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Abstract 

Background: Dystonia diagnosis is subjective and often difficult, particularly when co-morbid 
with spasticity as occurs in cerebral palsy.  

Objective: To develop an objective clinical screening method for dystonia 

Methods: We analyzed 30 gait videos (640x360 pixel resolution, 30 frames/second) of subjects 
with spastic cerebral palsy acquired during routine clinic visits. Dystonia was identified by 
consensus of three movement disorders specialists (15 videos with and 15 without dystonia). 
Limb position was calculated using deep neural network-guided pose estimation (DeepLabCut) 
to determine inter-knee distance variance, foot angle variance, and median foot angle difference 
between limbs.  

Results: All gait variables were significant predictors of dystonia. An inter-knee distance 
variance greater than 14 pixels together with a median foot angle difference greater than 10 
degrees yielded 93% sensitivity and specificity for dystonia. 

Conclusions: Open-source automated video gait analysis can identify features of expert-
identified dystonia. Methods like this could help clinically screen for dystonia.  
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Introduction 

The most common cause of dystonia in childhood is neonatal brain injury resulting in cerebral 
palsy (CP).(1) In this etiological context alone, dystonia affects at least 0.5-1 per every 1000 live 
births in the United States.(1–3) Dystonia is difficult to identify in those with CP and is often 
confused for co-morbid spasticity.(4,5) This has led to a dystonia diagnostic delay of years in 
children with CP, which is often a longer diagnostic delay than for other etiologies.(5) Possibly 
contributing to this delay is that the gold standard for dystonia diagnosis remains subjective 
assessment by a motor phenotyping expert. Given that dystonia is characterized by its 
variability over time and may appear differently based on the type of voluntary movement 
trigger, objective criteria for dystonia diagnosis have remained elusive.(6) This may be 
particularly true for CP since different types and extents of brain injury could result in different 
manifestations of dystonia.(7) 

Since dystonia can be identified visually, numeric readouts of limb movement trajectories have 
the potential to provide an objective method for dystonia diagnosis. Objective motor 
quantification techniques, like conventional video-based gait analysis, can give such readouts. 
However, conventional gait analysis measures have been unable to differentiate between 
dystonia and spasticity.(8) Commercially available systems are not easily adaptable to query the 
characteristics of gait that motor phenotyping specialists may commonly associate with 
dystonia. Furthermore, conventional video-based gait analysis systems are expensive and have 
a large physical footprint, preventing their widespread use at many clinical centers. 

To address these issues, we sought to determine a clinically-feasible and objective method to 
aid in dystonia identification in children and young adults with CP during routine clinic visits. We 
hypothesized that quantification of movement trajectories using open-source deep neural 
network transfer learning software (DeepLabCut(9,10)) could be used to objectively identify the 
movement features cited by phenotyping experts as they differentiate between those with and 
without dystonia. 

Methods 

This study was granted Human Subjects Research approval from the Washington University 
School of Medicine Institutional Review Board. 

Gait videos of children and young adults diagnosed with CP and spasticity were reviewed for 
dystonia by three fellowship-trained pediatric movement disorders specialists (B.R.A., K.U., 
T.S.P.). These gait videos were all retrospectively selected from a database of videos recorded 
during routine outpatient clinic visits in the St. Louis Children’s Hospital Cerebral Palsy Center. 
Videos were recorded using an Apple iPad A1432 at 640x360 pixel resolution and 30 
frames/second. Of note, this is the typical resolution and frames/second capability of standard 
definition video recording on most commercially available smartphones. Videos consisted of 
subjects walking barefoot in a straight line down a 15 foot hallway towards the camera. Subjects 
were all independently ambulatory but were allowed to use hand-held walking aids in the 
videos. Given that some subjects were holding onto walking aids in the videos while others were 
not, experts were only asked to assess the presence or absence of dystonia in the lower 
extremities. 
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Only videos in which the subject was unanimously deemed to display or not display lower 
extremity dystonia by all three specialists were used for further analysis. For this retrospective 
case-control study, 15 subjects whose gait videos displayed dystonia were compared to 15 
subjects with videos that did not display dystonia. Subjects were chosen to have comparable 
etiologies of their CP: all had periventricular leukomalacia on their MRIs without history of 
intracranial surgery, brain malformations, genetic disease, or metabolic disease. Subjects with 
and without dystonia were of comparable age, sex, and Gross Motor Function Classification 
System Level(11) distribution (Table 1). 

