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Abstract  28 
The COVID-19 pandemic has accounted for more than five million infections 29 
and hundreds of thousand deaths worldwide in the past six months. The 30 
patients demonstrate a great diversity in clinical and laboratory manifestations 31 
and disease severity. Nonetheless, little is known about the host genetic 32 
contribution to the observed inter-individual phenotypic variability. Here, we 33 
report the first host genetic study in China by deeply sequencing and analyzing 34 
332 COVID-19 patients categorized by varying levels of severity from the 35 
Shenzhen Third People’s Hospital. Upon a total of 22.2 million genetic variants, 36 
we conducted both single-variant and gene-based association tests among five 37 
severity groups including asymptomatic, mild, moderate, severe and critical ill 38 
patients after the correction of potential confounding factors. The most 39 
significant gene locus associated with severity is located in TMEM189-UBE2V1 40 
involved in the IL-1 signaling pathway. The p.Val197Met missense variant that 41 
affects the stability of the TMPRSS2 protein displays a decreasing allele 42 
frequency among the severe patients compared to the mild and the general 43 
population. We also identified that the HLA-A*11:01, B*51:01 and C*14:02 44 
alleles significantly predispose the worst outcome of the patients. This initial 45 
study of Chinese patients provides a comprehensive view of the genetic 46 
difference among the COVID-19 patient groups and highlighted genes and 47 
variants that may help guide targeted efforts in containing the outbreak. 48 
Limitations and advantages of the study were also reviewed to guide future 49 
international efforts on elucidating the genetic architecture of host-pathogen 50 
interaction for COVID-19 and other infectious and complex diseases.  51 
 52 
Introduction 53 
It has been more than 100 years since the 1918 influenza outbreak killed at 54 
least fifty million people worldwide1. Now we are facing another pandemic. 55 
Since the late December of 2019, the 2019 novel coronavirus diseases 56 
(COVID-19) has spread rapidly throughout the world, resulting in more than five 57 
million confirmed cases and hundreds of thousands deaths in less than six 58 
months2,3. The disease was caused by the infection of a novel enveloped RNA 59 
betacoronavirus that has been named severe acute respiratory syndrome 60 
coronavirus 2 (SARS-CoV-2), which is the seventh coronavirus species that 61 
causes respiratory disease in humans4,5. The virus causes serious respiratory 62 
illnesses such as pneumonia, lung failure and even death6. Until now, there is 63 
no specific therapeutics and vaccine available for its control. Continuing 64 
epidemiological and molecular biological study to better understand, treat and 65 
prevent COVID-19 are urgently needed. 66 

A characteristic feature of many human infections is that only a proportion 67 
of exposed individuals develop clinical disease and for the infected persons, 68 
severity varies from person to person7. In the COVID-19 outbreak, a high level 69 
of inter-individual variability was observed in terms of disease severity and 70 
symptomatic presentation. Around 80%-85% of the laboratory confirmed 71 
patients were classified as mild (i.e. nonpneumonia and mild pneumonia) while 72 
15%-20% would progress to severe or critical stage with a high probability of 73 
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respiratory failure8–11. Patients with severe disease had more prominent 74 
laboratory abnormalities including lymphocytopenia and leukopenia than those 75 
with non-severe disease12,13. In addition, not all people exposed to SARS-CoV-76 
2 were infected according to the epidemiological observation of the patients’ 77 
close contacts14,15. Notably, previous studies have indicated that genetic 78 
background plays an essential role in determining the host responses to 79 
infections by  HIV16–18, HBV19, HCV20, influenza21–24, SARS-CoV25,26 and 80 
numerous common viruses27 etc. Those studies highlighted the HLA alleles and 81 
several genes involved in the interferon production and viral replication pathway 82 
and indicates that genetic factors may also play an important role to explain the 83 
inter-individual clinical variability among patients infected by SARS-CoV-2. 84 

Till now, the global genetic community has been actively investigating in 85 
the genetic contribution to COVID-19. A recent twin study in UK suggests a 30% 86 
-50% genetic heritability for self-reported symptoms of COVID-19 and the 87 
predictive disease onset28, indicating a very strong genetic background 88 
predisposing the COVID-19 patients’ clinical manifestation and susceptibility. 89 
An earlier studies comparing the distribution of ABO blood group from 1,775 90 
patients infected with SARS-CoV-2 with 3,694 normal people from Wuhan city 91 
and 23, 386 people from Shenzhen city suggested that blood group A had a 92 
significantly higher risk for COVID-19 (OR=1.20, p=0.02) while blood group O 93 
had the lower risk29. Using allele frequency and expression quantitative loci 94 
(eQTL) information of general healthy population from 1000 genome project 95 
and others, a few studies investigate the mutation frequency spectrum in 96 
different populations in candidate genes such as ACE2 and TRMPSS230–32. 97 
Genome-wide association test on array data from the UK Biobank participants 98 
with a positive and negative PCR-tests also reveals a few suggestive genes27. 99 
The COVID-19 host genetics initiative was established to encourage generation, 100 
sharing and meta- analysis of the genome-wide association summary statistics 101 
data around the world33. International collaborative efforts are necessary to 102 
elucidate the role of host genetic factors defining the severity and susceptibility 103 
of the SARS-CoV-2 virus pandemic. 104 

