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As of 21st May 2020, there have been 4.89M confirmed cases worldwide and over 323,000 deaths 

of people who have tested positive for SARS-CoV-2. The outbreak of COVID-19, has not only 

caused widespread morbidity and mortality, but has also led to a catastrophic breakdown in the 

global economy and unprecedented social disruption. To lessen the global health consequences of 

COVID-19,  sweeping COVID-19 lockdown and quarantine measures have been imposed within 

many nations. These measures have significantly impacted the world's economy and in many cases 

has led to the loss of livelihood.  Mathematical modeling of pandemics is of critical importance to 

understand the unfolding of transmission events and to formulate control measures. In this research 

letter, we have introduced a novel approach to forecasting epidemics like COVID-19. The 

proposed mathematical model stems from the fundamental principles of fluid dynamics, and can 

be utilized to make projections of the number of infected people. This unique mathematical model 

can be beneficial for predicting and designing potential strategies to mitigate the spread and impact 

of pandemics. 
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Introduction 

 

In December 2019, a cluster of cases of pneumonia, subsequently associated with a novel 

coronavirus (Severe Acute Respiratory Syndrome - Coronavirus-2, SARS-CoV-2), named 

Coronavirus Disease 2019 (COVID-19) by the World Health Organization (WHO), emerged in 

Wuhan, China. It was rapidly declared a pandemic on March 11, 2020, in view of its exponential 

spread worldwide1.  As of 21st May 2020, the WHO had reported 4.89 million confirmed cases and 

over 323,000 deaths globally, with the highest number of cases reported in the United States of 

America (USA)2. The rapid spread of the virus continues to pose a monumental global health 

challenge.   

Clinically, infected subjects exhibit a wide range of non-specific features, from mild-to-moderate 

symptoms such as cough, fever and fatigue to severe, life-threatening respiratory and systemic 

complications. On the other hand, it has been well documented that infected persons may exhibit 

no symptoms at all (asymptomatic) or may be yet to manifest symptoms (pre-symptomatic), but 

are potentially infectious3,4. In such cases, infected individuals may be likely to maintain normal 

social interactions, without realizing the need for self-isolation due to the obscurity of their 

symptoms.  

Currently, our understanding of the transmission risk is incomplete. Epidemiologic examination 

in Wuhan at the beginning of the outbreak identified an initial connection with a live animal 

seafood market, where patients had worked or visited5. As time progressed, person-to-person 

spread became the main mode of transmission6. Although SARS-COV-2 has been detected in non-

respiratory samples such as stool and blood, transmission is primarily thought to occur through 

close contact, via respiratory droplets and aerosols7. The virus released in these secretions when 
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an infected subject coughs, sneezes, or talks can then infect another person if it makes direct 

contact with the mucous membranes8,9.     

Under ideal circumstances, an effective vaccine might be administered to mitigate the dire effects 

of the virus. Regrettably, the development of an acceptable vaccine to this end appears unlikely in 

the short-term. Consequently, government and public health responses have focused mainly upon 

non-pharmacological interventions10. These measures include physical/social distancing to 

minimize the rate of person-to-person contact, frequent hand washing, the utilization of masks, 

gloves and other forms of personal protection equipment (PPE), mass testing, contact tracing and 

isolation/quarantine of persons with suspected and confirmed cases of COVID-19 infection.  

Although these interventions have contributed significantly to the gradual decline of the 

transmission rate and by extension deaths worldwide, there are increasing concerns that the easing 

of these measures may result in the surge of new cases10.  

In pandemic situations where data could be sparse, mathematical modelling can be a powerful tool 

to understand and predict the course of the outbreak in order to inform the development of potential 

control strategies11,12.  The most frequently used framework in the case of human transmissions is 

the so-called SIR model13. According to this model, the individuals are categorized into three 

groups: susceptible S, infected I and recovered R. Mathematically, the transition of individuals 

among these three groups is computed using the Ordinary Differential Equation (ODE) to predict 

the overall behavior of the number of infected persons. Several, more complex variants of the SIR 

model have been developed in an attempt to capture the transmission dynamics of pandemics more 

accurately. Particularly in the case of COVID-19, several modifications have been made to the 

SIR framework to consider the number of deceased14 and the effect of public health containment 

policies15, including the fraction of undocumented infections and their contagiousness16. Wu et 
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al.17 utilized available data to model the case fatality risks of symptomatic persons in Wuhan, 

China. Giordano et al.18 further extended the model to distinguish between detected and undetected 

cases and the level of severity of the manifested symptoms during the course of the outbreak.  