Quantitative automated motion tracking was done across all videos using open-source software 
(DeepLabCut). DeepLabCut (version 2.1.1(9,10)) utilizes deep neural network transfer learning 
methods to label user-defined nodes on any video and subsequently generate numerical 
readouts of limb movements without the application of markers or use of specialized cameras, 
even in sub-optimal backgrounds or lighting environments. DeepLabCut’s numerical readouts 
can be easily adapted to generate user-defined movement parameters. It has been applied to 
characterize movements as diverse as mouse pupil constriction to electric fish swimming to 
human hand reaching.(9,10) Given its broad applicability, this software allows for optimal 
analysis of patient videos obtained during routine clinical care, which are likely to be obtained in 
diverse settings and lighting conditions and under time-constraints that prohibit marker 
application. The neural network is trained on a relatively small number of user-labeled video 
frames (50-200 frames or 2-7 seconds of video) and can subsequently be used to automatically 
label all frames of any video acquired in comparable settings (e.g. the same clinic hallway). 
Output includes the X and Y coordinates of each user-defined node in each frame together with 
the likelihood of correct labeling (p-cutoff ranging from 0 to 1, with 1 indicating absolute certainty 
of labeling accuracy). We labeled 10 frames per video yielding 300 frames for training and 
testing the network (95% for training, 5% for testing). Frames were labeled while blinded to the 
identity of the patient or whether they had been identified as displaying dystonia in the video. A 
ResNet-50-based neural network was used for 500,000 training iterations to achieve a train 
error less than 2 pixels and a test error less than 3 pixels. We used a p-cutoff of 0.9 to condition 
the X,Y coordinates for further analysis. 

Using the trained network, the following nodes were labeled in automated fashion and therefore 
agnostic to whether the video was identified to contain dystonia or not: bilateral midpoints of the 
patellae, midpoints between the lateral and medial malleoli, and third toes. Using the generated 
coordinates of these nodes, we determined three gait variables: variance of the inter-knee 
distance normalized to the maximum knee to ankle distance in the same frame, foot angle 
variance (larger of the left and right foot angle variances), and median difference of the foot 
angle between limbs (Figure 1A). These gait variables were chosen a priori based on 
characterizations of classic dystonic movements and postures(12,13) and on the consensus 
definition of dystonia which notes that variability and a voluntary movement trigger are key 
defining features.(6) Although determining the bilateral leg angles relative to the hips (iliac 
crests) would be the ideal measure to assess leg adduction, the hips were not reliably visible in 
these subject videos that were retrospectively chosen from videos acquired during routine 
clinical care.  Therefore, inter-knee distance variance was examined in lieu of comparing leg 
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angles between limbs and over time, though we were able to compute these measures for the 
feet. 

Data were first analyzed using MANOVA to assess whether the three dependent gait variables 
were different between videos that either did or did not display dystonia.  MANOVA Pillai’s trace 
p<0.05 was deemed significant before employing post-hoc comparisons via Tukey’s HSD with a 
significance cutoff of p<0.05 (SPSS, IBM, Armonk, NY). Receiver operator characteristic (ROC) 
curves were used to determine the sensitivity and specificity of gait variables for predicting 
expert-identified dystonia (Graph Pad Prism 8, GraphPad Software, San Diego, CA).  