Herein, we report the first genetic study of COVID-19 disease severity in 105 
China by deeply analyzing the association between the genetic variants present 106 
in the patients’ genome and their disease progression. We have recruited 332 107 
hospitalized patients from a designated infectious disease hospital in Shenzhen 108 
City34. The patients display varying clinical and laboratory features and were 109 
categorized as asymptomatic, mild, moderate, severe and critical cases 110 
according to the criteria made by the Chinese Center for Disease Control and 111 
Prevention6. To maximize the statistical power given the relatively  112 
small hospitalized sample size and for accurate detection of extremely rare 113 
variants, we conducted deep whole genome sequencing (average 46x) for the 114 
patients. Given a fixed samples size, this protocol facilitates the estimation of 115 
genetic effects of rare and loss of function variants in addition to the common 116 
variants that may be potentially contributing to the COVID-19 clinical variability35. 117 
Based on the 22.2 million variation detected from the patients, we investigated 118 
host factors by conducting both single variant and gene-based genome-wide 119 
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association study and by evaluating the difference of allele frequency of the 120 
protein truncating variants and HLA alleles among the patient groups. In 121 
addition, we performed joint-calling of the genetic variants of the unrelated 122 
COVID-19 patients (N=284) and the publicly available Chinese genomes from 123 
the 1000 genome project36 (N=301, ~7x) and 665 selected Chinese genomes 124 
from the Chinese Reference Panel Population (manuscript in preparation, ~30x) 125 
to explore potential genetic factors that may contribute genetic susceptibility of 126 
SARS-CoV-2 infection. 127 
 128 
 129 
Results 130 
Clinical and laboratory features of the 332 hospitalized COVID-19 patients 131 
The 332 recruited patients with laboratory-confirmation of SARS-COV-2 132 
infection were being quarantined and treated in the Shenzhen Third Hospital. 133 
We extracted and analyzed the clinical symptoms, laboratory assessment, 134 
recent exposure history of the patients from the hospital’s electronic medical 135 
records. The 332 patients consist of 48 family members and 284 unrelated 136 
individuals. 137 

25 (7.5%), 12 (3.6%), 225 (67.8%), 53 (16.0%) and 17 (5.1%) patients 138 
were defined as asymptomatic, mild, moderate, severe and critically severe 139 
according to the most severe stage they encountered during the disease 140 
course following the Chinese CDC criteria6 (Figure 1A). The asymptomatic, 141 
mild and the moderate groups of patients had positive RT-PCR test result but 142 
did not have or only had mild pneumonia. The severe patients met any one of 143 
the following criteria: respiratory rate (RR) ≥ 30/min, blood oxygen saturation ≤ 144 
93%, partial pressure of arterial oxygen to fraction of inspired oxygen ratio 145 
(PaO2/FiO2) < 300 mmHg and/or lung infiltrates > 50% within 24-48 hours. A 146 
severe patient was classified as critical ill if he/she experienced any one of the 147 
following situations: respiratory failure, septic shock and/or multiple organ 148 
dysfunction or failure. A broader definition of the mild group includes the 149 
asymptomatic, mild and moderate patients, and of the severe group, includes 150 
the severe and critically severe patients.  151 

The patients displayed several clinical presentations typical to COVID-152 
19, which mainly involved fever (70.8%), cough (54.2%), fatigue (23.9%), 153 
hoarse voice (17.6%), loss of appetite (16.2%), delirium (15.1%) (Figure S1). 154 
Less than 10% had also experienced diarrhea, chest and abdominal pain, 155 
shortness of breath and anosmia. More than 50% of the patients had at least 156 
one medical comorbidities (e.g., hypertension). Consistent with previous 157 
report, the broadly defined severe patients tend to be older (severe average 158 
45 years old vs mild average 58 years old, t-test p=0.03, Figure 1C), suffer 159 
from a longer course of disease between the onset and the first negative RT-160 
PCR test outcome (Figure 1D) and shorter exposure time (Figure S2) . In 161 
addition, the severe patient group consist of more males than females (severe 162 
66.7% vs mild 41.3%, χ2 test p=4.3e-4, Figure 1E) and tend to undergo 163 
medical comorbidities more frequently (severe 58.8% vs mild 45.1%, χ2 test 164 
p=0.07) (Figure 1F) than the mild patients.  165 
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During hospitalization, a series of sixty four laboratory assessments 166 
including a complete blood count and blood chemical analysis, assessment of 167 
liver function, assessment of renal functions, test of humoral immunity, test of 168 
coagulation, measure of electrolyte and measure of blood gas electrolyte 169 
(Figure S3) and a time-series evaluation of T lymphocyte subgroups (Figure 170 
S4) were performed for each of the patients to monitor their disease status and 171 
progression. Using a tree-based machine learning prediction model37, we 172 
computed the local interaction effects of the sixty four laboratory assessment 173 
features as well as three demographic features including age, gender and w/o 174 
medical comorbidities for classification of the patient severity category (Figure 175 
S5). The top ten features of greatest importance that contribute to a severer 176 
disease outcome include decreased lymphocyte counts (Tc-Count, T-CELL, 177 
LYMPH#) and platelet counts, evaluated interleukin 6, C-reactive protein and 178 
D-dimer, increased age and decreased A/G and CO2 (Figure 1B), consistent 179 
with previous reports38. We applied the top twenty features of importance to 180 
assign a severity score for each patient to reflect their disease status (Figure 181 
S6). 182 
 183 
Deep whole genome sequencing and genetic variation 184 
We obtained the whole blood and performed deep whole genome sequencing 185 
for the recruited patients. There is no significant difference for sequencing depth 186 
between the broadly defined mild and severe group (mild 46.26x vs severe 187 
46.71x) (Figure 2A). We conducted variation detection and genotyping using 188 
the GATK joint genotyping framework to avoid any potential batch effect derived 189 
from individual variant calling. Bioinformatics analysis and the data quality 190 
control process were described in details in the Online methods. 191 

