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ABSTRACT 

Impaired lung function is associated with significant morbidity and mortality. Restrictive and 

obstructive lung disorders are a large contributor to decreased lung function, as well as the 

acute impact of infection. Measures of pulmonary function are heritable, and thus, we sought 

to utilise genomics to propose novel drug repurposing candidates which could improve 

respiratory outcomes. Lung function measures were found to be genetically correlated with 

metabolic and hormone traits which could be pharmacologically modulated, with a causal 

effect of increased fasting glucose on diminished lung function supported by latent causal 

variable models and Mendelian randomisation. We developed polygenic scores for lung 

function specifically within pathways with known drug targets to prioritise individuals who 

may benefit from particular drug repurposing opportunities, accompanied by transcriptome-

wide association studies to identify drug-gene interactions with potential lung function 

increasing modes of action. These drug repurposing candidates were further considered relative 

to the host-viral interactome of three viruses with associated respiratory pathology (SARS-

CoV2, influenza, and human adenovirus). We uncovered an enrichment amongst glycaemic 

pathways of human proteins which putatively interact with virally expressed SARS-CoV2 

proteins, suggesting that antihyperglycaemic agents may have a positive effect both on lung 

function and SARS-CoV2 progression.  
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MAIN 

Optimal lung (pulmonary) function is vital for the ongoing maintenance of homeostasis, with 

reduced pulmonary function associated with a marked increase in the risk of mortality1,2. This 

is particularly critical due to the considerable number of disorders for which diminished 

pulmonary function is a clinical hallmark. For instance, chronic obstructive pulmonary disease 

(COPD), characterised by an irreversible limitation of airflow, is one of the leading causes of 

death worldwide3. Pulmonary manifestations are also common amongst disorders not directly 

classified as respiratory conditions, including diabetes4,5, congenital heart disease6, and 

inflammatory bowel disease7,8. Bacterial and viral infection, such as Streptococcus 

pneumoniae, Mycobacterium tuberculosis, influenza, and coronaviruses, also cause severe 

declines in respiratory function. In order to better manage the spectrum of respiratory disorders 

there is a desperate need for new interventions, including those that can be targeted to an 

individual’s heterogeneous risk factors. While the development pathway for new compounds 

is difficult, there are likely to be opportunities for precision repurposing of existing drugs to 

enhance lung function and improve patient outcomes.  

 

Spirometry measures of pulmonary function have been shown to display significant heritability 

both in twin designs and genome-wide association studies (GWAS)9–11. Genomics may reveal 

clinically relevant insights into the biology underlying lung function, and thus, could be 

leveraged for drug repurposing. We sought to interrogate the genomic architecture of three 

spirometry indices to propose drug repurposing candidates which could be used to improve 

lung function: forced expiratory volume in one second (FEV1), forced vital capacity (FVC), 

and their ratio (FEV1/FVC). Firstly, we assessed each lung function trait for evidence of genetic 

correlation with biochemical traits that could be pharmacologically modulated, followed by 

models to investigate whether there was evidence of causation. The previously developed 
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pharmagenic enrichment score framework was then implemented to identify druggable 

pathways enriched with lung function associated variation and calculate pathway specific 

polygenic scores to prioritise individuals who may benefit from a repurposed compound which 

interacts with the pathway12. A transcriptome-wide association study of FEV1 and FVC was 

also undertaken to reveal genes which could be targeted by existing drugs that may increase 

pulmonary function. Finally, we considered the repurposing candidates proposed by these 

strategies in the context of three respiratory viruses (SARS-CoV2, influenza, and human 

adenovirus), specifically, analysing the interactions between viral and human proteins. An 

overview schematic of this study is detailed in figure 1. 
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Figure 1. Overview of strategies for genetically informed drug repurposing to improve 

lung function.  The left column outlines our workflow for using causal inference to identify 

drug targets, while the right side shows the workflow for functionally partitioning the heritable 

component into drug targets. In both cases we utilize or integrate GWAS data for lung function 

(including three spirometry phenotypes: forced expiratory volume in one second (FEV1), 

forced vital capacity (FVC), and their ratio (FEV1/FVC)) and quantitative biochemical traits 

(e.g. hormones and metabolites) which can be pharmacologically modulated. Using this data, 

we established genetic correlation between lung function and the biochemical traits using LD 

score regression (LDSC) (left column). We then constructed a latent causal variable (LCV) 

model to investigate evidence of causality for significantly correlated biochemical-lung 

function trait pairs. To further support causal inference between significant pairs we 

implemented Mendelian randomisation. Where a causal relationship between a modifiable 

biochemical trait and lung function is established, we can infer a novel treatment. The right 

column shows the workflow for utilising the pharmagenic enrichment score (PES) framework 

for precision drug repositioning. Specifically, polygenic scores for lung function were 

calculated using lung function GWAS SNPs within biological pathways that can be targeted 

by approved drugs, rather than a genome-wide score. Individuals with low genetically 

predicted lung function by a PES (low PES) relative to a reference population (orange shaded 

distribution in right panel 3) may benefit from a compound which modulates said pathway. To 

further support putative genetically predicted targets for drug repositioning a transcriptome-

wide association study (TWAS) of lung function was performed. Druggable genes for which 

genetically predicted expression was correlated with a spirometry measure. Genes with positive 

genetic covariance between imputed expression and lung function (i.e. increased expression 

associated with increased lung function) could be modulated by an agonist compound, whilst 
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genes for which decreased predicted expression is associated with improved lung function 

could be targeted by an antagonist compound. 

 

RESULTS 

 

Measures of lung function were genetically correlated with clinically significant 

metabolites and hormones  

We assessed genetic correlation between three pulmonary function measurements (FEV1, 

FVC, and FEV1/FVC) and 172 GWAS summary statistics of European ancestry using bivariate 

linkage disequilibrium score regression (LDSC)13,14. A number of clinically significant traits 

displayed significant genetic correlation with FEV1, FVC, and/or FEV1/FVC after the 

correcting for the number of tests performed (P < 2.9 x 10-4, Figure 2a, Supplementary Tables 

1-3). FVC had the largest number of genetic correlations which surpassed Bonferroni 

correction (N = 35), followed by FEV1 and FEV1/FVC for which 25 and 8 traits survived 

multiple testing correction, respectively.  The trait most significantly correlated with both FEV1 

and FVC was waist circumference - FEV1: rg = -0.19, SE = 0.02, P = 5.71 x 10-20, FVC: rg = -

0.24, SE = 0.02, P = 9.54 x 10-33. Asthma demonstrated the most significant correlation with 

FEV1/FVC (rg = -0.35, SE = 0.05, P = 3.49 x 10-12), which is expected given its significant 

negative correlation with FEV1 (rg = -0.34, SE = 0.06, P = 7.43 x 10-10) but its relationship with 

FVC did not survive Bonferroni correction (rg = -0.18, SE = 0.05, P = 1 x 10-3).  
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Figure 2. Genome wide investigation of biochemical traits related to lung function. 

(a) Heatmap of genetic correlations (rg) between three spirometry measures (FEV1, 

FVC, and FEV1/FVC) and a number of European ancestry GWAS. Genetic correlation 

A

A
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estimates were plotted if the trait was significantly correlated with at least one of the 

lung function traits after Bonferroni correction. Hierarchical clustering was applied to 

the rows and utilised Pearson’s correlation distance. (b) Latent causal variable models 

between correlated biochemical traits (selected by LD score regression) that are 

potentially drug targets (metabolite or hormone traits) and each measure of lung 

function. The mean posterior genetic causality proportion (GCP) is plotted, with the 

error bars representing the upper and lower limits defined by its standard error. A 

positive GCP estimate significantly different than zero indicates partial genetic 

causality of the biochemical trait on the spirometry measure.  

 

Interestingly, there was evidence of genetic correlation between measures of lung function and 

circulating levels of both metabolites and hormones. This is notable as these molecules can be 

pharmacologically modulated, potentially informing novel therapeutic strategies and drug 

repurposing opportunities to improve lung function. Significant genetic correlations were 

observed with four metabolites (fasting glucose, high-density lipoprotein [HDL], triglycerides, 

and urate) and two hormones (fasting insulin and leptin) for at least one measure of lung 

function (Table 1). These significant relationships were as follows: FEV1 was negatively 

correlated with fasting insulin, leptin (adjusted and unadjusted for BMI), urate, and fasting 

glucose; FVC was negatively correlated with the same traits as FEV1 but was further positively 

correlated with HDL and negatively correlated with circulating triglycerides; FEV1/FVC was 

conversely negatively correlated with HDL.  
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Table 1: Significant genetic correlations between lung function measures and metabolite 

and hormone GWAS 

Lung function trait* Biochemical trait Genetic correlation (rg)# 

FEV1 Fasting insulin -0.23 (0.04) 

FEV1 Leptin (BMI unadjusted) -0.25 (0.05) 

FEV1 Leptin (BMI adjusted) -0.24 (0.05) 

FEV1 Urate -0.12 (0.03) 

FEV1 Fasting glucose -0.13 (0.03) 

FVC Fasting insulin -0.31 (0.04) 

FVC Leptin (BMI unadjusted) -0.33 (0.05) 

FVC Leptin (BMI adjusted) -0.27 (0.05) 

FVC HDL cholesterol  0.14 (0.03) 

FVC Urate -0.12 (0.02) 

FVC Triglycerides -0.11 (0.03) 

FVC Fasting glucose -0.12 (0.03) 

FEV1/FVC  HDL cholesterol  -0.11 (0.03) 

*FEV1 = forced expiratory volume in one second, FVC = forced vital capacity, FEV1/FVC = ratio of 

FEV1 to FVC. #Genetic correlations which survived multiple testing correction for each lung function 

trait individually are reported with their respective standard error.  

