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Abstract 
Introduction A series of modelling reports that quantify the effect of non-pharmaceutical interventions (NPIs) on the 
spread of the SARS-CoV-2 virus have been made available prior to external scientific peer-review. The aim of this 
study was to investigate the method used by the Imperial College COVID-19 Research Team (ICCRT) for estimation 
of NPI effects from the system theoretical viewpoint of model identifiability. 
 
Methods  
An input-sensitivity analysis was performed by running the original software code of the systems  model that was 
devised to estimate the impact of NPIs on the reproduction number of the SARS-CoV-2 infection and presented 
online by ICCRT in Report 13 on March 30 2020. An empirical investigation was complemented by an analysis of 
practical parameter identifiability, using an estimation theoretical framework. 
 
Results Despite being simplistic with few free parameters, the system model was found to suffer from severe input 
sensitivities. Our analysis indicated that the model lacks practical parameter identifiability from data. The analysis 
also showed that this limitation is fundamental, and not something readily resolved should the model be driven with 
data of higher reliability.  
 
Discussion Reports based on system models have been instrumental to policymaking during the SARS-CoV-2 
pandemic. With much at stake during all phases of a pandemic, we conclude that it is crucial to thoroughly scrutinise 
any SARS-CoV-2 effect analysis or prediction model prior to considering its use as decision support in policymaking. 
The enclosed example illustrates what such a review might reveal.  
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Introduction 
The spread of the SARS-Cov-2 virus has challenged the world and political decisions are 
continuously made to reduce the virus's effect on population health and on health care 
organisations. In the absence of a vaccine, European populations can only safeguard 
themselves through behavioural measures ranging from increased personal hygiene to social 
distancing. Currently, policymakers are therefore seeking scientific guidance upon which to 
base national exit strategies from non-pharmaceutical interventions (NPIs) in a safe, yet efficient 
manner.  
 
A series of reports have presented estimated effects of various NPIs on the spread of SARS-
CoV-2 infection, such as case isolation, closure of schools, restrictions specifically towards 
vulnerable groups such as people aged over 70 years, or a total lockdown. Specifically, a series 
of reports set out to quantify the effect of NPIs [1,2]. These reports have since been widely used 
as support for political decisions that aim at reducing the rate at which the virus spreads [3]. 

The Imperial College reports 
A scenario analysis, Report 9 [1], released online March 16, 2020, by the Imperial College 
COVID-19 Response Team (ICCRT) was influential in the change of the COVID-19 response 
policy in the UK [3] and is likely to have affected policy decisions in other European countries. 
 
In a subsequent document, Report 13 [2], released online March 30, a method was presented to 
estimate the actual effects of different NPIs that had been effectuated by then in 11 European 
countries. Based on effectuation dates of the NPIs and available time series of mortalities in 
each country, the influence of individual NPIs on the reproduction number Rt of SARS-CoV-2 
infection was estimated from data. 
 
The system model in Report 13, relating the effect of NPIs to Rt, could if reliable be very useful 
when weighing their efficiency versus cost for society. The method upon which it is based has, 
however, not yet been thoroughly and externally peer-reviewed. 

Objectives 
In this study we investigate the method used in ICCRT Report 13 for estimation of NPI effects 
from the system theoretical viewpoint of model identifiability. In particular, we examine input 
sensitivities and how identifiability issues can influence the results. 
 
Our primary purpose is not to offer a critique of Report 13. The ambitions of that report, and the 
release of the supporting data and models into the public domain, are to be commended. Rather 
our objective is to illustrate how structural assumptions that are inevitably built into pandemic 
models add to the sensitivity of their estimations and predictions. 
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Pandemic models 
Typical for a pandemic is that the quality of data on infected individuals and deaths is initially 
limited by inconsistent detection of cases, reporting delays, and poor documentation. It is 
therefore understandable that data has been the main focus in the debate surrounding 
pandemic estimation and prediction models, but this has overshadowed the discussion about 
the models themselves. 
 
Report 9 used a mechanistic model to represent disease spread at a local level, considering 
social interactions that could produce transmission events. It models the effects of 5 NPIs: case 
isolation, closure of schools and universities, social distancing for those over age 70, voluntary 
home quarantine, and social distancing of the entire population (lockdown). 
 