Among the 332 patients, we identified a total of 22.2 million variants 192 
including 17.9 million bi-allelic single nucleotide polymorphism, 1.75 million bi-193 
allelic small insertions and deletions and 2.49 million multi-allelic variants 194 
(Figure 2B). The average transition/transversion (ts/tv) ratio is 2.12 and the 195 
proportion of heterozygous versus homozygous variants among all the samples 196 
is 1.29, consistent with our expectation39 and indicates good quality of the 197 
variant calls (Figure S7). Particularly, we have identified 398K variants that 198 
result in an alteration of the protein coding sequence (Figure 2C). The QC 199 
metrics were detailed in Table S1.  200 

Our first question was whether the most vulnerable severe and critical 201 
patients may have a monogenic basis for their demonstration. We investigated 202 
the burden of loss of function variants predicted by the ensemble variant effect 203 
predictor among the patient groups40. In total, we have identified 4,891 204 
predicted loss of function variants including 1,860 frameshift, 1,447 stop gained, 205 
505 splice donor and 380 splice acceptor variants among the 332 patients. On 206 
average, each patient possessed 201 predicted loss of function variants in their 207 
genome (Figure S8). 261 of those variants were uniquely presented in the 208 
COVID-19 patients (18.6%) and have not been previously reported in the 1000 209 
genome and the gnomAD studies36,41,42. Interestingly, the severe and the critical 210 
patients tend to have more loss of function insertions than the asymptomatic, 211 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted June 13, 2020. ; https://doi.org/10.1101/2020.06.09.20126607doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.09.20126607
http://creativecommons.org/licenses/by-nc-nd/4.0/


mild and the moderate groups in a logistic regression taking the number of loss 212 
of function variants as variable and the patients’ age, gender, the twenty 213 
principle components and effective sequencing depth as covariates (p=0.004) 214 
(Figure 2D). When performing a mutation burden test for each of the 16,801 215 
genes that have more than one variant among the 284 unrelated patients, we 216 
didn’t identify genes that were enriched in loss of function variants in the severe 217 
and critical patients (Figure 2E). On the other hand, we found two heterozygous 218 
loss of function variants located in MST1R and RASA2 that were only present 219 
in the asymptomatic patients (Figure S9). The MST1R encodes the 220 
macrophage stimulating 1 receptor expressed on the ciliated epithelia of the 221 
mucociliary transport apparatus of the lung and follows an autosomal dominant 222 
inheritance mode for susceptibility to nasopharyngeal carcinoma43. Because 223 
those loss of function variants were only present in one patient, we didn’t build 224 
up links to the COVID-19 severity.  225 

Particularly, we have inspected the missense and loss of function variants 226 
present in the SARS-CoV-2 S protein host cellular receptor gene ACE2 and the  227 
S protein primer gene TMPRSS2 that plays a critical role in controlling the viral 228 
entry into the host cell, as well as a few other genes that were predicted to play 229 
a role in the host pathogen interaction network like SLC6A19, ADAM17, RPS6, 230 
HNRNPA1, SUMO1, NACA and BTF3 44.  The majority of the functional variants 231 
have minor allele frequency less than 1% except for the p.Val197Met missense 232 
variant in TMPRSS2 (Figure 2F). Although not statistically significant, the 233 
p.Val197Met variant (rs12329760) displays a higher allele frequency in the 234 
asymptomatic and mild group compared to the rest of the group (asymptomatic: 235 
0.46, mild: 0.50, moderate: 0.38, severe: 0.39, critical severe: 0.26). 236 
p.Val197Met was previously found to have higher allele frequency in East Asian 237 
(0.31-0.41) and Finnish (0.36) but is less frequently seen in South Asians (0.14-238 
0.29) and the Europeans (0.17-0.23) (Figure S10). By computational protein 239 
modelling, the p.Val197Met TMPRSS2 isoform could decrease the stability of 240 
the TMPRSS2 protein, promote the binding to S-protein and inhibit its binding 241 
with ACE244. The decreasing allele frequency in the severe patient groups 242 
supports that the p.Val197Met is related to the disease outcomes of COVID-19. 243 
The other genes didn’t contain significant allele frequency difference among the 244 
patient groups (Figure S11).  245 
 246 
Genetic association of common and rare variants with COVID-19 severity 247 
To further investigate genetic effects for the patient severity, we performed 248 
genome-wide single variant association test and sequence kernel association 249 
test (SKAT) analysis of three traits implicating patient severity. We defined the 250 
first trait as a dichotomous classification of the broadly defined “severe group” 251 
that consists of the severe and critical ill patients (N=70) and the “mild group” 252 
(N=262) that consists of the asymptomatic, mild and moderate patients. We 253 
defined the second trait as a quantitative measurement of the severity level 254 
trained from the demographic features such as age, gender and the sixty-four 255 
laboratory assessments (N=332) (Figure S5-6). We used the disease duration 256 
from the electronic health records as the third trait which corresponds to the 257 
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duration of time between the complained disease onset and the first laboratory 258 
confirmed PCR-test negative outcome (N=233) (Figure 1D). Power analysis 259 
indicates that given 80% statistical power, we will be able to identify 260 
associations between genotypes and phenotypes for variants with minor allele 261 
frequency greater than 0.2 and with a relative genetic risk contribution greater 262 
than 2 given the current sample size for dichotomous trait and similarly for the 263 
quantitative trait (Figure S12). Principal component analysis of the patients 264 
suggests little genetic differentiation (Figure S13-14).  265 