 

Evidence of a causal relationship between fasting glucose and lung function supports 

antihyperglycaemic compounds as drug repurposing candidates 

The genetic correlations observed between lung function measures and metabolite/hormone 

traits may be clinically actionable, however, a significant estimate of genetic correlation does 

not imply causality15. In response, we constructed a latent causal variable (LCV) model to 

estimate mean posterior genetic causality proportion (!"#$) for each metabolite or hormone 

trait and the lung function measure with which it is genetically correlated (Figure 2b, 
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Supplementary Table 4). The LCV method assumes that a latent variable mediates the genetic 

correlation between two traits, and tests whether this latent variable displays stronger 

correlation with either of the traits.  Specifically, the mixed fourth moments of the bivariate 

effect size distributions for all SNPs and their LD structure are leveraged to derive a mean 

posterior estimate of the GCP, which quantifies the magnitude of genetic causality between the 

two traits. GCP values range from −1 to 1 (full genetic causality), within these limits positive 

values indicate greater partial genetic causality of trait one on two, and vice versa for negative 

values. We tested whether the mean posterior GCP estimate was significantly different from 

zero as evidence of partial genetic causality. Firstly, considering fasting glucose and both FEV1 

and FVC the mean posterior GCP estimate was significantly different from zero, and positive, 

which suggested a partial causal effect of fasting glucose on these two measures of lung 

function, with the causal relationship more rigorous with FVC – FEV1: !"#$ = 0.57, SE = 0.18, 

P H0:GCP = 0   = 7.18 x 10-12; FVC: !"#$ = 0.77, SE = 0.15, P H0:GCP = 0 = 1.32 x 10-56. Posterior 

mean GCP estimates were marginally attenuated but remained significant upon using BMI 

adjusted fasting glucose estimates (FEV1: !"#$ = 0.46, FVC: !"#$ = 0.63). In addition, partial 

genetic causation was detected between HDL cholesterol and FEV1/FVC (!"#$ = 0.59, SE = 

0.26, P H0:GCP = 0  = 4.12 x 10-7) and leptin with FVC (!"#$ = 0.41, SE = 0.20, P H0:GCP = 0  = 

0.036), although these models displayed comparatively weaker evidence. A non-zero mean 

posterior GCP estimate was observed for urate and FVC (!"#$ = 0.73), however, the relatively 

low heritability z score as calculated by the LCV framework (z  < 7) may lead to an inflated 

estimate. There was no significant evidence of genetic causality between any of the remaining 

LDSC prioritised hormone or metabolite traits and FEV1, FVC, or FEV1/FVC.  

 

As it was the most significant LCV model, the causal effect of fasting glucose on FEV1 and 

FVC was further investigated utilising a Mendelian randomisation (MR) approach. MR differs 
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from an LCV model as it exploits genome-wide significant variants as genetic instrumental 

variables (IV) to calculate a causal estimate of an exposure (fasting glucose) on an outcome 

(lung function). We selected 32 genome-wide significant variants associated with glucose in 

approximate linkage equilibrium as IVs (P < 5 x 10-8, r2 < 0.001) to ensure that variants were 

both rigorously associated with the exposure and independent from one another. A 1 mmol/L 

increase in fasting glucose was associated with a -0.088 (95% CI: -0.17, -0.01) standard 

deviation decline in FVC using an inverse variance weighted (IVW) estimator with 

multiplicative random effects. Similarly, elevated fasting glucose was also shown to have a 

negative effect on FEV1: %IVW = -0.096 [95% CI: -0.18, -0.01]. The causal estimate for fasting 

glucose was nominally significant for both FVC and FEV1 (P = 0.033 and P = 0.023, 

respectively) using an IVW estimator with multiplicative random effects. It should be noted 

that implementing the IVW model with fixed effects yields narrower confidence intervals for 

the respective FVC and FEV1 beta coefficients: FVC – %IVW = -0.088 [95% CI: -0.12, -0.05], 

P = 2.18x 10-6; FEV1 – %IVW = -0.096 [95% CI: -0.13, -0.06], P = 1.78 x 10-7 – however, there 

was evidence of statistical heterogeneity amongst the IV effects, indicating that the 

multiplicative random effects estimator was more appropriate (Cochran’s Q: P < 0.05)3,16. We 

implemented a number of sensitivity analyses to test the rigour of our causal estimate of the 

effect of fasting glucose on lung function (Figure 3, Supplementary Tables 5-7). Firstly, we 

obtained an analogous, and statistically significant, causal estimate using the weighted median 

method (FVC: %Weighted	median	= -0.09 [95% CI: -0.16, -0.04], FEV1: %Weighted median = -0.07 [95% 

CI: -0.13, -0.01]). The weighted median method relaxes the assumption that all IVs must be 

valid, as described elsewhere17. An MR-Egger model was then constructed, which includes a 

non-zero intercept term which can be used as a measure of unbalanced pleiotropy18. The causal 

estimate using MR-Egger was in the same direction for FEV1 and FVC, however, was non-

significant (Supplementary Table 6). It should be noted that the MR-Egger method has notably 
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less power than the IVW approach, particularly when fewer instruments are used18. 

Importantly, the MR-Egger intercept was not significantly different from zero in the FEV1 or 

FVC model, indicating no evidence of unbalanced pleiotropy. This was supported by a non-

significant global test of pleiotropy implemented as part of the MR PRESSO (MR-Pleiotropy 

Residual Sum and Outlier) framework ( Supplementary Table 6)19.  
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Figure 3. Investigation of the effect of fasting glucose on lung function using  

two-sample Mendelian randomisation. Mendelian randomisation (MR) results for (a) 

FEV1 and (b) FVC. The left scatter plot indicates the effect size of the instrumental 

variable (IV) SNP effects on fasting glucose (mmol/L) and FEV1 or FVC, respectively 

(standard deviation units). Each regression slope corresponds to the causal estimate 

between fasting glucose and each lung function measure, with the slopes shaded by the 

MR method used to calculate the causal estimate. The forest plot on the right indicates 

the results of the ‘leave one out analysis’. Each black point represents the causal 

estimate (IVW estimator with multiplicative random effects) of fasting glucose on each 

lung function measure with the SNP (IV) labelled on the y- axis removed; error bars 

represent upper and lower confidence intervals. The combined IVW estimate with all 

IVs is represented by the red point (‘All’).  

 

Finally, we successively recalculated the IVW causal estimate for the effect of fasting glucose 

on FEV1 and FVC by removing one IV at a time in a ‘leave-one-out’ analysis (Figure 3, 

Supplementary Table 7)20. An analogous causal estimate was derived regardless of which IV 

was removed, however, there were five IVs (FEV1 model = two outlier SNPs, FVC model = 

four outlier SNPs, [two outlier SNPs shared]) for which the estimate was marginally non-

significant after exclusion (maximum P = 0.11, IVW with multiplicative random-effects). We 

then used a phenome-wide association approach to demonstrate that these five SNPs were, i) 

annotated to genes with important roles in glycaemic homeostasis, and ii) were almost 

exclusively associated with glycaemic traits or diabetes (Supplementary Note, Supplementary 

Tables 8-12). As a result, we concluded that these IVs did not likely represent horizontal 

pleiotropy, which would bias the causal estimate, but instead were biologically salient IVs with 

large effects.  
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Whilst smoking status (ever vs never smoked) was a covariate in the lung function GWAS, we 

sought to assess whether the relationship between blood glucose and lung function could be 

driven by residual effects of smoking. There was a significant genetic correlation between the 

number of cigarettes smoked per day and fasting glucose (rg = 0.16, SE = 0.043), although this 

was not observed with the ‘ever vs never smoked’ phenotype (rg = 0.007, SE = 0.039). 

However, a latent causal variable model constructed for fasting glucose and cigarettes smoked 

per day did not indicate evidence of genetic causality, in contrast to the glucose/lung function 

models -  !"#$ = -0.47, SE = 0.33, P H0:GCP = 0 = 0.33. The MR IVs for glucose were further 

checked for association with either ‘ever vs never smoked’ and ‘cigarettes per day’, with none 

of the IVs demonstrating any association with either smoking phenotype at a genome-wide (P 

< 5 x 10-8) or suggestive (P < 1 x 10-5) significance threshold (Supplementary Tables 13,14). 

In summary, these data suggested there is an effect of fasting glucose on lung function beyond 

what is directly attributable to a residual impact of smoking.  