The Report 9 model was parameterised using results from previous studies and used “plausible 
and largely conservative (i.e. pessimistic) assumptions about the impact of each intervention”. A 
representative such assumption is that the closing of schools eliminates infections in the 
schools but increases contact rates within affected families by a certain factor, and in the 
community in general by some other factor. When supported by data, mechanistic models such 
as the one of Report 9 can be used to explain and understand the evolution of a pandemic and 
how it is affected by modelled interventions. Counterfactual (“what-if?”) analysis can be done 
safely within the model, and the results of possible interventions can be estimated. 
  
However, using a mechanistic approach during the initial stage of a pandemic, with unknown 
social parameters and mechanisms of infection, is a challenging task. The sizable number of 
parameters that are difficult to determine are likely to make predictions uncertain [4,5]. 
 
In contrast to the mechanistic system model in Report 9, the system model in Report 13 is to a 
larger extent phenomenological and uses a data-driven approach, rather than detailed 
underlying mechanisms, to determine input-output relationships. Its parameterisation is limited 
to country-specific estimates of the infection fatality ratio, a serial interval distribution assumed 
to be equal in all countries, and multiplicative factors describing how individual NPIs affect Rt. 
Instead of assuming that the effect of individual NPIs is known, as was done in Report 9, the 
modelling aim is to identify these factors from mortality data. 
 
Similar analyses, estimating the effect of NPIs effectuated in Wuhan, have also been presented 
in [6-7], albeit using other methods and additional information such as mobility data, detected 
cases, and reports of symptom onset. On May 4, ICCRT also released Report 20 [8], in which 
the Report 13 system model had been extended to include mobility data. It is described that this 
extended model can be used to “calculate the deaths averted by keeping mobility at current 
levels [in Italy]”. 
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Estimating the impact of NPIs      
In Report 13, five NPIs are defined, see Figure 1a. When effectuated, each NPI is assumed to 
instantaneously result in a step-change in Rt, as illustrated in Figure 1b, reproducing results 
from Report 13. 

 
Figure 1. (a) Dates that NPIs were effectuated in individual countries, according to [9]. The annotations illustrate 
code revisions introduced by the Imperial College modellers following their release of Report 13 [2]: On April 9, the 
date on which public events were banned in Sweden was revised by the modellers in [9]. In the same code revision, 
school closure was no longer defined to have taken place in Sweden. (b) Diagrams showing reproduced results from 
[2].  
*On April 6, the model code [9] was extended to include three additional countries. 
 
Figure 2 provides a high-level view of the model used in Report 13. 
 

 
Figure 2. The left block models how NPI k at time t affects the reproduction number Rt,m in country m. The middle 
block includes a model for how new infections evolve as a function of the effective reproduction number, while the 
right block models how reported deaths depend on previous infections.  
 

The societal model describes how different NPIs affect the reproduction number. It assumes 
that Rt is only affected by the NPI parameters, and by herd-immunity effects resulting from a 
diminishing susceptible-to-infected ratio. Data from different countries are effectively pooled 
through the assumption that the NPI parameters are not country-specific: the factor of relative 
change in Rt resulting from effectuating a particular NPI is the same, regardless of in which 
country the NPI is effectuated. The factors are assumed time-independent, with the exception 
that a bonus factor is ascribed to an NPI if it is the first to be effectuated in a country. This is 
illustrated in the bottom pane of Figure 1b. 
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Some country-specific flexibility is, however, provided through the basic reproduction number R0 
being modelled as a country-specific parameter, co-identified with the pooled parameters 
affecting Rt. In a later version of the model [9], released April 24 (after Report 13), the lockdown 
NPI, being the last NPI to be effectuated in all countries, except for Sweden, was also ascribed 
some (practically rather limited) country-specific flexibility. 
 
The epidemic model, which can be interpreted as an SIR type model [10], describes how new 
infections evolve as a function of the reproduction number. 
 
The observation model tries to explain how reported deaths depend on previous infections and 
is implemented by a stochastic infection-to-death distribution with mean value 23.9 days and an 
infection fatality ratio, both based on previous reports [11]. 
 
The combined model is compared with daily reported deaths (source: ECDC [12]), and a 
Bayesian framework is employed to compute estimates of the pooled NPI parameters, along 
with the country-specific R0 values. In Report 13 estimation results are reported using 50 % and 
95 % credible intervals. 

Methods 
A re-analysis of the system model used by the ICCRT for the estimation of NPI effects was 
performed using the published code [9]. The data used for our analysis was collected from the 
original source (ECDC data repository [12]). Our re-analysis consists of three parts: First, we 
perform an NPI sensitivity analysis. Second, we study the importance of lockdown. Third, we 
perform a model identifiability analysis. 