We tested all the QC-passed 19.6 million bi-allelic variants for association 266 
with each of three traits in a logistic or linear regression model that includes 267 
gender, age, and the top 20 PC axes as covariates. The global distribution of 268 
resulting p-values was very close to the null expectation (λ = 0.996~1.1, Figure 269 
S15) indicating that stratification was adequately controlled. The most 270 
significant SNP rs6020298 is located in the intron of a read-through transcript 271 
TMEM189-UBE2V1 in the 20q13.13 region. (Figure 3A-B). The rs6020298 272 
(hg38 chr20:50152518, A allele frequency severe vs non-severe: 0.59 vs 0.45) 273 
marks a suggestive significant association signal for both the Severe and Mild 274 
binary trait (logistic regression p=4.1e-6, OR=1.2) and the quantitative 275 
measurement of the severity score (linear regression p=1.1e-6, beta=0.35) . 276 
SNPs in linkage disequilibrium with rs6020298 (r2>0.8) also affect the gene 277 
UBE2V1 and TMEM189 (Figure 4A). The UBE2V1 gene encodes the ubiquitin-278 
conjugating enzyme E2 variant 1. Both the UBE2V1 and TMEM189-UBE2V1 279 
have been involved in the interleukin-1 (IL-1) signaling pathway45 and 280 
suggested to work together with TRIM5 to promotes innate immune signaling46. 281 
IL-1 is elevated in COVID-19 patients especially the severe and critical patients 282 
who suffer from the cytokine storm and severe inflation47. Clinical trial using IL-283 
1 blockade on critical patients results in an improvement in respiratory function 284 
in 72% of the patients48. The lead SNP rs6020284 has a minor allele frequency 285 
close to 0.5 among the worldwide populations except for the African population 286 
(AF=0.13) (Figure 4B). It is also an eQTL for LINC01273, TMEM189 among 287 
several tissues including the lung where the risk A allele increases the 288 
TMEM189 and LINC01273 expression in several tissues (Figure S16). This 289 
may indicate that an inborn evaluated TMEM189 expression in the patients may 290 
promote IL-1 signaling and predisposes the patients towards a poorer outcome 291 
against the COVID-19 infection. However, given the limited sample size in this 292 
study and that the intermediate pathways between TMEM189 and IL-1 293 
production is still unclear, more replication and functional validation efforts 294 
should be made to re-evaluate this association signal. Notably, the TMEM189-295 
UBE2V1 locus has been associated with monocyte percentage of leukocytes 296 
and granulocyte percentage of myeloid white cells49. Nonetheless, we didn’t 297 
observe nominal association (p<0.05) at the lead SNP rs6020298 with all the 298 
sixty-four laboratory assessments among the patients (Figure 4C). Therefore, 299 
the observed signal is not supposed to be confounded by individual variability 300 
on blood cell types. There is no strong genetic association with the disease 301 
durations (Figure 3C).  302 
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We further performed optimal SKAT gene-based association test on the 303 
functional variants including a total of 99,166 missense and loss of function 304 
variants that were predicted to have high or moderate impacts by variant effect 305 
predictor among the patients. The NOA1 gene tend to higher mutation burden 306 
in the severe group (P= 8.1e-07) (Figure 3D). This gene encodes the GTPase 307 
that functions in the mitochondrion and has been associated with platelet count 308 
and leukocyte count45. We didn’t identify other genes that are genome-wide 309 
significantly associated with the severity score or the disease duration (Figure3 310 
E-F). 311 

 312 
HLA gene alleles associated with severity in the COVID-19 patients 313 
Manifestation of numerous infectious diseases are closely related to the genetic 314 
variants across the major histocompatibility complex (MHC) genes, i.e. the 315 
human leukocyte antigen (HLA) genes, which play an essential role in 316 
presenting the antigen determinant epitopes from the pathogens to the T cell or 317 
B cell to activate the host immune response50,51. In the 2003 severe acute 318 
respiratory (SARS) outbreak, caused by the SARS coronavirus (SARS-CoV) 319 
related to SARS-CoV-2, the HLA-B*46:01 was reported to be associated with 320 
infection severity in East Asian patients25. Herein, we investigated the genetic 321 
effect from HLA genes on the COVID-19 patient severity. We re-aligned all the 322 
reads mapped to the eight HLA haplotypes in the human reference genome 323 
(GRCh38) and all the unaligned reads and typed the three class I HLA genes 324 
(A, B, C) and four class II HLA genes (DPB1, DQA1, DQB1, DRB1) using the 325 
xHLA52 and the SOAP-HLA approach53. 4-digit haplotyping resolution was 326 
achieved for 99% of the patients for all the genes except for DQA1 where three 327 
patients were only typed to the 2-digit resolution. We observed zero mendelian 328 
error rate for the typing results using the family members involved in the study. 329 
We investigated whether some HLA alleles may significantly differ between the 330 
broadly defined severe (severe and critical, N=69) and mild (asymptomatic, mild 331 
and moderate, N=215) groups of unrelated patients using a logistic regression 332 
with age, gender and the top 20 principal components as covariates. The 333 
frequency comparison between the severe and mild groups for the total 30 HLA-334 
A, 51 HLA-B, 28 HLA-C, 20 DPB1, 21 DQA1, 16 DQB1 and 32 DRB1 alleles 335 
were displayed in Figure 4 and Table S2. Among the class I HLA genes, 336 
C*14:02 (severe 8.7% vs mild 4.6%, OR=4.7, P=3e-3), B*51:01 (severe 10.1% 337 
vs mild 5.8%, OR=3.3, P=7e-3), A*11:01 (severe 29.7% vs 26.2%, OR=2.3, 338 
P=8.5e-3) are the top three most significant alleles between the two groups that 339 
predispose the patients entering the severe stage (Table 1). The HLA-A*11:01, 340 
B*51:01 and C*14:02 is in strong linkage equilibrium with each other and thus 341 
represents one haplotype. This haplotype has an average allele frequency 2.4% 342 
- 3.6% among the Chinese populations according to the HLA Allele Frequency 343 
Net Database54. In our study, we find that this haplotype is more prevalent in 344 
the severe patients compared with the mild patients. 345 