 

Implementation of the pharmagenic enrichment score for genetically informed drug 

repurposing in respiratory distress 

We aimed to further expand drug repurposing opportunities for lung function using the 

pharmagenic enrichment score (PES) approach (Online methods)12. Briefly, PES aims to 

implement genetically informed drug repurposing with polygenic scores (PGS) calculated 

using genetic variants specifically within druggable pathways (Figure 4a). In the context of this 

study, individuals with a depleted PES for lung function (lower genetically predicted lung 

function) mapped to pathways with known drug targets may specifically benefit from drugs 

which modulate these pathways. The PES approach differs from a traditional genome wide 

PGS by providing direct biological insights into the potential impact of trait associated 

variation residing in drug function related gene-sets rather than the undifferentiated sum total 
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of trait associated variation. Candidate pathways for the generation of PES profiles are obtained 

using GWAS summary statistics by identifying druggable gene-sets which display an 

enrichment of common variant associations. Firstly, we performed gene-set association of 

FEV1 and FVC using a collection of high-quality gene-sets from the molecular signatures 

database (MSigDB). These sets contain at least one gene which is modulated by an approved 

pharmacological agent (NSets = 1030, Online Methods). The FEV1/FVC phenotype is less 

directly interpretable in this context, given that it is used primarily as a diagnostic tool rather 

than as a quantitative measure, and thus, we focused on repurposing candidates for FEV1 and 

FVC individually. Previously, we extended the concept of P-value thresholding (PT) for PGS 

to the multi-marker gene level test-statistic and implemented this in our gene set analysis12. We 

argue that distinct biological processes in individuals may only be captured when the optimal 

spectrum of polygenic variation is included in the model. A variety of PT could be utilised; for 

simplicity, we selected four P-values thresholds (all SNPs, PT < 0.5, PT < 0.05, and PT < 0.005), 

in accordance with our previous work12. We annotated variants to genes using genomic 

proximity. Genic boundaries were extended to capture regulatory variation, with both 

conservative and liberal upstream and downstream boundary definitions. This involved an 

extension of 5 kilobases (kb) upstream of the gene, and 1.5 kb downstream for the conservative 

construct, whilst a larger 35 kb upstream and 10 kb downstream was implemented in the more 

liberal construct. 
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Figure 4. The pharmagenic enrichment score framework to identify and implement 

drug repurposing candidates for lung function. (a) Overview of the pharmagenic 

enrichment score (PES) approach, whereby polygenic scores of lung function measures 
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are constructed using variants specifically within druggable pathways. Individuals with 

a depleted PES, that is, lower genetically predicted spirometry measures using variants 

in the gene-set, may benefit from a drug which modulates the pathway in question. (b) 

The number of FDA-approved drugs with overrepresented targets in at least one 

candidate PES gene-sets per anatomic therapeutic classification (ATC) level one code.  

Each ATC level one code is shaded a different colour with its frequency on the x-axis.  

(c) The phenotypic association between a polygenic score (PGS) of FVC and an FVC 

PES which was significant after correction for genome wide PGS. The relationship 

between the PES/PGS and normalised residual FVC in an independent cohort is plotted, 

with 95% confidence intervals of the regression trendline indicated by shading (d) 

Significant correlations between the expression of genes in a candidate PES and three 

lung function PES (FVC): Class B/2 Secretin family receptors, Circadian clock, and 

Pathways in cancer. The relationship between PES and gene-expression is presented 

as a volcano plot, where the x-axis is the t value (coefficient divided by standard error) 

and the y-axis is the -log10 P-value, with higher points more significant. Genes which 

are associated after multiple-testing correction for the number of genes in the pathway 

are coloured blue (strict FDR < 0.05) or red (lenient FDR < 0.1). The dotted line denotes 

an uncorrected nominally significant association (P < 0.05).  

 

Gene-set association using the FEV1 and FVC GWAS was undertaken at each PT with both 

conservative and liberal genic boundaries. If a gene-set was significant at multiple PT, the most 

significantly associated PT was retained. The conservative genic-boundaries only yielded one 

druggable gene-set enriched with FEV1 associated variants after multiple testing correction (q 

< 0.05): Signalling events mediated by the Hedgehog family - % = 0.973, SE = 0.2, P = 9.3 x 

10-7, PT < 0.5, NGenes = 22. There were no gene-sets with known drug targets using conservative 
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genic-boundaries which survived multiple testing correction for association with FVC, 

however, several gene-sets trended towards significance (q < 0.1) including: Pathways in 

cancer, TGF-beta signalling pathway, and signalling events mediated by the Hedgehog family 

(Supplementary Table 15). Extending the genic boundaries to capture more regulatory 

variation (liberal boundaries) uncovered more druggable gene-sets (Supplementary Table 16). 

Specifically, there were seven and nine unique gene-sets which survived correction for FEV1 

and FVC respectively (q < 0.05, Table 2). It should be noted that there were two pathways 

related to Hedgehog signalling, however, as these were from different annotation sources, and 

had a different number of genes, we considered them separately. A number of biological 

processes were encompassed by these prioritised gene-sets, such as: cancer (Pathways in 

cancer, Basal cell carcinoma), transforming growth factor (TGF)-beta superfamily signalling 

(TGF-beta signalling pathway, BMP [Bone morphogenetic protein] receptor signalling, ALK 

[activin receptor-like kinase] in cardiac myocytes), and cardiac function (Dilated 

cardiomyopathy).  
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Table 2: Gene-sets with known drug targets enriched with lung function associated 

common variation after the application of multiple testing correction 

Phenotype Gene-set Lowest P# Genic boundaries 

FVC Hedgehog signalling pathway (KEGG) 6.66 x 10-9 Liberal 

FVC BMP receptor signalling  4.08 x 10-7 Liberal 

FEV1 Signalling events mediated by the Hedgehog family 9.30 x 10-7 Conservative  

FEV1 Hedgehog signalling pathway (KEGG) 3.45 x 10-6 Liberal 

FVC ALK in cardiac myocytes 4.57 x 10-6 Liberal 

FVC Pathways in cancer 5.43 x 10-6 Liberal 

FEV1 Basal cell carcinoma  8.86 x 10-6 Liberal 

FVC TGF-beta signalling pathway 1.21 x 10-5 Liberal 

FVC Circadian clock 3.00 x 10-5 Liberal 

FVC Class B/2 (Secretin family receptors) 8.08 x 10-5 Liberal 

FEV1 TGF-beta signalling pathway 8.15 x 10-5 Liberal 

FEV1 Extension of telomeres 8.59 x 10-5 Liberal 

FEV1 Pathways in cancer 8.94 x 10-5 Liberal 

FEV1 Dilated cardiomyopathy 9.54 x 10-5 Liberal 

FVC Extracellular matrix (ECM)/ECM associated proteins 2.28 x 10-4 Liberal 

#The lowest P is the most significant gene-set association P value across all the P-value thresholds 

(PT) and genic boundary configurations tested 

 

For each candidate PES gene-set we performed computational drug selection to identify 

approved compounds predicted to modulate the enriched pathway. Firstly, we investigated 

FDA-approved pharmacological agents with a statistically significant overrepresentation of 

target genes in each of these sets (NOverlap  ≥ 3, q < 0.05 , Online Methods). Drugs which target, 

i) multiple gene-set members, and ii) more genes than expected by chance, were assumed to 

be particularly relevant for a biological pathway. There were six such gene-sets from the PES 
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candidates which survived multiple testing correction enriched with the targets of an FDA 

approved compound (Pathways in cancer, Dilated cardiomyopathy, Class B/2 [Secretin family 

receptors], Circadian clock, Extension of telomeres, and Extracellular matrix (ECM)/ECM 

associated proteins, Supplementary Table 17) – notable drugs included: the anti-

mineralocorticoid Spironolactone, antihyperglycaemic compounds (Rosiglitazone, 

Pramlintide), antihypertensives (e.g. Verapamil and Felodipine), antineoplastic agents (e.g. 

Bexarotene and Sunitinib), and nutraceuticals (Zinc, Vitamin E, and Doconexent). Each 

compound was annotated with its Anatomical Therapeutic Chemical (ATC) classification; the 

most common first level ATC code amongst these compounds was antineoplastic and 

immunomodulating agents (L, N = 16), followed by cardiovascular system (C, N =15), and 

alimentary tract and metabolism (A, N = 12; Figure 4b). Each of these compounds was 

subjected to expert curation by a pharmacist in relation to side-effects and prior literature 

evidence as detailed in Supplementary Table 18 (Online Methods, Supplementary Methods). 

Single drug-gene matching was undertaken for remaining PES candidate gene-sets lacking an 

approved compound with statistically overrepresented target, retaining drug-gene interactions 

with at least two lines of evidence from DGIdb (Supplementary Tables 19-30). 