NPI sensitivity analysis 
A challenge in the modelling of NPI effects is to accurately represent when and to what extent a 
particular NPI was effectuated. We investigate two case examples: 
 

● Higher education instances in Sweden transitioned to online teaching on March 18, while 
elementary schools remained open. The version of the model used in Report 13 [2] 
(dated March 30), defined school closure to have taken place on March 18. However, in 
the revised model [9] released April 24, school closure in Sweden had been re-defined 
not to have taken place.  

● Similarly, public events exceeding 500 persons were banned in Sweden on March 12. 
On March 29, the restriction was tightened to 50 persons. Report 13 defined the date of 
the public events ban to March 12; in [9] this date had been revised to March 29. 

Estimating the importance of lockdown  
The results from our initial sensitivity analysis (Figure 3, further below) indicated that the 
estimated importance of lockdown had increased with an additional month of data available 
since the release of Report 13. It was also observed that the model displayed difficulties in fitting 
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its results to the data for Sweden. With 14 countries in the analysis, Sweden was still the only 
country without the NPI lockdown being effectuated. To give the model a chance to evaluate the 
efficiency of the lockdown intervention on a more equal footing, we ran the code on input data 
from only two countries: The UK and Sweden. 

Model identifiability analysis  
To complement the empirical results and study the NPI parameter sensitivity, we then 
considered an idealised hypothetical case where we assumed that one over the relevant period 
could measure the country-specific reproduction number Rt,m directly in each country. In 
estimation-theoretic terms, the block diagram in Figure 2 forms a Markov chain. This implies 
that direct access to Rt,m obviates the need to access the original data, and a study of 
parameters identifiability given Rt,m provides provably optimistic conclusions regarding the NPI 
parameter identifiability. Conversely, if NPI parameters are hard to identify given Rt,m, they are 
even harder to identify from mortality data.  
 
The estimation of the NPI parameters and the country-specific basic reproduction number from 
Rt,m via the societal model can be expressed as a standard linear regression problem after 
taking logarithms, due to the multiplicative nature of the NPI effects: 

 
Here Ik,t,m is an indicator variable with value 0 or 1, that signals if NPI k was in effect in country 
m on day t and αk is a parameter that models the effectiveness for NPI k, using the notation of 
[2]. This allows us to determine the difficulty of estimating the NPI parameters αk and log(R0,m) 
by studying the design or regression matrix of the linear regression problem [13]. We 
complement this study by illustrating how the country-specific R0,m are used to account for 
model mismatch when more data becomes available, by comparing the estimated R0,m 
parameter in the full Report 13 model when applied to data up until March 28 and up until April 
29. 

Model code versions 
To investigate the effects of NPI definitions we executed the code of the model with the two 
minor modifications given by reversing the changes of dates described above. The basis for the 
production of our results was the model code made available on Github by the ICCRT [9]. We 
created a fork [14] of the code, based on the April 29 commit da9a8a9 of [9]. Below we 
reference the specific commits of this fork [14], used to obtain our results. The model was 
executed in the "full" mode, according to the README instructions provided with the April 29 
version of [9]. 
 
The reproduction of results from Report 13 shown in Figure 1b was obtained using commit 
58df932 of [14], being equivalent to the March 29 version of [9], except for a plotting script 
copied from the April 29 version. Mortality data, provided with the code and originating from 
ECDC [12], was used. 
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The remainder of our results were obtained using code based on the April 29 version of [9]. In 
order to investigate the effect of NPI definitions, the changes annotated in Figure 1a were 
implemented in commit 49bd665 of [14]. Mortality data available on April 29 was retrieved from 
ECDC [12]. This setup was used to generate Figure 3. 
 
In order to investigate how the pooling of countries affects the estimated relative importance of 
NPIs, the April 29 version of [9] was modified by removal of all countries except Sweden and the 
UK. This was implemented in commit 38c9057 of [14]. Mortality data available on April 29 was 
retrieved from ECDC [12] also for this investigation. This setup was used to generate Figures 4 
and 5. 
 
In order to compare R0 estimates provided by the model, when driven by data available by 
different dates, the April 29 version of [9] was run with ECDC data available on March 28, and 
the corresponding data available on April 29. This was implemented in commit 895e1fd of [14] 
and used to generate Figure 6. 