Notably, although B*46:01 has been suggested to present the fewest 346 
SARS-CoV and SARS-CoV-2 peptides in an in silico analysis55 and has been 347 
associated with the SARS-CoV in a small sample size association analysis 348 
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without correcting demographic and geographic covariates25, our analysis 349 
doesn’t support this allele is associated with the disease severity (OR=0.5, 350 
P=0.15). On the contrary, allele frequency of B*46:01 is less frequent in the 351 
severe patients (10.1%) than among the mild patients (12.8%). Class II HLA 352 
genes is less significantly associated with the disease severity compared to the 353 
Class I genes (Table 1). DRB1*14:04 (severe 2% vs mild 0.5%, P=0.01), 354 
DRB1*01:01 (severe 2.2% vs 0.5%), DQA1*01:01 (severe 2.9% vs 0.9%) are 355 
the top three risk alleles while DPB1*03:01 (severe 0.7% vs mild 4.5%) and 356 
DRB1*12:01 (severe 2.2% vs mild 3.7%) might display a protective effect.   357 
 358 
Comparison with general population for potential genetic contribution to 359 
SARS-CoV-2 infection susceptibility 360 
Our study till now has been restricted in the infected patients to understand 361 
genetic contribution to patient severity. Mapping genes related to infection 362 
susceptibility is more difficult. The ideal design commands a comparison 363 
between people who are exposed or not exposed to the pathogen. This is 364 
hard to meet because early detection and isolation of infected patients are the 365 
primary containment strategies against an outbreak56. Therefore, we choose 366 
another approach to investigate genetic susceptibility by comparing the 284 367 
unrelated hospitalized patients (the Case) with two general populations 368 
including 301 Chinese individuals in 1000 genome project36 (the Control I) and 369 
665 individuals recruited from the Chinese Reference Panel program (CNPR, 370 
manuscript in preparation, the Control II). Control I and Control II differ in 371 
terms of the similarity of the adopted sequencing protocol compared to the 372 
Case. All the technical components are almost the same between the Case 373 
and Control 2 except for sequencing depth (case 46x versus control 2 30x). 374 
On the other hand, various factors are different between the Case and Control 375 
1, including types of sample (case fresh blood versus control 1 cell line), 376 
sequencing technology (case MGI’s nanoball sequencing versus control 1 377 
Illumina sequencing), sequencing read cycles (case 100bp pair-end versus 378 
control 1 150bp pair-end) and the sequencing depth (case average 46x versus 379 
average 7x). Study like this can reveal genetic difference between the infected 380 
population and the general population if any and if not, instruct on what 381 
cautions should be taken when comparing the disease cohorts versus the 382 
general in the whole genome sequencing context.  383 

We analyzed the data carefully by jointly genotype the samples from their 384 
individual gvcf files using the GATK best practices39 instead of simply merging 385 
the population vcf files of the case and the control. Principle component analysis 386 
indicates that population structure is the dominant confounding factor and 387 
sequencing induced batch effects were difficult to identify in the PCs (Figure 388 
S17, Figure S18). Similarly, we conducted both single variant and gene-based 389 
association tests for the two case-control data sets using the top 20 PCs, 390 
gender and age (age was not available for 1KGP samples and was used for the 391 
CNPR alone) as covariates. Surprisingly, in the single association test for the 392 
high and moderate impact variants, many variants in the HLA region displayed 393 
significant associations between the COVID-19 patients and the 1KGP Chinese 394 
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(Figure 6A) even though the inflation was seemingly adequately controlled 395 
(Figure S19). In the gene-based association test, we observed significantly 396 
different mutation burdens in the immunoglobulin loci (Figure 6B). However, 397 
this was not replicated when we compared the COVID-19 patients with the 665 398 
CNRP individuals (Figure 6C-D). Therefore, we inferred that the association 399 
signals between the 1KGP and the COVID-19 patients were probably due to 400 
sequencing batch effects. As the fresh blood of an infected individual contains 401 
numerous somatic mutated B-cells, patients tend to accumulate more mutations 402 
in the immunoglobulin genes57. As many studies try to directly compare the 403 
allele frequency between the general population and the COVID-19 patients30,32, 404 
our discoveries remind us of the necessity for re-evaluation of the significant 405 
hits given distinct experimental protocol for case and control. 406 

In the single variant association test between the COVID-19 patients and 407 
the CNPR who were sequenced using the same experimental protocol and 408 
were laboratory PCR tested negative, we identified genome-wide significant 409 
associated signals tagged by a novel missense variant (Patient T allele 410 
frequency=0.34, CNPR T_AF=0.14, OR=18, P=4,7e-17) in MUC2; a missense 411 
variant rs200584390 (Patient G allele frequency=0.31, CNPR G_AF=0.09, 412 
OR=9.29, P=1.5e-13) in RIMBP3 and a missense variant rs200975425 (Patient 413 
T allele frequency=0.24, CNPR T_AF=0.39, OR=5.4, P=9.4e-10) in GOLGA8B 414 
(Figure 6C). Gene-based association test also indicates that RIMBP3 and 415 
GOLGA8B were different between the patients and the CNPR (Figure 6D). 416 
Those discoveries require further replication and interpretation when more 417 
sequencing data for patients and for general populations become available 418 
worldwide33.  419 
 420 
Discussion  421 
We have conducted the first genetic association study for the COVID-19 422 
severity and SARS-CoV-2 infection susceptibility by studying the genome and 423 
clinical outcome of 332 patients in a designated infectious disease hospital in 424 
the Shenzhen City. Instead of using the microarray or the exome genome 425 
sequencing, we have carried out high-depth whole genome sequencing and 426 
analysis for the patients to obtain the greatest possible power given a small 427 
sample size available so far. The study design enables the detection of very 428 
rare and private functional variants for the patients58 and ensures that the 429 
potential causal variants are directly assayed to compensate the loss of power 430 
due to poor linkage disequilibrium between the assayed and the causal 431 
variants59.  432 

