8011 0.9293 0.9297 0.8212
HkPRm 0.9491 0.9476 0.7598 0.9446 0.9457 0.8007 0.9299 0.9315 0.8195
HkPR+

m 0.9504 0.9474 0.7597 0.9502 0.9514 0.7963 0.9368 0.9372 0.8176

The best performance is marked in bold.

inter-event distributions of observed cases (ignoring asymptomatic cases) and
therefore these are observed or “effective” inter-event distributions, rather than325

true inter-infection distributions based on longitudinal data (we will clarify the
language in the revision). We believe this approach is justified by the perfor-
mance of the model in forecasting observed cases (and this approach is taken in
other applications, like seismology where some earthquakes are not observed).

3.3.1. Importance of covariates330

In Table 7 and Table 8, we show the dynamic reproduction number coeffi-
cients of HkPR+

m estimated from the Poisson regression component (Equation
2) when applied to Dconf and Ddeath, respectively. The absolute value of the
coefficients indicates the magnitude of the correlation between the reproduc-
tion number and the features. With the exception of population estimation in335

Ddeath, the coefficients of all variables are statistically significant at the 10−7

level or below. The dynamic reproduction number is positively correlated with
“Retail and recreation” while negatively correlated with “Residential”, meaning
that as mobility shifted away from commercial areas towards residences, the re-
production number decreased. In terms of spatial covariates, the reproduction340

number is positively correlated with “Population density” and “# of ICU beds.”
This suggests that the regions hit the hardest by COVID-19 are mostly urban
areas, where most of intensive treatment units are situated. The reproduction
number is also negatively correlated with percent of the population with“ Di-
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Table 7: Model coefficients (Dconf)

Covariate coef pValue

Retail/recreation 0.1303 0

Grocery/pharmacy 0.0029 8.46× 100−09

Transit stations −0.0102 1.56× 100−98

Parks −0.0355 0
Residential −0.1063 0

Population density 0.0220 0

# ICU beds 0.0110 1.20× 10−247

# hospitals 0.0106 8.69× 10−128

Median age −0.0049 3.85× 100−38

Population est. −0.0214 0
Smokers % −0.0361 0
Heart disease mort. −0.0453 0
Diabetes % −0.0589 0

The first 5 covariates are mobility indices,
followed by static demographic covariates
and two types of coefficients are sorted, re-
spectively.

Table 8: Model coefficients (Ddeath)

Covariate coef pValue

Retail/recreation 0.1047 4.15× 10−118

Grocery/pharmacy 0.0746 8.88× 10−111

Transit stations 0.0276 2.48× 100−11

Residential −0.0929 5.04× 10−212

Parks −0.1294 0

# ICU beds 0.0423 2.17× 100−64

Population density 0.0409 0

Population est. 0.0062 5.18× 100−2

Median age −0.0157 1.65× 1000−7

Heart disease mort. −0.0250 1.29× 10−008

# hospitals −0.0423 6.54× 100−28

Diabetes % −0.1041 1.33× 100−86

Smokers % −0.1448 1.65× 10−279

The first 5 covariates are mobility indices,
followed by static demographic covariates
and two types of coefficients are sorted, re-
spectively.

abetes” and “Heart disease mortality rate.” Several possible explanations for345

this observation include high-risk individuals are being more cautious or that
they tend to live in areas with less cases, potentially with less population.

3.3.2. COVID-19 forecasting and reproduce number analysis

In Figure 7, we present an example of 28 days projection made through
HkPR+

m from 10/28/2020 - 11/25/2020 for both Dconf and Ddeath. We can ob-350

serve that HkPR+
m has very promising results in making projections, especially

for the short term future, When the number of forecasting windows increases,
the forecasting error increase as the task also being more difficult. Moreover, the
narrow confidence interval calculated through 100 Hawkes processes simulations
suggests that the the proposed model can make relatively stable forecasting.355

Lastly, based on the projections, as the number of confirmed cases soon would
hit over 500,000 in the top counties including Los Angeles, CA, Cook, IL, and
etc. It is imperative to have a robust framework to help governments to design
strategies to combat COVID-19 or even more, prioritize vaccine distribution.

In Figure 8 and Figure 9, we find that the estimated dynamic reproduction360

number closely tracks lagged mobility, where the optimal lag parameter is deter-
mined as ∆ = 14 days for Dconf and ∆ = 21 days for Ddeath. The top-2 counties
in Qtop

10% have estimated reproduction number initially above 2.5. After stay-at-
home orders (around 04/11/2020), mobility in residential areas increased. On
the other hand, mobility in retail and recreation decreased and the reproduc-365

tion number fell to around 1, which explains why curves were relatively “flat”
in many areas in the U.S. after the lockdown. However, as most of states re-
opened and lifted up the restrictions, the reproduction number increased after
a large population resumed their daily routine, which can be also be observed
by the increased mobility in retail and recreation after July. Lastly, to validate370

the reproduction numbers, we also compare our results to the ones estimated
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Figure 7: Forecasting for 28 days from 10/28/2020 - 11/25/2020

by Stanford University 9 and our estimation match to their findings, which are
around 1.5-2.5 initially and 0.5-1.5 up to the beginning of December in 2020.

4. Conclusion

We showed how Hawkes processes can be combined with spatio-temporal co-375

variates to accurately model COVID-19 transmission and forecast future cases
and deaths. The model is competitive with several benchmark models used to
forecast the pandemic, achieving improved MAE and NDCG scores on a major-
ity of the experiments we conducted. Our hope is that this work will encourage
more research into Hawkes process models of disease spreading that incorpo-380

rate more advanced features and machine learning principles. As vaccinations
are rolled out across the U.S. (given recent FDA approval), local impacts on
dynamic reproduction can be flexibly accommodated by our model and used to
obtain more accurate and timely forecasts.

9https://web.stanford.edu/ chadj/Covid/Dashboard.html
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Figure 8: Estimated R of confirmed cases Dconf and lagged mobility changes (∆ = 14 days)
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Figure 9: Estimated R of deaths Ddeath and lagged mobility changes (∆ = 21 days)

One potential direction for future research is extending the work here to neu-385

ral network based point process models [10, 11]. These models may be able to
capture more complicated relationships between mobility patterns, demograph-
ics, and transmission. The challenges of such an approach include the potential
for over-fitting with added parameters and determining how best to realistically
model transmission in a neural point process (analagous to the SIR-Hawkes390

process), which will be important if neural point processes are to be used in
long-term forecasting.

Many of the preprints and models currently being released on academic
archives and websites present a single model without model evaluation, good-
ness of fit analysis, or comparison to baselines. Here we believe the “com-395

mon task framework” [35] could be beneficial in model selection and validation.
The machine learning community can contribute to pandemic modeling efforts
by performing careful benchmarking of methodologies, creating standardized
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datasets and tasks, and comparing competing models that come from different
fields such as epidemiology, statistics, and machine learning.400
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