In this article, we introduce a novel approach to forecasting disease outbreaks, specifically 

COVID-19, using the fundamental principles of fluid dynamics. In this model, we consider a 

carrier of the virus as a fluid containing a dissolved ionic species (Figure 1). With this intuition, 

we attempt to derive a simplified theoretical model using the well-known Fluid Transport Equation 

to predict the transmission and propagation of COVID-19. Our model was validated using 

COVID-19 data from 16 countries provided by EU Open Data portal19 (as of 8th June 2020), 

showing an excellent match between the data set and model predictions. We further discuss the 

mitigating strategies for controlling the COVID-19 pandemic optimally, based on our model 

parameters.  

 

Figure 1:  Shows analogy between the transportation of ions through fluid and spread of virus through infected human. 

(a) Schematic showing movement of ions in the fluid. b) Cartoonish representation of infected individual20.  
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Analytical Modelling  

Using the fluid transport equation, we derived the following mathematical model to predict the 

infected cases of COVID-19. The details concerning the derivation of mathematical model are 

provided in the methods section.  

∅𝑛 =  𝛼∅𝑜 +  𝛾𝑒∅0
−  ∅𝑜𝛽 + ∅𝑜                                                                                                 (1) 

The number of infected cases is given by Equation 1 where ∅ is the ratio of total infected cases I, 

over the initial number of susceptible people 𝑆𝑜(assumed as the entire population of the area); α 

an interaction factor which takes into account the transmission of infection due to person-to-person 

contact; γ the growth of the virus within individual and β the efficacy of the public health 

intervention strategy. The subscripts 𝑛 and 𝑜 refer to the new and old cases respectively. The 

detailed description of fitting parameters used to solve the analytical model (Equation 1) is given 

in Table 1.  

Table 1: Definition of fitting parameters that are used to solve the presented analytical model. 

Parameters Physical Description 

𝛼 Interaction factor, which takes account of the transmission of infection from 

person to person. Increase in α is an indication of more frequent interaction 

of infected individuals with the population, whereas low α values are 

indicative of social isolation of infected individuals. 

𝛾 The growth or activity of the virus within an individual. Can be linked to the 

severity of symptoms or how early symptoms are manifested.  

𝛽 Describes the effectiveness of public health intervention measures. This may 

include widespread testing and contact tracing. 
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Figure 2 compares our model predictions for the number of infected cases with recorded data for 

16 countries. The computation was performed using MATLAB with the code provided in the 

supplementary information. Overall, the model (Equation 1) is able to capture the trend of the 

cumulative number of cases and also forecast future numbers. As observed in Figure 2, Australia 

shows the lowest number of infected cases. In contrast, some European countries (reported in 

Figure 2 and 3) and the USA have been heavily affected by the COVID-19, showing cases in 

excess of 100,000.  In addition to the number of recorded cases, our model captures the faster 

recovery of Austria, China and Australia (given by the gradient of the curve) which is consistent 

with the reported data.  
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Figure 2: Trend of infected cases of COVID-19 for each country as predicted by the proposed model. The dotted line 

represents the data provided by EU Open Data portal and the solid line is the proposed model prediction.  

Mathematical basis for Mitigation Strategy for COVID-19  

We have demonstrated from Figure 2 that the proposed model is able to capture the course of the 

pandemic in different countries. We further analyze the parameters of our model to evaluate the 

efficacy of the mainstream mitigation strategies that have been adopted to combat COVID-19. In 

this section we illustrate mathematically why widespread testing, isolation of infected individuals 

along with contact tracing are important intervention mechanisms to curb the pandemic.  

By further mathematical analysis, we derived the epidemic growth factor 𝐺 (Equation 2), which 

describes the impact of key parameters influencing the extent of the pandemic. The detailed 

derivation of Equation 2 is provided in the methods section.  