We revealed that the disease progression after the SARS-CoV-2 433 
infection was a complex event and not explained by a monogenic model. The 434 
severe and critical patients did not carry causal monogenic variants related to 435 
the disease severity in their genome. We identified that the missense variant 436 
rs12329760 in TMPRSS2 was less frequent among the critical patients 437 
compared to the rest of the patients and the general population. This variant 438 
results in an alteration of the valine to the methionine at the 197th amino acids 439 
(p.Val197Met) has been predicted to decrease the TMPRSS2 protein stability 440 
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and ACE2 binding44. On the other hand, our study using Chinese samples did 441 
not support the assumption30 that host genetic factors in the essential SARS-442 
CoV receptor ACE2 and some other genes involved in the host pathogen 443 
interaction network might play a role in determining the patient’s severity or 444 
susceptibility.  445 

In the genome-wide association analysis, a gene locus around 446 
TMEM189-UBE2V1 displayed suggestively association with COVID-19 severity. 447 
This gene locus contains genes such as UBE2V1 and TEMEM189-UBE2V1 448 
that are known to function in the interleukin-1 signaling pathway45,46. The lead 449 
SNP rs60220284 is an eQTL where the risk allele A increases the gene 450 
expression of genes within the locus60 and is more prevalent in the severe and 451 
critical patients. While COVID-19 severe patients demonstrate elevated IL-1 452 
compared to the mild patients and the general population47, our study suggests 453 
potential correlation between genetic variability in this gene and the disease 454 
severity.  455 

Notably, the HLA-A*11:01, B*51:01 and C*14:02 alleles were significantly 456 
more prevalent in the severe and critical severe patients compared to the mild 457 
and the moderate patients after careful control of population structure and 458 
demographic characters such as age and gender. The three alleles were in 459 
linkage disequilibrium with each other and has been previously reported to have 460 
a 2-3% population allele frequency in Dai and Jinpo minorities in China54 and 461 
the B*51:01 has been previously linked to the Behcet’s disease61, a kind of 462 
rheumatic disease. We were not able to access the role of HLA-B*46:01, 463 
although it has been predicted as the worst presenting HLA alleles to the SARS-464 
CoV-2 proteome55 and linked to the SARS 2003 outbreak25. 465 

Surprisingly, genome-wide association study using the COVID-19 466 
patients as the case and the 1000 genome Chinese population as the control 467 
suggested an enrichment of significantly associated signals in the HLA region 468 
and mutation burden in the immunoglobulin genes. Nonetheless, this was not 469 
replicated when we compared the patients to another independent Chinese 470 
population. A lot of efforts in the genetic field have been made and there may 471 
be more in the future to investigate genetic susceptibility of the SARS-COV-2 472 
infection by directly comparing two or more general populations with the 473 
COVID-19 patients32,33 . Therefore, cautions should be taken to properly control 474 
the batch effects. Replication is essential and perhaps a joint-analysis effort can 475 
rule out the real signals from the false delusion.  476 

Some limitations of the study should be noted. Power analysis indicates 477 
that sample size of around 300 is barely sufficient to identify genome-wide 478 
significant genetic variants with minor allele frequency greater than 0.2 and 479 
odds ratio greater than 1.8 given type I error rate 0.05. We don’t have power to 480 
detect causal variants beyond this risk and allele frequency scenario. In addition, 481 
although the study of hospitalized patients in a designated hospital includes all 482 
severe patients, the design has a limited presentation of the asymptomatic 483 
patients (7.5%) which ratio has been estimated to be 30.8% (95% confidence 484 
interval 7.7-53.8%)62. Given that RT-PCR test and the seroprevalence 485 
immunoglobulin M and G antibody tests targeting the SARS-CoV-2 has been 486 
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widely adopted in China and around the globe, it will be important to identify 487 
and study the extreme asymptomatic patients to understand the host factors 488 
contributing to a capable control of the viral infection.  489 