Results 

NPI sensitivities  
Our analysis of Report 13 [2] showed that also a minor change in a single NPI definition in one 
country can result in large changes of the estimated NPI effects on Rt in all 14 European 
countries. Figure 1a shows the revisions between [2] and the April 29 release of [9] for the two 
NPIs mentioned above. Figure 3 illustrates the result of executing three instances of the model, 
to investigate the consequences of the seemingly subtle changes in NPI definitions introduced 
by the Imperial College modellers. The main results, the estimated NPI parameters, are given in 
the bottom pane. 
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Figure 3. Each column corresponds to one execution of the code [9]: (a) Definitions according to the April 29 version 
of the Imperial College model [9], (Public events ban in Sweden March 29; school closure defined to not have taken 
place). (b) Same as (a), but with the public events ban moved back to March 12 as in [2]. (c) Same as (a), but with 
school closure defined to have taken place March 18 as in [2]. From top down: daily reported deaths (source: ECDC) 
and model fit; estimate of the reproduction number Rt. The bottom row shows the impact of each intervention 
category on Rt, affecting all the 14 considered countries. The large effects of redefining a single intervention date in 
one country indicate that the NPI impact cannot be reliably estimated from the available data. Code reproducing the 
results is available through [14]. See [2] for details on how to interpret the diagrams. 
 
Compared to the original settings, moving the public events ban date in Sweden to March 12 
resulted in the model estimating a public events ban to have a decisively lower impact on Rt, not 
only in Sweden but in all 14 European countries. Correspondingly, redefining school closure to 
have taken place in Sweden resulted in the model estimating school closure to have a much 
larger impact on Rt, again in all countries. There are also noticeable changes in the claimed 
certainty of the estimated NPI parameters. 

Estimated the importance of lockdown 
Pooling Sweden and UK data resulted in major reattributions of NPI effects, as shown in Figures 
4 and 5. The system model now attributes the reduction in Rt to the public events ban and 
estimates a negligible effect of the lockdown NPI. 
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Figure 4. Results using [9], configured to estimate the efficiency of NPIs based on reported mortality data (source: 
ECDC [12]) from the UK and Sweden up to and including April 29. The model now estimates that public events ban 
has been the most efficient intervention, while the importance of lockdown being small  
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Figure 5. Results using [9], configured to estimate the efficiency of NPIs based on reported mortality data (source: 
ECDC [12]) from the UK and Sweden up to and including April 29. The reduction of Rt is almost exclusively ascribed 
to the public events ban NPI; the model estimates the importance of lockdown to be negligible. The model estimates 
Rt to have dropped below 1 at the end of March in both countries, with stated credibility exceeding 95 %. 
 
 

Model identifiability  
The regression matrix for the NPI parameters αk and log(R0,m) was found to be rather ill-
conditioned, with a condition number of 20 when computed over Rt,m corresponding to the whole 
month of March during which the interventions took place. Further analysis revealed that certain 
combinations of the parameters are more accurately estimated than their individual values. 
Thus, there is a high correlation between some of the parameters which cannot be seen in the 
confidence intervals shown in Figures 1, 3, 4 and 6, or any of the plots shown in [2] involving 
individual parameter standard deviations. The relatively poor conditioning results from all 
interventions taking place during a short time period. This analysis can be performed without 
having any mortality data at hand. The results only depend on the model assumption and the 
input data, i.e. the dates the NPIs were effectuated. 
 
As the regression matrix is of full rank, it follows that the NPI parameters are structurally 
identifiable from Rt,m, and are likely structurally identifiable [15] from the mortality data in theory. 
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However, the difficulty of practically identifying model parameters of even the simplest epidemic 
models from data [15] indicates that it is difficult to obtain reliable estimates of Rt,m during a 
pandemic, and any errors made in estimating Rt,m are amplified in the estimate of the NPI effect 
estimates αk due to the ill-conditioned regression matrix. The problem is exacerbated in practice 
by varying standards of reporting mortality data.  
 
Since all countries, except Sweden, were defined to have effectuated all 5 NPIs, the 
methodology in [2] is forced to give similar relative reduction from the initial R0 value to the final 
value of Rt. Figure 6 shows the R0 estimates for the 14 countries, produced using [9] driven by 
data available March 28 (left), and April 29 (right), respectively. 
 

 
Figure 6. Country-specific estimates of R0 produced using [9]. To the left: using mortality data up to and including 
March 28 as in [2]. To the right: using data up to and including April 29 (data source: ECDC [12]).  
 