 

In order to test the phenotypic relevance of FEV1 and FVC PES profiles, we utilised an 

independent genotyped cohort from the Hunter Community Study (HCS, N = 1804, Online 

Methods). Firstly, we constructed a genome-wide PGS for FEV1 and FVC at six different P-

value thresholds (Supplementary Table 31). The optimum FEV1 genetic score explained 

approximately 6.4% of the variance in FEV1 measured in the HCS cohort, whilst the FVC PGS 

explained approximately 5.7% of variance in FVC. Each of the seven PES profiles were tested 

for association with FEV1 and/or FVC both with and without adjustment for genome-wide 

PGS. Four of the PES considered had at least a nominally significant association with their 
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respective spirometry measure (PEmpirical < 0.05 [10000 permutations], Table 3, Supplementary 

Table 32). The variance explained by the significant PES was between 0.4% - 0.7%, with the 

number of independent SNPs in these scores ranging from 76 to 16390. We then constructed a 

model which was adjusted for genome wide PGS at the same PT as the PES and found that 

only the Class B/2 secretin family receptor FVC PES remained nominally significant (β = 

0.047, SE = 0.022, P = 0.038, Figure 4c, Supplementary Table 33). This suggested that there 

was a relationship between the Class B/2 secretin family receptor FVC PES and FVC beyond 

what is attributable to a genome-wide PGS. This PES did not display any association with 

smoking status in this cohort (β = -0.014, SE = 0.047, P = 0.758). Furthermore, there was a 

significant depletion of FVC within the 10th percentile (low genetically predicted FVC) of the 

Class B/2 secretin receptor family FVC PES in the HCS cohort, with the odds of being in the 

lowest decile decreasing by around 20% per standard deviation increase in FVC (OR = 0.80 

[95% CI: 0.68, 0.93], P = 4.7 x 10-3).  We further identified a subset of individuals with relative 

elevated FVC PGS (75th percentile, higher genetically predicted FVC) but low phenotypic FVC 

(25th percentile, normalised FVC residuals). The Class B/2 secretin receptor family FVC PES 

was assessed in these HCS participants (N = 71, 16.6% of 75th percentile FVC PGS subset) to 

test whether there was a depletion of that spirometry measure, that is, low genetically predicted 

lung function using the PES. We found a non-significant trend of lower Class B/2 secretin 

receptor family PES amongst those with a high genome-wide burden of FVC increasing alleles 

but diminished FVC relative to the HCS cohort: β = -0.217, SE = 0.134, P = 0.106. All of the 

PES tested demonstrated small albeit significant correlations with genome wide PGS at the 

same PT in the HCS cohort, with the exception of the Extracellular matrix PES for which the 

correlation was relatively large (r = 0.33, Supplementary Figure 1). The higher correlation in 

this gene-set was probably due to the large number of genes involved (>1000). Interestingly, 

there was still a number of individuals with high genetically predicted lung function using a 
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genome wide PGS (90th percentile of HCS cohort) but low genetically predicted lung function 

using one of the PES (10th percentile). Specifically, 12.17% and 12.05% of the HCS 

participants in the 90th percentile PGS for FVC and FEV1 respectively had a depleted PES (10th 

percentile, low predicted lung function by PES). Taken together, this suggests that pathway 

based polygenic scores provide distinct biological insights for some individuals with otherwise 

high genetic load of lung function increasing alleles.  

 

Table 3: The association between lung function PES and spirometry measures in the 

Hunter Community Study cohort 

Phenotype PES z value PEmpirical
 PES R2  NSNP 

FEV1 Dilated cardiomyopathy 0.15 0.880 1.3 x 10-5 2404 

FEV1 Extension of telomeres -0.18 0.965 1.7 x 10-5 44 

FEV1 Pathways in cancer 2.98 0.003 0.005 6214 

FVC Circadian clock 2.14 0.049 0.003 230 

FVC Class B/2 Secretin family receptors 3.14 0.004 0.005 76 

FVC Extracellular matrix (ECM) proteins 3.50 7 x 10-4 0.007 16390 

FVC Pathways in cancer 2.64 0.007 0.004 6212 

The z value is the PES model coefficient divided by its standard error. An empirical P value (PEmpirical) was 

generated using 10000 permutations, whilst the variance explained (R2) is the null model R2 subtracted 

from the full model with the PES as a predictor. The number of independent SNPs used to calculate the 

PES in this cohort is reported in the NSNP column. The reported results are from models unadjusted for 

genome wide PGS. 

 

The correlation between the expression of genes within each pathway encompassed by the PES 

and the PES profiles themselves could provide further support for their biological impact. We 

investigated the association between lung function PES and gene expression using RNA 

sequencing (RNAseq) on transformed lymphoblastoid cell lines (LCL) from 357 European 
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individuals for which phase 3 whole genome sequencing data was available from the 1000 

genomes project (Online methods, Figure 4d, Supplementary Tables 34-40)21. We identified a 

significant association between the FVC PES Class B/2 [Secretin family receptors] and the 

expression of WNT3 using a strict FDR threshold  q < 0.05 (t = -3.53, P  = 4.71 x 10-4, q = 

0.028); a more lenient FDR cut-off (q < 0.1) yielded two more significant PES-gene expression 

correlations -  FVC Circadian clock PES and PPARA: t = -3.23, P  = 1.37 x 10-3, q = 0.07; 

FVC Pathways in cancer and HSP90AB1: t = 3.72, P  = 2.33 x 10-4, q = 0.066. Expression of 

WNT3 and PPARA were not associated with genome wide PGS at the same P value threshold 

(P = 0.63 and P = 0.29), whilst the PGS exhibited a weaker, nominal relationship with 

HSP90AB1 (P = 0.04). The remaining four PES tested (FEV1 or FVC) all demonstrated at least 

one nominal, uncorrected association (P < 0.05). The observed effects of PES on gene 

expression at the population level were subtle; this is not surprising as each PES profile will 

encompass heterogenous variants for each individual, and thus, impacts on gene expression 

may be greater within specific genomic contexts. 

 

Transcriptome-wide association identifies putative targets for pharmacological 

modulation of lung function 

We performed a transcriptome-wide association study (TWAS) of the three lung function 

measures using SNP weights from lung and blood tissue. TWAS leverages models of 

genetically regulated expression to test for a correlation between predicted expression and a 

phenotype22. Models of imputed expression derived from cis-eQTLs are generated from genes 

for which expression displays significant cis-heritability, that is, a significant genetic 

contribution to expression variance. We aimed to identify genes for which increased or 

decreased expression was associated with increased lung function and had approved 

compounds available which could improve lung function based on their mechanism of action 
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(Figure 5a). For instance, if increased expression of a gene was associated with improved lung 

function, then an agonist of that gene may be clinically useful or vice versa in the case of 

decreased expression. Using a Bonferroni threshold for the number of genes tested in lung and 

blood individually, we identified a number of transcriptome-wide significant genes as follows 

- FEV1: NGenes [Lung] = 232, NGenes [Whole blood] = 201; FVC: NGenes [Lung] = 222, NGenes [Whole blood] = 

167 (Supplementary Tables 41-44, Figure 5b). Transcriptome-wide associated genes were only 

retained if they were not also associated with a smoking phenotype, to minimise residual 

smoking related confounding. Specifically, we tested whether predicted expression of the 

genes which survived correction in the FEV1 or FVC TWAS were associated with smoking 

behaviour (‘ever vs never smoked’ and ‘cigarettes per day’) in a TWAS using SNP weights 

from lung, blood, and two brain regions implicated in nicotine addiction (dorsolateral 

prefrontal cortex and nucleus accumbens – Online Methods, Supplementary Tables 45-52)23,24. 

We searched each of these significant genes in the Drug-Gene Interaction Database (DGIdb 

v3.0.2) to ascertain compounds which may improve lung function based on the direction of 

effect from the TWAS analyses. In accordance with the PES analyses FEV1/FVC was not 

directly considered and we focused on FEV1 and/or FVC associated genes which could be 

pharmacologically modulated. A tiered system was utilised to select drug-gene interactions 

which may enhance lung function, whereby tier one were FDA approved compounds, and tier 

two were investigational (Online Methods, Supplementary Table 53).  

 

Four candidate genes were identified satisfying tier one criteria: PPARD, ADORA2B, KCNJ1, 

and AMT. For instance, decreased expression of potassium channel gene KCNJ1 was associated 

with FVC (ZTWAS = -4.60), and this channel can be inhibited by approved compounds such as 

the antidiabetic drug glimepiride. There were an additional seven genes with tier two 

investigational targets: PYGB, PIK3C2B, LINGO1, APH1A, OPRL1, MST1R, and ACVR2B. 
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Probabilistic finemapping of these transcriptome-wide significant regions using a multi-tissue 

reference panel was then performed to prioritise whether these genes are likely causal at that 

locus (Online Methods). A credible set with 90% probability of containing the causal gene was 

computed for each locus utilising the marginal posterior inclusion probability (#&#) calculated 

from the observed TWAS statistics. We did not proceed with finemapping the PPARD locus 

due to its proximity to the defined boundaries of the MHC region. Two FEV1 associated genes 

with tier one and/or tier two drug interactions, AMT and PYGB, were included in the credible 

set with a PIP > 0.9. Tetrahydrofolate is a co-factor for AMT (ZTWAS = 5.96, #&# = 0.893, whole 

blood SNP weights), which has been previously implicated as having a beneficial effect on 

lung function. PYGB (ZTWAS = -6.98, PIP = 0.999, lung SNP weights) encodes a protein 

involved in glycogenolysis and can be putatively inhibited by the new exploratory treatment 

for respiratory failure, Sivelestat (Figure 5c).  