𝐺 =  𝛼 +  𝛽𝜀𝛽−1                                                                                                                             (2) 

It follows from Equation 2 that for a given country, a high value of 𝐺 indicates a more severe 

epidemic. 𝜀 is the ratio of total number of infected cases at the initial phase of epidemic over the 

total number of initial susceptible people 𝑆𝑜. It can be seen from Equation 2 that as interaction 

factor 𝛼 → 0, the epidemic growth factor reduces, indicating that to minimize the spread of the 

disease, 𝛼 must be reduced by social distancing and the isolation of infected persons. Figure 3 

shows the influence of 𝛼 on the trend of infected cases. It can be observed from Figure 3 that as 

the 𝛼 reduces the number infected cases reduces and the plateau is slightly delayed. This agrees 

with the strict social distancing and lockdown measures implemented by several countries in order 

to control the spread of the virus.  
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Figure 3: Describes the effect of  𝛼 on the trend of COVID-19 infected cases. The base case shows the France data. 

One can see that with the subsequent reduction in 𝛼 which corresponds to social isolation of infected individual the 

growth of epidemic can be suppressed.  

Interestingly, Equation 2 predicts that for a given 𝛼, an increase in 𝛽 (parameter linked to mitigation 

strategy) will lead to a decrease in the growth factor 𝐺. In contrast to 𝛼,  a relative increase in 𝛽 is 

favorable to optimally control the spread of an epidemic. Practically, this suggests widespread 

testing, contact tracing, and isolation of infected persons coupled with high quality medical 

resources will result in the deceleration of the spread of the epidemic. It is important to note that 

both increase in 𝛼 and 𝛽 will result in an increase in the total number of infected cases. Therefore, 

as 𝛼 represents the transmission of virus due to human-human contact, an increase will reflect an 

increase in the total number of both symptomatic and asymptomatic cases that may be left 

undetected. Conversely, an increase in  𝛽 will also result in an increase in the number of reported 

infected individuals, due to a robust public health mitigation strategy that includes widespread 
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testing and contact tracing. We have also shown the relationship between 𝛼 and 𝛽 for various 

countries (Figure 4), affirming that high 𝛽 resulted in the isolation of the infected individuals and 

buffered transmission rates.  

 

Figure 4. Relationship of 𝛽 against 𝛼. Indicating decrease in  𝛼 as 𝛽 increases. Overall this suggests that widespread 

testing and contact tracing results in social isolation of infected individuals. 

Conclusion  

In this article we present a novel approach for modelling and forecasting the course of COVID 19  

using fundamental principles of fluid transport. The model considers the infected individual as a 

fluid containing species such as ions which spread in the direction of fluid flow. The model was 

validated with recorded data for 16 countries. Our model produced an excellent match with the 

data in most cases. Mathematical analysis of our model parameters demonstrated why social 
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distancing, widespread testing and contact tracing is the optimum strategy for fighting the 

pandemic.  

Methods   

Mathematical model  

Ignoring the advective flux the traditional fluid transport equation is written as21;  

𝜕𝑐

𝜕𝑡
= 𝐷(𝛻

2
. 𝑐) + 𝑅                                                                                                                         (3) 

𝜕𝑐

𝜕𝑡
 relates to the rate of change in the concentration of species 𝑐 in fluid, 𝐷 is the diffusive flux of 

species,  𝛻2 is the Laplace indicating spatial coordinates and 𝑅 is the net growth of species. 

Following our intuition that a fluid  is a carrier of species such as salts, an infected individual could 

also be conceptualized as the carrier of the virus. Utilizing this approach we substitute 𝑐 with ∅ 

which represents the ratio of total infected cases I, over the initial number of susceptible people 

𝑆𝑜 (assumed as the total population of the specific region), and 𝑅 as 𝑚𝑒𝑥𝑝(−∅) +
𝜕∅𝛽

𝜕𝑡
. 