The March 28 data, corresponding to the early stage of the pandemic, results in only small inter-
country variations in the R0 estimates, compared to those obtained using the April 29 data. An 
explanation of the large variations seen in the April 29 case can be that forcing combined NPI 
effects to be the same in all countries, except Sweden, offers R0 as the only remaining free 
parameter to effectively explain any country-wise variations in the final Rt,. The relative impact 
of the NPIs on Rt is the same in all countries, and when this does not fit the data, the model has 
to  compensate by adjusting the country-specific R0 estimates. 
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Discussion 
The aim of this study was to investigate the method used in ICCRT Report 13 for estimation of 
NPI effects from the system theoretical viewpoint. We found the combined effects of high input 
sensitivity, and the assumption of R(t) being driven solely by the NPIs, to constitute a 
fundamental limitation which should be considered when the modelling results are used as a 
basis for policymaking. 
 
It is hard to judge whether, for example, a partial transition to online teaching constitutes a 
school closure or not. Similarly, the crowd size limit associated with the public events ban NPI 
remains a free design parameter for the modeller to decide. The point is not to argue if a school 
closure took place or not, or what the most appropriate crowd size limit is. Instead, our findings 
highlight remarkably large effects resulting from minor changes in input data. If the NPI 
modelling results are to be used as support for policy decisions, it is not acceptable that subtle 
interpretations of NPI definitions in a single small country, like those reported here, have a 
pivotal impact on the estimated intervention effects in all 14 modelled countries. It is hence 
inherently difficult to confidently ascribe changes in Rt to specific NPIs that jointly took place 
over a matter of days, based on data with inconsistent detection and reporting of cases. 
 
Since the effect of each NPI is modelled by a multiplicative factor applied to Rt, an NPI that is 
deemed 75 % effective reduces Rt by a multiplicative factor of 1-0.75=0.25. A country that 
effectuates two NPIs with 50 % effectiveness on the same day will, therefore, see exactly the 
same reduction in Rt as a country with a single 75 % effective NPI, as 0.5*0.5 = 0.25. The model 
can for this reason not distinguish between the two cases based on available data alone, no 
matter how good the data is. This effect is most apparent in the UK (Figure 5), which effectuated 
lockdown and public events ban on the same day. Based on UK data alone, the relative 
effectiveness of the lockdown and the public events ban are thus not even structurally 
identifiable, see [15] for a definition of this concept. Due to the pooling of NPI effectiveness 
across countries, and since Sweden did not effectuate lockdown, the model naturally explains 
the reduction in Rt observed in the data for both Sweden and the UK using the public events 
ban: The lockdown and public events ban are equally likely explanations for the reduction in Rt 
for the UK and the only explanation allowed by the model for the observed slowdown of deaths 
in Sweden. 
 
The nominal case considered in Report 13, does not suffer from the pathological case of any 
NPI being effectuated on the same day across all 14 countries, see Figure 3, but the observed 
sensitivity issues can still be qualitatively understood from the analysis of the regression matrix 
for the linear regression problem at the heart of estimating the NPI parameters. The 
identifiability issues are acknowledged in the Report 13 [2], followed by the statement that “while 
individual impacts cannot be determined, their estimated joint impact is strongly empirically 
justified”. It is easy to overlook this remark, as it might be overshadowed by the subsequent 
presentation of credible intervals for the effect of individual NPIs. As seen in Figure 3 these 
credible intervals shrink as more data becomes available, hiding the fundamental identifiability 
problems of the underlying model, giving a false sense of the reliability of the results. The issue 
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is sharpened by the use of [9] and other non-validated models having been used as decision 
support for policymaking [3,5]. 
 
There are several other aspects of the model in [2] that deserve scrutiny. For instance, we 
would argue that it is fundamentally questionable to determine the joint impact of NPIs on Rt 
using a model based on the assumptions that changes in Rt are de facto only driven by the 
NPIs. Section 8.4.4 of [2] describes an attempt to assess this assumption using a Gaussian 
process as prior, but no results are presented1. 
 
Using established principles from systems theory, we have demonstrated that even a seemingly 
simplistic and data-driven phenomenological model can suffer from severe input-sensitivity and 
identifiability issues. With much at stake during all phases of a pandemic, we conclude that it is 
crucial to thoroughly scrutinise any SARS-CoV-2 estimation or prediction model, prior to 
considering its use as decision support in policymaking. Such scrutiny relies on modellers 
following the practice used by the ICCRT in sharing open source code. 

  

 
1 We have failed to get a response from the ICCRT when asking about material supporting the 
conclusions of Section 8.4.4. 
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