 

In addition, we tested a more conservative Bernoulli prior for each causal indicator (' = 1 x 

10-5) but this only had a negligible effect on the posterior inclusion probability for either AMT 

(PIP = 0.87) or PYGB (PIP = 0.994). Whilst there is a plausible role for AMT in respiratory 

biology (Aminomethyltransferase, involved in glycine cleavage), it should be noted that 

decreased predicted expression of AMT also trended towards the Bonferroni threshold for a 

significant association with smoking status (ZTWAS = -4.33, P = 1.46 x 10-5), although this was 

weaker for the cigarettes per day phenotype (ZTWAS = -2.97, P = 2.94 x 10-3). As a result, the 

association of this region with FEV1 should be treated cautiously until its biological relevance 

can be clarified to ensure that this signal is not driven by a residual effect of smoking.  
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Figure 5. The application of transcriptome-wide association to identify drug 

repurposing candidates for lung function (a) Schematic outlining the use of TWAS 

to reveal clinically actionable drug-gene interactions. Druggable genes with lung 

function associated imputed expression can be finemapped to prioritise a credible set 

of a causal genes at the TWAS locus, that is a high posterior inclusion probability (PIP). 

We seek to identify drugs with a mode of action which match the TWAS Z value, that 

is, compounds which may increase lung function. (b – c) Miami plots of a TWAS of 

FEV1 (left) and FVC (right) using whole blood (b) and lung (c) SNP weights. TWAS 

Z > 0 denotes a gene for which increased predicted expression is associated with 

increased lung function and vice versa. The highlighted genes survived multiple testing 

correction for the number of genes tested. (d) Probabilistic finemapping of the PYGB 

TWAS locus. The points denoting each gene are sized and coloured by their posterior 

inclusion probability for causality (PIP), with higher PIP denoted by larger, darker 

points as represented on the scale. The correlation plot below each region represents 

the covariance of predicted expression between genes. 
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Host-viral interactomes suggested proposed pulmonary drug repurposing candidates 

may be significant for respiratory virus infection 

Respiratory viruses are an important contributor to acute, and potentially fatal, declines in lung 

function. We sought to investigate whether our proposed drug repurposing candidates for lung 

function may also exhibit anti-viral properties against these pathogens. The host-virus 

interactome was analysed for three respiratory viruses to perform computational drug 

repurposing – severe acute respiratory syndrome coronavirus 2 (SARS-CoV2), influenza 

(H1N1), and the human adenovirus (HAdV) family (Online methods, Supplementary Tables 

54-56)25–27. Specifically, human proteins which are predicted to interact with virally expressed 

proteins (‘prey proteins’) were investigated to identify those which could be inhibited by 

existing drugs to potentially disrupt the progression of infection. Approved inhibitors or 

antagonists of proteins in each respective host-virus interactome were sourced using DGidb 

and compared to our candidate compounds for lung function from the PES approach. 

Furthermore, we investigated the reported drug-label side-effect frequencies of each of these 

overlapping pharmacological agents and retained only candidates with no commonly reported 

(> 1% frequency) respiratory adverse effects. There were three inhibitors of human proteins 

with evidence of interaction with a viral protein that also targeted a gene which was a member 

of a PES candidate gene-set. Vorinostat (HDAC2 inhibitor) and Aminocaproic acid (PLAT 

inhibitor) both inhibited a SARS-CoV2 ‘prey protein’ and targeted a gene within the Pathways 

in cancer and Extracellular matrix (ECM)/ECM associated proteins PES pathways, 

respectively. Similarly, Ruxolitinib inhibits the influenza prey protein JAK1, a part of the 

Pathways in cancer gene-set.  

 

We demonstrated using multiple lines of evidence a putative relationship between increased 

fasting blood glucose and lung function – therefore, we investigated whether any of the host-
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viral interactome members were enriched within biological pathways involved in glycaemic 

homeostasis. Interestingly, there was an overrepresentation of SARS-CoV2 ‘prey proteins’ 

amongst four gene-sets related to glucose metabolism, along with insulin and glucagon 

signalling pathways (Table 4). Fourteen SARS-CoV2 ‘prey proteins’ were members of at least 

one of these gene-sets, with a greater number of interactions amongst these genes than expected 

by chance (P = 4.42 x 10-12, Supplementary Table 57). We outline evidence for the potential 

role of these viral prey genes in glycaemic homeostasis in supplementary table 57. These data 

support emerging evidence that SARS-CoV2 infected patients with hyperglycaemia are at 

higher risk of morbidity and mortality28.  

 

Table 4: Overrepresentation of proteins which interact with viral SARS-CoV2 

expressed proteins within glycaemic related pathways 

Glycaemic gene-set P-value 

Glucagon-like Peptide-1 (GLP1) regulates insulin secretion 7.02 x 10-4 

Glucagon signalling in metabolic regulation 2.33 x 10-4 

Glucose metabolism 2.69 x 10-5 

Regulation of insulin secretion 2.13 x 10-3 

 

None of the glycaemic ‘prey proteins’ were direct target of antidiabetic compounds, however, 

57% of these proteins had a high confidence protein-protein interaction with antidiabetic target 

gene (Supplementary Table 58). For instance, GNB1 putatively binds with a SARS-CoV2 non-

structural proteins (Nsp7) that forms the part of the replicase / transcriptase complex, whilst 

this protein also demonstrated evidence of interacting with 15 proteins modulated by an 

antidiabetic compound – such as GLP1R, which is the primary target of GLP-1 analogues, 

including exenatide. Pharmacological interventions which seek to control blood glucose may 
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have positive implications both in terms of improving baseline lung function and reducing the 

risk of adverse consequences after SARS-CoV2 exposure. 

 

DISCUSSION 

This study demonstrated a variety of methods for which genomic data could be utilised to 

propose drug repurposing candidates, ranging from approaches which exploit genome wide 

variant effects, to the identification of candidate clinically significant drug-gene interactions. 

Lung function is a particularly relevant phenotype to study in this context as its aetiology is 

influenced by a variety of complex biological factors and it is a significant contributor to global 

morbidity and mortality. We uncovered a number of putative pulmonary drug repositioning 

opportunities, with the role of glycaemic regulation in pulmonary function particularly 

interesting from a therapeutic perspective. Our study suggests a causal relationship between 

blood glucose and lung function using a genome-wide (LCV), and instrumental variable (MR) 

approach, whilst downregulation of the glycogen phosphorylase PYGB was also associated 

with FEV1 after probabilistic finemapping of TWAS loci. These data support previous 

literature suggesting that declines in pulmonary function are overrepresented amongst 

individuals with diabetes and correlates with poor glycaemic control5,29–31; a phenomenon 

which has also been reported in non-diabetics32,33. There are a number of pathophysiological 

mechanisms postulated to underlie this relationship, including fibrosis mediated by 

hyperglycaemia accelerated epithelial-to-mesenchymal transition34, and aberrant inflammatory 

responses to dysglycaemia35,36. Respiratory sequalae after infection may also be significantly 

affected by dysregulation of glycaemic control. Acute hyperglycaemia is associated with a 

significant increase in morbidity and mortality amongst non-diabetic community-acquired 

pneumonia (CAP) patients, which further supports its utility as a treatment target37–40. Notably, 

even patients with mild hyperglycemia [serum glucose 6-10.99 mmol/L] have a purported 
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elevated risk of death at 90 days following CAP diagnosis37, whilst the association between 

type 2 diabetes and poor pneumonia outcomes appears to be driven by glycaemic control40. 

Inflammation is likely to be an important component of glycaemic influenced adverse effects, 

for instance, the intracellular carbohydrate O-Linked β-N-acetylglucosamine has been recently 

linked to influenza-associated cytokine storms41. Our findings supported the relevance of 

glycaemia to respiratory infection through demonstrating that proteins which putatively 

interact with the SARS-CoV2 virus were overrepresented in glycaemic pathways. Whilst the 

viral prey proteins we identified as members of glycaemic pathways were not the direct targets 

of antihyperglycaemic agents, some interact with these compounds, although biological 

saliency of these interactions warrants future investigation. The presence of a viral-prey protein 

interaction also does not necessarily support its essentiality in the viral life cycle and further 

data are needed to support this. Furthermore, the viral prey proteins overrepresented in the 

glycaemic pathways were mostly genes such as nucleoporins and cAMP-dependent protein 

kinases which have pleiotropic regulatory roles spanning a number of biological systems. 

These data taken together support the utility of managing blood glucose in the clinical 

improvement of respiratory outcomes.  