As we and the others are continuing to recruit patients and data in China 490 
and around the world to understand the host genetic background underlying the 491 
varying clinical outcome of the patients, this work represents the first genetic 492 
study on the Chinese hospitalized patients where high quality sequencing data 493 
were generated and systematic analysis on the genomic and clinical data were 494 
conducted. Our results highlight several genetic factors involved in the immune 495 
responses including genes involved in the viral entry in the host cells, genes 496 
related to immune responses and the HLA alleles.  This work is also an 497 
important and initial start to guide study design regarding the selection of 498 
samples, the genetic assay approach, the bioinformatics and the statistical 499 
genetic analysis for COVID-19 as well as other infection and complex disease. 500 
The publicly available summary statistics will encourage international 501 
collaborative efforts to understand the host-pathogen interaction and to contain 502 
the COVID-19 outbreak. 503 
 504 
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Material and Methods 532 
Patient recruitment and definition of phenotypes 533 
A total of 332 patients were recruited from Jan 11th 2020 to Apr 2020 in 534 
Shenzhen Third People’s Hospital, the only referral hospital in Shenzhen City, 535 
China34. All were confirmed with SARS-COV-2 infection using real-time 536 
reverse-transcriptase– polymerase-chain-reaction (RT-PCR) assay of nasal 537 
and pharyngeal swab specimens. The demographic, epidemiological, clinical 538 
and laboratory assessments were extracted from the electronic medical records 539 
of the patients. This study was approved by the ethics commissions of the 540 
Shenzhen Third People’s Hospital Ethics Committee with a waiver of informed 541 
consent. According to the 5th edition of the national treatment guideline of 542 
COVID19 in China and the Chinese CDC criteria6, the patients were diagnosed 543 
as asymptomatic, mild, moderate, severe and critically severe according to the 544 
most severe stage they experienced during the disease course. The 545 
asymptomatic, mild and the moderate groups of patients do not experience 546 
pneumonia. When meeting any one of the following criteria, 1) RR>30 2) 547 
Oxygen level < 93% 3) PaO2/FiO2 < 300 mmHg 4) disease progression greater 548 
than 50% area in CT scan, a patient is categorized as severe patients. Patients 549 
experienced one of the following 1) respiratory failure and requires mechanical 550 
ventilation 2) shock 3) complicated by failure of other organs and requires 551 
intensive care monitoring were classified as critically severe.  552 
 553 
Assignment of severity score to each patient 554 
A machine learning XGBoost-based model was developed to predict ordinal 555 
severity scores using patients' phenotype data of 64 laboratory test results63. 556 
We first filtered out the laboratory test items of which at least 50% of patients 557 
did not have any recordings. The remaining 52 laboratory test items with 558 
missing values were further imputed by missForest algorithm64. The missForest 559 
is a nonparametric method to impute missing values using random forest model 560 
in an iterative fashion. Then the originally ordered severity levels of 561 
asymptomatic, mild, moderate, severe and critical were assigned integer values 562 
of 1, 2, 3, 4 and 5, respectively. The numeric representations retained the 563 
ordinal levels of severity. We applied the reduction framework mentioned in Li 564 
et al65, where the ordinal regression was reduced to binary classification. The 565 
reduction framework of extended binary classification was then integrated 566 
within XGBoost model. Moreover, we selected the most predictive laboratory 567 
test items using SHAP (SHapley Additive exPlanations) algorithm66 . The SHAP 568 
is a game theoretic approach to explain the output of a given machine learning 569 
model using Shapley values from game theory and their related extensions. We 570 
finally trained the XGBoost-based ordinal regression model using the selected 571 
laboratory test items. As a result, the prediction outcome produced by the final 572 
model was typically a real number reflecting severity level that was used in the 573 
downstream analysis. We used 100 base estimators for missForest, maximum 574 
iteration of 10, and the criterion was mean squared error. For the XGBoost-575 
based ordinal regression model, we used 500 base estimators and learn rate of 576 
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0.5. In general, the hyper-parameters of models in this study were chosen by 577 
combining grid search of 5-fold cross validation and manual tuning. 578 
 579 
DNA extraction, library construction and deep whole genome 580 
sequencing  581 
Genomic DNA was extracted from frozen blood samples of the 332 patients 582 
using Magnetic Beads Blood Genomic DNA Extraction Kit (MGI, Shenzhen, 583 
China). At least 0.5μg was obtained for each individual and used to create WGS 584 
library, which insert sizes 300-500bp for paired-end libraries according to the 585 
BGI library preparation pipeline. Sequencing was conducted on the DNBSEQ 586 
platform (MGI, Shenzhen, China) to generate 100bp paired-end reads. 587 
 588 
Genome alignment and variant detection 589 
We used Sentieon Genomics software (version: sentieon-genomics-201911) to 590 
perform genome alignment and variant detection67. Analysis pipeline were built 591 
according to the recommendation in the Broad institute best practices described 592 
in https://gatk.broadinstitute.org/hc/en-us/sections/360007226651-Best-593 
Practices-Workflows. Sequencing reads were mapped to hg38 reference 594 
genome using BWA algorithm. For each sample, after remove duplicates, Indel 595 
realignment and base quality score recalibration (BQSR), SNP and short Indel 596 
variants were detect using the Sentieon Haplotyper algorithm with option --597 
emit_mode gvcf to generate an individual GVCF file. Then the GVCF files for 598 
all samples were subjected to Sentieon GVCFtyper algorithm to perform joint 599 
variant calling.  600 
 601 
Variant Quality Score Recalibration and Filtration 602 
Variant Quality Score Recalibration were perform using Genome Analysis 603 
Toolkit (GATK version 4.1.2). Known variant files were downloaded from the 604 
GATK bundle. For indel recalibration, we used 605 
Mills_and_1000G_gold_standard indels as the positive training and true set. 606 
For SNP recalibration, we used hapmap_3.3, 1000G_omni2.5, and 607 
1000G_phase1.snps as positive training sets, hapmap_3.3 as true set, and 608 
dbSNP_v146 as the known set. The metrics DP, QD, MQRankSum, 609 
ReadPosRankSum, FS, SOR were used in the recalibration process. The truth-610 
sensitivity-filter-level were set to 99.0 for both the SNPs and the Indels. Finally, 611 
variants with quality score >= 100 were selected for further analysis. 612 
 613 
Familial relationship and population structure analysis 614 
PLINK (v1.9)68 and KING (v2.1.5)69 was applied to detect the kinship 615 
relatedness between each pair of the individuals. 48 patients from 16 families 616 
were detected as related to each other. For several allele frequency-based 617 
approach, we exclude the related patients and thus the sample size was 618 
restricted to 284. PCA was performed using a subset of autosomal bi-allelic 619 
SNPs on the unrelated patients using PLINK (v1.9). The PC-AiR module 620 
(Principal components analysis in related samples) in the Genesis R package 621 
was used to conduct PCA analysis for the 332 patients including the related 622 
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family members. Several restrictions were employed to select the final 614,963 623 
SNPs for PCA analysis, including minor allele frequency (MAF) ≥ 1% (common 624 
and low-frequency variants), genotyping rate ≥ 90%, Hardy-Weinberg-625 
Equilibrium (HWE) P > 0.000001, and removing one SNP from each pair with 626 
r2 ≥ 0.5 (in windows of 50 SNPs with steps of 5 SNPs).  627 
 628 
Genotype-phenotype association analysis  629 
We have applied both the rvtest70 and the SAIGE71 approaches to carry out 630 
logistic regression, linear regression, burden test, the sequence kernel analysis 631 
test (SKAT) and the optimal SKAT-O algorithm for the genotype-phenotype 632 
association tests using the default parameters. For all the association tests, we 633 
have used the gender, the age and the top 20 principal components from the 634 
principal component analysis as the covariates. Exception is for the GWAS 635 
between the 1KGP and the COVID-19 patients as age is not available for the 636 
1KGP data set. Independent loci were defined as significant variants clustered 637 
in a 1Mbp window. The lead SNP was defined as the SNP in the 1Mbp window 638 
that has most significant, i.e., smallest p value. The genomic inflation factor, GC 639 
lambda, attenuation ratio, LD score regression intercept and the SNP heritability 640 
were estimated using the LD score regression approach 72. The qqman R 641 
package was applied to generate the manhattan and qqplot. We defined 642 
genome-wide significance for single variant association test as 5e-8, suggestive 643 
significance as 1e-5 and for gene-based association test as 1e-6.  644 
 645 
HLA typing 646 
When performing HLA typing, we first extracted reads which aligned to HLA 647 
region of GRCh38 and unmapped reads from individual bam files. Then using 648 
xHLA algorithm23 typing HLA class I(A B C gene) and II(DRB1 DQB1 DPB1) 649 
genes. DQA1 gene was typed using SOAP-HLA algorithm53 for xHLA does not 650 
include this gene. We performed the association analysis between HLA types 651 
and the binary severe and mild groups using PLINK (version 1.90) using a 652 
logistic regression model, adjusted for age, gender and top 20 PCs. 653 
 654 
 655 
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 865 
 866 
Figure 1. Clinical and laboratory assessments of the recruited 332 COVID-19 867 
patients. (A) number of samples belong to the five categories (B) top 20 features that 868 
classify the patient categories in the machine learning trained model (C) age 869 
distribution for the five categories of patients (D) distribution of disease duration, i.e. 870 
the duration between the disease onset and the first negative RT-PCR test among the 871 
five groups of patients (E) gender distribution for the five categories of patients by age 872 
(F) distribution of the proportion of patients with or without medical comorbidities 873 
among the five categories of patients by age. 874 
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 877 