Results 

The assessed gait variables were significantly different between videos that did display expert-
identified dystonia compared to those that did not (MANOVA, Pillai’s trace F=6.336, p=0.002). 
Inter-knee distance variance over time (p=0.003), foot angle variance over time (p=0.005), and 
the median difference of the foot angle between limbs (p=0.002) were all significantly greater in 
videos that displayed expert-identified dystonia. ROC curves of these three gait variables 
revealed that all were significant predictors of expert-identified dystonia. In isolation, all 
variables offered comparable sensitivity and specificity for dystonia prediction. Inter-knee 
distance variance greater than 18 pixels was 80% sensitive and 80% specific for dystonia with 
ROC area under the curve (AUC) of 0.858 (95% CI 0.722-0.994, p=0.0008). Median difference 
of the foot angle between limbs greater than 14 degrees was 73% sensitive and 80% specific 
for dystonia (AUC 0.844, 95% CI 0.698-0.991, p=0.001). Foot angle variance greater than 136 
degrees was 80% sensitive and 73% specific for dystonia (AUC 0.840, 95% CI 0.695-0.985, 
p=0.002) (Figure 1B). When considering these variables together, inter-knee distance variance 
greater than 14 pixels together with a median difference of the foot angle between limbs greater 
than 10 degrees was 93% sensitive and 93% specific for dystonia (Figure 1C). Additional 
consideration of foot angle variance did not improve the sensitivity or specificity for dystonia.  

Discussion 

Quantifiable gait variables can distinguish between subjects with CP who do or do not display 
lower extremity gait dystonia using only smartphone-quality gait videos obtained during routine 
clinic visits. These variables were able to identify features of expert-identified dystonia with high 
specificity and sensitivity.  

These gait variables are representative of the consensus definition of dystonia, quantifying 
movement features that are variable over time and between limbs.(6) They can be quantified 
from videos taken using smartphones or tablet computers in an outpatient clinic without the use 
of specialized cameras or markers. Video processing can be done with open-source 
software.(9,10) Therefore, the methods outlined here are broadly applicable in a cost-effective 
manner in outpatient clinic settings.  

Regarding implementation, each clinical center would need to computationally train a neural 
network to distinguish patient body parts in a representative set of videos filmed in their local 
clinic environments. Training can take several days of processing time with a traditional 
personal computer (central processing unit), but can occur within 48 hours with a graphics 
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processing unit. After the network is trained, videos acquired in comparable clinic environments 
can be labeled within minutes depending on the length of the video. Therefore, after the initial 
requirement for neural network training, video analysis can happen within the same day of the 
clinic visit, or even during the visit itself.  

It will be important to validate this method in large data sets of ambulatory patients with and 
without dystonia and to include subjects with gait dystonia from different etiologies. Comparable 
techniques could be used to determine which variables correlate with expert-identified dystonia 
in other parts of the body during other motor tasks. Therefore, the results described here could 
be the first in a long line of objective and quantifiable movement features that could help aid 
clinical dystonia identification. We ultimately envision that these techniques could help 
practitioners initially screen patients for features which may be consistent with dystonia, 
particularly at centers where dedicated movement disorders specialists may not be readily 
available. 
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Table 1. Subject Clinical Details 

 No Dystonia (n=15) Dystonia (n=15) p (t-test or Chi-
square) 

Gestational age 
at birth (weeks) 

29 (27-30) 31  (29-33) 0.10 

Sex (% male) 53 (28-79) 40 (15-65) 0.46 
GMFCS (%)   

0.40 
I  33 (9-57) 13 (0-31) 
II  47 (21-72) 53 (28-79) 
III  20 (0-40) 33 (9-57) 

Age in video 
(years) 11.0 (9.6-13.3) 12.9 (10.3-15.4) 0.28 

GMFCS – Gross motor function classifications system, p values are based on t-tests for 
gestational age and age in the video, and Chi-square tests otherwise 
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Figure Legends 

Figure 1. Calculation of gait variables from following automated limb labeling. A) Example of 
marker positions and features used to calculate gait variables in a single video frame. B) 
Comparison of gait variables between subjects who did or did not display dystonia in their gait 
videos using post-hoc Tukey HSD following MANOVA (top). Receiver operator characteristic 
areas under the curve were used to determine if these variables were significant predictors of 
expert-identified dystonia in videos (bottom). C) Segregation of subjects that did or did not 
display dystonia across all three variables (left). Inter-knee distance variance and median foot 
angle difference between limbs, when considered together provided the best separation 
between groups (right). Gray shaded areas indicate upper limit cutoff values for these two 
variables that could help distinguish between subjects that did or did not display dystonia in gait 
videos.  
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