 

Targeted drug application and repurposing is by its very nature confounded by biological 

heterogeneity amongst individuals. This is likely particularly true in the case of complex traits 

as their polygenic genetic architecture provides the substrate for each individual to display a 

unique profile of trait-associated variation. In the second stream of this study we stratified the 

polygenic architecture of lung function into a series of druggable pathways to provide a 

framework for pathway specific genetic scores we designate the pharmagenic enrichment 

score (PES). We suggest that leveraging inter-individual genetic heterogeneity in this way will 

improve the precision application of novel drug repurposing. A number of interesting drug 
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repositioning candidates had overrepresented targets amongst the candidate PES gene-sets. For 

example, magnesium sulfate had enriched targets in the Dilated cardiomyopathy PES and has 

previously shown promise as a repurposing candidate to improve pulmonary function in 

asthma42,43. Using an independent cohort, several PES profiles tested explained a small, but 

significant, percentage of variance in FEV1 and/or FVC. The Class B/2 secretin family 

receptors score for FVC was particularly noteworthy given that it remained significant after an 

adjustment for genome wide PGS. Interestingly, this gene-set features a number of proteins 

involved with glycaemic homeostasis, including antidiabetic drug targets glucagon-like 

peptide receptor 1 (GLP1R) and amylin receptors (RAMP1, RAMP2, and RAMP3).While all of 

the PES demonstrated significant correlation with genome wide PGS, in the majority of cases 

it was small (r < 0.2), suggesting that most of these functionally relevant foci of genomic risk 

in lung function GWASs were relatively independent of the total PGS. Importantly, we still 

identified individuals with high genetically predicted lung function using a genome wide PGS 

but observed low predicted lung function with a pathway-specific PES. This was supported by 

the observed correlation between the PES and related mRNA expression which was distinct 

from a genome wide PGS. Collectively, these data are consistent with the hypothesis that 

important treatment-related biology can be captured at a pathway level for individuals with or 

at risk of respiratory illness.  

 

Taken together our approach provides template for genetically informed precision drug 

repositioning to improve lung function. The clinical implementation in its most basic form 

would involve common variant genotyping using a commercial SNP array followed by 

imputation and lung function PES based stratification of treatment options. This would be 

combined with other biochemical exposure measures, such as fasting glucose, that are causal 

risk factors and have approved treatments. To illustrate the clinical implementation of our 
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strategy, we generated a schematic representation of individual heterogeneity in biochemical 

and genetic components of risk in lung function and related them to candidates for precision 

drug repositioning (Figure 6). We envisage that our approach to variant and exposure risk 

stratification can be applied more broadly to identify and implement precision drug 

repositioning in range of complex traits. 

 

While there are some potential confounds in the use of GWAS data for causal inference via 

both latent causal variable models and Mendelian randomisation, such as, measurement error, 

population stratification, and horizontal pleiotropy, we are confident that the relationship 

between glycaemia and lung function presented in this study is robust given the multiple lines 

of support. Replicated, well-powered randomised controlled trials, however, are needed to fully 

resolve the clinical benefit of repurposing antihyperglycaemic compounds to improve lung 

function and in the context of viral infection. We also acknowledge that the direction of suitable 

pharmacological intervention is not inherently clear, such that an agonist or antagonist of genes 

within a pathway implicated by the PES approach is an important consideration12. Careful 

curation of proposed repurposing candidates will therefore be critical, particularly in the 

context of pulmonary traits where a variety of currently approved compounds have adverse 

respiratory effects. We suggest that TWAS could be utilised to help overcome these issues by 

identifying druggable genes which are members of candidate PES gene-sets for which a 

clinically beneficial impact on expression can be predicted. Interestingly, we also saw some 

evidence of cross talk between heritable risk at genes associated with lung function and fasting 

glucose, with the downregulation of the glycogen phosphorylase PYGB (associated with FEV1) 

observed through the probabilistic fine mapping of TWAS loci. In summary, we revealed 

candidate drug repurposing opportunities to potentially improve pulmonary function and 

provide the means for aligning their application in individuals that carry a high relative burden 
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of variants associated with their function. Through this process we identify glycaemic 

interventions in particular, as being potentially beneficial in the context of respiratory infection.  
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genomic and environmental components consistent with healthy lung function (grey to red nodes). These have a neutral to positive
influence on lung function represented by the grey and red edges (arrow) respectively. Case 2 has high fasting glucose and neutral
(grey) loading of genetic variants (PES) associated with lung function pathways. After treatment with a drug for diabetes such as
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enrichment of genetic variants (PES) associated with poorer lung function in the Class b2 secretin pathway. To improve lung function
they are treated with drugs, such as pramlintide and recombinant glucagon that works by modulating target genes in the Class b2
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and the Class b2 secretin pathway represents the probable connection or shared genes between these nodes. Case 4 also presents with
poor lung function (blue lung tissue) and enrichment of poor lung function associated variants in the Circadian clock pathway (blue
node). This individual’s lung function was then treated by compounds, such as doconexent, that act on the Circadian clock pathway.
This schematic is only representative of many thousands of treatment scenarios potentially informed by this treatment decision tool.

No treatment required

Dilated 
cardiomyopathy

Pathways 
in cancer

Extension 
telomeres

Class b2 
secretin

Circadian 
clock

Extracellular 
matrix

Fasting 
glucose

Dilated 
cardiomyopathy

Extension 
telomeres

Class b2 
secretin

Circadian 
clock

Extracellular 
matrix

Fasting 
glucose

Antihyperglycaemic compounds

Pathways 
in cancer

Dilated 
cardiomyopathy

Pathways 
in cancer

Extension 
telomeres

Class b2 
secretin

Circadian 
clock

Extracellular 
matrix

Fasting 
glucose

Pramlintide
Exenatide

Dilated 
cardiomyopathy

Pathways 
in cancer

Extension 
telomeres

Class b2 
secretin

Circadian 
clock

Extracellular 
matrix

Fasting 
glucose

Dilated 
cardiomyopathy

Pathways 
in cancer

Extension 
telomeres

Class b2 
secretin

Circadian 
clock

Extracellular 
matrix

Fasting 
glucose

Dilated 
cardiomyopathy

Pathways 
in cancer

Extension 
telomeres

Class b2 
secretin

Circadian 
clock

Extracellular 
matrix

Fasting 
glucose

Dilated 
cardiomyopathy

Pathways 
in cancer

Extension 
telomeres

Class b2 
secretin

Circadian 
clock

Extracellular 
matrix

Fasting 
glucose

Doconexent



 36 

Figure 6. Schematic representation of drug repositioning and precision 

implementation in lung function deficits directed by causal enrichment of 

environmental and genetic risk factors. Each row represents a simulated individual 

with a heterogeneous presentation of risk factors related to lung function. Case 1 (top 

row) represents an individual with good lung function (pink lung tissue) and genomic 

and environmental components consistent with healthy lung function (grey to red 

nodes). These have a neutral to positive influence on lung function represented by the 

grey and red edges (arrow) respectively. Case 2 has high fasting glucose and neutral 

(grey) loading of genetic variants (PES) associated with lung function pathways. After 

treatment with antihyperglycaemic agents, or some other intervention to lower blood 

glucose, lung function is improved (red edge) sufficiently for therapeutic effect, 

represented by pink lungs. Case 3 has enrichment of genetic variants (PES) associated 

with poorer lung function in the Class b2 secretin pathway. To improve lung function, 

they are treated with drugs, such as pramlintide (which targets RAMP1, RAMP2, and 

RAMP3) and exenatide (GLP1R agonist), that works by modulating genes in the Class 

b2 secretin pathway to ameliorate the enrichment of poor lung function variants in that 

pathway. The broken edge between fasting glucose and the Class b2 secretin pathway 

represents the probable connection or shared genes between these nodes, as receptors 

in this pathway are involved in glycaemic regulation.  Case 4 also presents with poor 

lung function (blue lung tissue) and enrichment of poor lung function associated 

variants in the Circadian clock pathway (blue node). This individual’s lung function 

was then treated by compounds, such as doconexent, that act on the Circadian clock 

pathway. This schematic is only representative of many thousands of treatment 

scenarios potentially informed by this treatment decision tool. 
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METHODS 

Lung function GWAS 

We obtained GWAS summary statistics for FEV1, FVC, and their ratio from a meta-analysis 

of the UK biobank sample with the SpiroMeta consortium cohorts as outlined extensively 

elsewhere (N = 400102)11. Phenotypes were adjusted for age, age2, sex, height, smoking status 

(ever vs never smoked) and genotyping array before the residuals were subjected to rank 

inverse-normal transformation. 

 

Genetic correlation 

Bivariate linkage disequilibrium score regression (LDSC) was performed between each lung 

function trait and a variety of GWAS as implemented by LDhub v1.9.314. Lung function 

summary statistics were cleaned (‘munged’) prior to LDSC using munge_sumstats.py and 

merged with common HapMap3 SNPs excluding the MHC region due to its LD complexity, 

as is usual practice13. We retained estimates of genetic correlation (rg) for GWAS (N = 172) 

with European ancestry and a heritability z value > 4, as calculated by LDhub. When a 

phenotype had multiple GWAS, the GWAS with largest sample size was retained. The 

Bonferroni method was utilised for multiple testing correction - P < 2.9 x 10-4 (α = 0.05/172).  

A heatmap was constructed using the ComplexHeatmap package44.  