𝜕∅

𝜕𝑡
= 𝑑(𝛻2. ∅) + 𝑚𝑒𝑥𝑝(−∅) +

𝜕∅𝛽

𝜕𝑡
                                                                                             (4) 

In above equation, 𝑑 represents the flux of infected individuals, 𝑚𝑒𝑥𝑝(−∅) is the growth of virus 

within infected individual, and 
𝜕∅𝛽

𝜕𝑡
 suggests temporal changes in the epidemic activity due to 

medical interventions. Discretizing Equation 4 using FTCS (Forward Time Centered Space) 

method results in;  

∅𝑖
𝑛−∅𝑖

𝑜 

∆𝑡
=  𝑑 [

∅𝑖+1
𝑜−2∅𝑖

𝑜+ ∅𝑖−1
𝑜

∆𝑥2 +  
∅𝑖+1

𝑜−2∅𝑖
𝑜+ ∅𝑖−1

𝑜

∆𝑦2 +  
∅𝑖+1

𝑜−2∅𝑖
𝑜+ ∅𝑖−1

𝑜

∆𝑧2 ] + 𝑚𝑒𝑥𝑝(∅𝑖
𝑜) +

∅𝑖
𝛽𝑛

− ∅𝑖
𝛽𝑜

 

∆𝑡
      (5)      
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We further simplify Equation 5 by equating ∅𝑖+1
𝑜 =  0,  ∅𝑖−1

𝑜 =  0 and ∅𝑖
𝛽𝑛

 =  0. In order to 

nondimensionalize Equation 5 we substitute  2𝑑∆𝑡 [
1

∆𝑥2 +  
1

∆𝑦2 + 
1

∆𝑧2] and 𝑚∆𝑡 with 𝛼 and 𝛾 

respectively. This results in the derivation of final equational form, which relates the increase in 

the infected cases ∅𝑖
𝑛 −  ∅𝑜 with the transfer of virus due to human-human interaction, 𝛼∅𝑖

𝑜
, the 

growth or the activity of virus within infected individual, 𝛾𝑒−∅𝑖
0
, and mitigation strategies, ∅𝑖

𝑜𝛽
.  

 ∅𝑖
𝑛 =  𝛼∅𝑖

𝑜 +  𝛾𝑒−∅𝑖
0

−  ∅𝑖
𝑜𝛽

+ ∅𝑜                                                                                          (6) 

Derivation of growth Factor  

For the derivation of the growth factor we sum the effects together reported in Equation 6 that are 

responsible for controlling the pandemic resulting in  

𝐴 =  𝛼∅ +  𝛾𝑒−∅ +  ∅𝛽                                                                                                                    (7) 

As during the initial phase of pandemic ∅ ≈ 0, consequently, we can substitute ∅ as 𝜀 and equate 

𝑒−∅ = 1. This results in Equation 8.  

𝐴 =  𝛼𝜀 +  𝛾 + 𝜀𝛽                                                                                                                           (8)                                                                                                    

The subsequent derivation of 𝐴 with respect to 𝜀 results in 

𝑑𝐴

𝑑𝜀
=  𝛼 +  𝛽𝜀𝛽−1                                                                                                                             (9) 

where 
𝑑𝐴

𝑑𝜀
 is the growth factor 𝐺 as given in Equation 2. 
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Supplementary information  

The MATLAB code employed for the fitting the data and predicting the course of COVID-19.  

%Start with the guess values of the fiting parameters   

guess = [1.2, 0.01, 1.0e-4];  

options = optimset('MaxFunEvals',1000000); 

% fitting the model to the data  

C = fminsearch(@optimization,guess,options); 

d = readtable('Data.xlsx','basic',true); 

f = d.France; 

s = f(1); 

I = f(2);  

t = 200; 

phi = zeros(t,1); 

phi(1) = I/s; 

cases = zeros(t,1); 

cases(1) = phi(1)*s; 

for i = 2:t 

    phi(i)=  phi(i-1) + (C(2).*(phi(i-1))) + C(3).*exp(-phi(i-

1)) - ((phi(i-1)).^(C(1))); 

    cases(i) = phi(i)*s; 

end 

 

% Optimization function used for fitting the model to data 

function [error] = optimization(C) 

d = readtable('Data.xlsx','basic',true); 

f = d.France; 

s = f(1); 

I = f(2);  

t = length(f(2:end)) - sum(isnan(f(2:end))); 

phi = zeros(t,1); 

phi(1) = I/s; 

cases = zeros(t,1); 

cases(1) = phi(1)*s; 

for i = 2:t 

    phi(i)=  phi(i-1) + (C(2).*(phi(i-1))) + C(3).*exp(-phi(i-

1)) - ((phi(i-1)).^(C(1))); 

    cases(i) = phi(i)*s; 

end 

a = f(2:t+1);  

error = (cases-a).^2; 
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