 878 
 879 
Figure 2. Deep whole genome sequencing and genetic variation among the 880 
patients. A) Sequencing depth distribution B) Proportions and numbers of types (SNP, 881 
Indel) of genetic variants identified from the patients C) Proportions and numbers of 882 
functional consequences of the genetic variants among the patients D) comparison of 883 
loss of function variation burden for SNP, small insertions and deletions between the 884 
severe and the non-severe patients E) Single variation association test for loss of 885 
function mutation burden between the severe and non-severe patients F) allele 886 
frequency distribution for all the missense and loss of function variants present in 887 
ACE2 and TRMPSS2 genes. 888 
 889 
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 911 
Figure 3. Genetic loci associated with patient severity (A)-(C) Single variant and 912 
association test for three severity traits. (A) Severe and critical severe groups versus 913 
the rest of the non-severe groups. (B) Severity score assessed by laboratory test 914 
measurements. (C) the duration from disease onset to recovery (D)-(F) Gene-based 915 
association test for three traits. 916 
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 919 
Figure 4. LD, allele frequency and pleiotropic effects of the TMEM189-UBE2V1 920 
signal suggestively associated with COVID-19 patient severity. A) Locuszoom 921 
plot shows the p-value of the SNPs centering the lead SNP rs6020298 and the 922 
recombination rate. Color of the dots indicate linkage disequilibrium r2 metric. B) Allele 923 
frequency of s6020298 among the 1000 genomes populations. The allele frequency 924 
of the reference and alternative allele is visualized by the geography of genetic 925 
variants browser developed by the university of Chicago. C) P-value of the single 926 
variant genome-wide association test for the sixty-four laboratory assessments at the 927 
lead SNP rs6020298. The P-value of the three traits (Severity, Severity score and 928 
Disease Duration) in Figure 3 were also displayed. 929 
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 937 
 938 
 939 
Figure 5. Human leukocyte haplotype allele frequency between severe vs non-940 
severe groups. Comparison for class I HLA genes (top). Comparison for class II HLA 941 
genes (bottom). Star indicates significance level in a logistic regression on the allele 942 
frequency with age, gender and the top twenty principal components as covariates. 943 
*<0.05, **<0.01 944 
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 959 
 960 
Figure 6. Single variant and gene-based association test between COVID-19 961 
patients and the general populations. (A) single variant association test and (B)  962 
gene-based association test between the unrelated COVID-19 patients (N=284) and 963 
the 1KGP Chinese population (N=301) (C) single variant association test and (D) 964 
gene-based association test between the unrelated COVID-19 patients (N=284) and 965 
the CNRP Chinese population (N=665). Only variants with moderate or high impacts 966 
by variant effect predictor were shown in (A) and (C). 967 
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Table 1. Nominal association of HLA allele and severity by logistic rgression 974 
 975 

 Severe Non-severe OR SE P 

C*14:02 0.086 0.047 4.75 0.52 0.003028 

B*51:01 0.101 0.058 3.38 0.45 0.007017 
A*11:01 0.297 0.263 2.33 0.32 0.008512 

DRB1*14:04 0.029 0.005 15.1 1.06 0.01027 

DRB1*01:01 0.022 0.005 13.7 1.13 0.02034 

DPB1*03:01 0.008 0.044 0.09 1.15 0.03669 

DQA1*01:01 0.029 0.009 6.05 0.87 0.03947 

DRB1*12:01 0.022 0.037 0.18 0.87 0.04478 

B*13:02 0.058 0.051 0.27 0.66 0.04935 
 976 
 977 
Severe group indicates severe and critical patients  978 
Non-severe group includes asymptomatic, mild and moderate patients 979 
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