 

Latent causal variable models 

Latent causal variable models were constructed between each measure of lung function which 

displayed a significant genetic correlation with a hormone or metabolite trait (see references 

for GWAS in supplementary table 4). The RunLCV.R and MomentFunctions.R scripts were 

leveraged to perform these analyses (https://github.com/lukejoconnor/LCV). The LCV 

framework assumes that a latent variable, L, mediates the genetic correlation between two traits 
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(trait one, trait two), and uses the mixed fourth moments of the bivariate effect size distribution 

to estimate the mean posterior genetic causality proportion as described in detail by O’Connor 

and Price15. Specifically, the LCV model postulates that if trait two is partially causal for trait 

one, then directional SNP effects will be unequal, that is, variants impacting trait two will have 

a proportional effect on trait one, but this will not be observed in the other direction. The mean 

posterior GCP can be defined by equation one, where !!" is the normalised effect of L on trait 

one or two respectively, and "# is genetic correlation estimate:  

!""
!$"
=	 ("#")%&'		(1) 

All traits were munged prior to LCV analyses, with only HapMap3 SNPs (MAF > 0.05) outside 

the MHC region retained in accordance with the LDSC analyses. We utilised the baseline 1000 

genomes phase 3 LD scores for HapMap3 SNPs (MHC excluded). A two-sided t test was used 

to assess whether the estimated GCP was significantly different from zero. 

 

Mendelian randomisation 

We investigated the causal effect of fasting glucose on both FEV1 and FVC using two-sample 

Mendelian randomisation (MR). MR is underpinned by the use of genetic variants as 

instrumental variables (IVs), with the random inheritance of these IVs as per Mendel’s laws 

facilitating the use of IVs to perform causal inference between an exposure and outcome, 

providing a series of assumptions are met20. These assumptions have been discussed 

previously45, briefly: the variant must be rigorously associated with the exposure; the variant 

must be independent of all confounders of the exposure-outcome relationship (“exclusion-

restriction assumption”); and the variant must be associated with the outcome only by acting 

through the exposure. We satisfied the first assumption by selecting independent variants 

which are associated with fasting glucose using the traditional GWAS genome-wide 

significance threshold (P < 5 x 10-8, r2 < 0.001, palindromic SNPs removed). A different 
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GWAS of fasting glucose was utilised for MR than for LDSC and LCV. Scott et al. performed 

a replication of ~66000 Illumina CardioMetabochip variants following the Manning et al. 

GWAS for which more complete summary statistics were available, and thus, the later was 

included in the LDhub catalogue instead of the former46,47. We required only genome-wide 

significant SNPs for MR, therefore, the Scott et al. CardioMetabochip replication was more 

suitable as this was a larger sample size than the Manning et al. GWAS. Fasting glucose data 

for GWAS were obtained from either plasma or whole blood of non-diabetic individuals of 

European ancestry, and corrected to plasma levels (N = 133310, unit of effect = mmol/L)47. 

The remaining two IV assumptions cannot be definitively tested, and a suite of sensitivity 

analyses are implemented to provide evidence that they could be violated. Our primary MR 

model was an inverse-variance weighted effect model with multiplicative random effects48. 

Briefly, the pooled causal effect of the j IV exposure effects (X) on the outcome (Y) are 

estimated, where σ is the IV-outcome standard error (equation two).  

()()* =	
∑ ()+,()-, 	++,.",
∑ ()-," 	++,.",

		(2)	 

Further, we implemented a weighted median model which takes the median of the ratio 

estimates (as opposed to the mean in the IVW model), such that upweighting was applied to 

ratio estimates with greater precision17. An advantage of this approach is that it is subject to 

the ‘majority valid’ assumption, whereby an unbiased causal estimate will still be obtained if 

less than 50% of the model weighting arises from invalid IVs. An MR egger model was then 

constructed; an adaption of Egger regression wherein the exposure effect is regressed against 

the outcome with an intercept term (-/) added to represent the average pleiotropic effect 

(equation three)18. 

()+, 	~	-/ +	-$()-, +	0, 		(3) 
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The key assumption of the MR egger model is referred to as Instrument Strength Independent 

of Direct Effect (InSIDE), which assumes that there is no significant correlation between direct 

IV effects on the outcome and genetic association of IVs with the exposure. In other words, 

the InSIDE assumption is violated if pleiotropic effects act through a confounder of the 

exposure-outcome association16,18,49. We also tested whether the Egger intercept is 

significantly different from zero as a measure of unbalanced pleiotropy or violation of the 

InSIDE assumption. In addition, heterogeneity amongst the IV ratio estimates was quantified 

using Cochran’s Q statistic, given that horizontal pleiotropy may be one explanation for 

significant heterogeneity. A global pleiotropy test was also implemented via the MR PRESSO 

framework19. Leave-one-out analyses were then performed to assess whether causal estimates 

are biased by a single IV, which may indicate the presence of outliers, and the sensitivity of 

the estimate to said outliers. However, outliers may not necessarily be evidence of horizontal 

pleiotropy. There were five IVs in either the FEV1 or FVC model where the IVW estimate was 

marginally no longer significant following their removal in the leave-one-out analysis. We 

performed a PheWAS for each of these SNPs using summary data collated by GWAS atlas 

v20191115 (https://atlas.ctglab.nl/) to assess evidence of horizontal pleiotropy, that is, acting 

through non-glycaemic pathways to influence lung function50. All MR analyses were 

performed in R version 3.6.0 using the TwoSampleMR v0.4.25 and MRPRESSO v1.0 

packages. 

 

Investigating residual confounding from smoking on the relationship between fasting 

glucose and lung function 

We investigated whether a residual effect of smoking could confound the link between glucose 

and lung function. Firstly, we selected two well-powered GWAS of smoking behaviours: ever 

vs never smoked (N = 385013)50, and cigarettes smoked per day (N = 263954)51. Genetic 
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correlation between these two smoking phenotypes and fasting glucose was estimated as 

described above, followed by the construction of a latent causal variable model. The MR IVs 

utilised for fasting glucose were also checked for association with each smoking GWAS.  

 

Generation pharmagenic enrichment score (PES) candidate gene-sets 

We implemented gene-set association using MAGMA method (MAGMA v1.06b), with some 

customisations to the framework to identify candidate PES genesets12,52. MAGMA aggregates 

SNP-wise P values for trait association into a gene-based P value and, thereafter, tests whether 

a set of genes is more strongly associated with the phenotype than all other genes. Gene-based 

test statistics were calculated analogous to Brown’s method, which is applicable to dependent 

P-values with known covariance (as common SNPs display through the phenomenon of 

linkage disequilibrium [LD], which can be quantified at a population level). Specifically, the 

mean χ2 gene test-statistic sums P-values mapped to each gene, using the 1000 genomes 

reference genotypes to scale the null χ2 distribution. P-value thresholding (PT) was utilised for 

the gene test statistic calculation; for simplicity, we selected four P-values thresholds (all SNPs, 

PT < 0.5, PT < 0.05, and PT < 0.005). We mapped variants to 18297 autosomal genes in hg19 

assembly defined by NCBI and obtained from the MAGMA website – genes within the major 

histocompatibility complex (MHC) were removed due to the complexity of LD within this 

region. The 1000 genomes phase 3 European reference panel was utilised to define LD for 

input into MAGMA. Genic boundaries were extended to capture regulatory variation, with 

both conservative and liberal upstream and downstream boundary definition implemented. An 

extension of 5 kilobases (kb) upstream of the gene, and 1.5 kb downstream was the 

conservative construct, whilst a larger 35 kb upstream and 10 kb downstream was the liberal 

construct. Boundaries were longer upstream of the gene in both instances to capture more 

promoter related variation, as is usual practice53–55 
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Genic P-values were transformed to Z-scores with the probit function for input into the gene-

set association model. Competitive gene-set association was undertaken by a linear regression 

model whereby genic Z-scores are the outcome and confounders including gene size and genic 

minor allele count included as covariates. A one-sided test was performed for the term in the 

model which specifies whether each gene was within the set of interest (βGS), such that the null 

hypothesis is βGS = 0 and the alternative βGS > 0. When these models are constructed at different 

PT, this approach constitutes testing whether the gene-set is more associated than the other 

genes, for which test-statistics were calculated only including SNPs below the threshold. We 

defined gene-sets with known drug targets by sourcing hallmark and canonical (BioCarta, 

KEGG, PID, and Reactome) from the Molecular signatures database (MSigDB)56, and 

retaining those with at least one gene with  a high confidence interaction with at least one 

approved pharmacological agent (TClin genes), as annotated using the Target Central Resource 

Database (TCRD v6.1, NGenes = 613)57.  

 

PES candidate gene-set drug repurposing  

We tested each candidate PES gene-set for overrepresentation of DrugBank compound 

targets using WebGestaltR v0.4.258. Compounds were retained for each pathway if they 

survived FDR correction (q<0.05) and were FDA approved 

(https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm). We then searched the literature 

for each of these compounds to prioritise them on the basis of side-effects and prior clinical 

trial evidence. After excluding compounds with only topical formulations available, drugs 

were reviewed for lung function related adverse events (including all of dyspnea, abnormal 

breath sounds, decreased respiratory rate, orthopnea, shallow breathing, respiratory distress, 

respiratory depression or any other related term), important precautions, black-box warnings 

or any contraindication that might prohibit the drug use in our study population. These data 
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were obtained for each compound using the following databases: drugs.com, Medscape, 

SIDER v4.1, and the summaries of each product’s characteristics59. We also searched for 

articles that discussed either an improvement or worsening in the lung functions for each 

compound. The allowed paediatric age and formulation for each compound were also 

reviewed. The full list of evaluated compounds is detailed in supplementary table 18, with the 

ranking criteria also detailed in the supplementary methods. 

 

The PES model for individuals 

We defined the model to calculate PES profiles for individuals as follows (equation four). 

Consider j SNPs for i individuals, wherein the SNPs are those physically mapped to genes 

which are members of a candidate PES gene-set (m). Let (), denote the statistical effect size for 

each variant from the GWAS, multiplied by its dosage Gij. The SNPs included were those 

below the P-value threshold utilised to discover the gene-set.  

2340 =	5(),60, 			(4)
1

02$
 

We averaged these scores by the number of SNPs carried by each individual and scaled them 

using the scale() function in R. PES profiles were generated in all instances by first filtering 

the GWAS summary statistics for common variants (MAF > 0.01) within the genic boundaries 

of variants which comprise the PES gene-set. The genic boundaries were extended using the 

liberal or conservative configuration, dependent of which boundary definition was utilised in 

the gene-set association for that pathway. PRSice v2.2.12 calculated the respective PES, along 

with genome wide PGS (using the same additive model but genome wide) for FEV1 and FVC60.   
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Lung function PES in the Hunter Community Study cohort 

We utilised an independent, genotyped cohort for which spirometry measures were recorded 

to investigate the phenotype relevance of PES profiles for lung function. Participants were 

drawn from the Hunter Community Study (HCS), a population-based cohort of individuals 

aged between 55-85 years, predominantly of European ancestry and residing in Newcastle, 

New South Wales, Australia. All work was conducted in accordance with ethics committee 

approvals. Consenting participants completed a series of questionnaires, attended a clinic visit, 

and provided blood samples. Individuals were recruited by random selection from the New 

South Wales State electoral roll with detailed recruitment and data collection methods for the 

HCS described elsewhere61. Participants were genotyped using the Affymetrix Axiom Kaiser 

array and imputed to the Haplotype Reference Consortium (Supplementary Methods)62. We 

retained 2089 unrelated, European ancestry participants and common variants (MAF > 0.01) 

with high imputation quality (R2 > 0.8). The full description of the imputation and quality 

control process is provided in in the supplementary methods.  

 

Spirometry data from the HCS was then processed by selecting individuals with non-missing 

FEV1 and FVC. We utilised the maximum FEV1 and FVC from four attempts and fitted a linear 

model which covaried for sex, age, age2, height, height2, smoking status, self-reported asthma 

status, and self-reported bronchitis/emphysema status. The phenotype for association testing 

were residuals from these models transformed via inverse-rank normalisation (Blom 

transformation) using the RNOmni package. We tested the association between a genome wide 

PGS for FEV1 and FVC (PT < 1, 0.5, 0.05, 0.005, 5x10-5, 5x10-8) with their respective 

transformed spirometry indices adjusted for the first five SNP derived principal components 

using PRSice v2.2.12. Similarly, the association between each of the PES profiles with an 

overrepresentation of FDA-approved drug targets and FEV1 and/or FVC were investigated 
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using the same approach. We further adjusted each of these models for genome wide PGS at 

the same PT for which the PES was calculated.  

 

The relationship between PES and mRNA expression 

We obtained RNAseq normalised read counts (PEER normalised RPKM) for 23723 genes 

which survived QC in the geuvadis dataset 

(https://www.ebi.ac.uk/arrayexpress/experiments/E-GEUV-1/files/analysis_results/?ref=E-

GEUV-1). The geuvadis project performed RNAseq on transformed lymphoblastoid cell lines 

(LCL) for participants in the 1000 genomes project21. We retained 357 European individuals 

in this dataset for which phase 3 sequencing data was available from the 1000 genomes. The 

association between normalised mRNA expression for genes part of the candidate gene-set 

and each PES was tested using a linear model, adjusted for sex, the first three SNP derived 

principal components, and genome-wide PGS at the same PT utilised to calculate the PES. 

Multiple testing correction was applied for the number of genes in each set via Benjamini-

Hochberg method using the p.adjust() function.  

 

Transcriptome-wide association studies 

A transcriptome-wide association study of each lung function measure was performed using 

the FUSION software22. SNP weights were derived for genes with a significant contribution of 

cis acting SNPs to expression variability (cis-h2 P < 0.01) using lung and whole blood RNAseq 

GTEx v7 data (http://gusevlab.org/projects/fusion/). A transcriptome-wide significant gene 

was defined by accounting for the number of genes with models of genetically regulated 

expression in lung and whole blood respectively – Lung: P < 6.43 x 10-6 [α = 0.05/7776], 

Whole blood: P < 8.32 x 10-6 [α = 0.05/6007]. We excluded genes within the MHC region due 

to its LD complexity. Furthermore, we subjected two smoking behaviour phenotypes to TWAS 
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to uncover associations which could be driven by residual effects of smoking. This is inherently 

conservative as it is possible that genes associated with both lung function and smoking 

behaviours could exhibit pleiotropic effects, however, as we wish to define drug targets 

relevant to lung function, the exclusion of these shared genes is warranted. The smoking 

phenotypes were ‘ever vs never smoked’ and ‘cigarettes smoked per day’ and TWAS was 

performed using lung and blood for consistency, along with SNP weights from the dorsolateral 

prefrontal cortex and nucleus accumbens, as these brain regions have been implicated in 

nicotine addiction. Genes which survived the above were searched using DGidb, with the 

following criteria utilised to define gene-target pairs, where the drug mode of action matched 

the sign of the TWAS Z value: 

i) Tier one – FDA approved compound with at least two lines of evidence for 

interacting with the target gene, 

ii) Tier two – investigational compound (not FDA approved) with at least two lines of 

evidence for interacting with the target gene. 

The TWAS Miami plots were generated using an adapted using an edited version of the TWAS-

plotter.V1.0.R script (https://github.com/opain/TWAS-plotter). 

 

Probabilistic finemapping of druggable TWAS signals 

A Bayesian method FOCUS was utilised to finemap TWAS associations which could be 

therapeutically useful63. Given observed TWAS statistics, the marginal posterior inclusion 

probability (282) was calculated and subsequently used to compute a credible set with 90% 

probability (9) of containing the causal gene (:0 = 1). As FOCUS allows the null model to be 

predicted as a possible member of the credible set, we excluded any genes for which that 

occurred. The credible set (4) was defined by summing normalised 282 such that 9 was 
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exceeded, sorting the genes and then including those genes until at least 9 of the normalized-

posterior mass is explained (equation six). 

4	{6<=<$, … , 6<=<!} =5282	(:0 = 1|B3*45) 	≥ 	9
!

02$
				(6) 

The Bernoulli prior for each causal indicator was set as the default E = 1 x 10-3, with a default 

prior variance for effects at causal genes set as 40 (=+6" = 40). Previous work has demonstrated 

that FOCUS computed 282s were robust to different specified prior variances63, however, we 

further utilised a more conservative prior of E = 1 x 10-5 to assess the effect on the PIP 

calculated for candidate druggable genes. In all instances, we utilised a multi-tissue panel 

obtained from FOCUS GitHub repository which combines GTEx v7 SNP-weights with other 

FUSION TWAS weights (https://github.com/bogdanlab/focus/wiki, GTEx v7 with METSIM, 

CMC, YFS, and NTR). The marginal TWAS Z to use for finemapping for each locus was 

selected in the tissue for which the gene was found to be associated via the FUSION TWAS 

methodology (lung or blood), if available, otherwise by predictive accuracy (cross-validated 

R2).  

 

Host-viral interactome data 

We selected three respiratory viruses for which host-viral protein interaction data was 

previously published: SARS-CoV2, influenza (H1N1), and the human adenovirus (HAdV) 

family. The host-SARS-CoV2 interactome was defined using affinity-purification mass 

spectrometry (NGenes = 332, MiST score ≥ 0.7, a SAINTexpress BFDR ≤ 0.05)25. We selected 

91 proteins which both interact with viral proteins expressed by influenza (mass spectrometry) 

and siRNA-mediated downregulation reduced viral replication in cultured cells by at least three 

log10 units while retaining >80% cell viability26. Finally, the HAdV-host interactome was 

defined using a protein microarray platform (NGenes = 24), which encompasses 20 viral proteins 
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encoded by five HAdV species27. We investigated approved inhibitors or antagonists of these 

genes using DGidb as described above in the PES candidate gene-set drug repurposing section.  

 

Overrepresentation of viral prey proteins in glycaemic pathways 

The sets of genes which interact with viral proteins for each virus (‘viral prey proteins’), were 

subjected to overrepresentation analysis using the GENE2FUNC function of FUMA64. We 

selected gene-sets which survived multiple testing correction (q < 0.05), which contained at 

least one of the following key terms related to glycaemic biology: glucose, insulin, diabetes or 

glucagon. Further, we investigated whether there was a significant overrepresentation of 

interactions amongst these viral prey proteins overlapping a glycaemic pathway using STRING 

v11.065. We assembled a list of antidiabetic drug targets by searching compounds annotated 

with the level two ATC code A10 (Drugs used in diabetes) in DGIdb, retaining drug-gene 

interactions with two or more lines of evidence (Supplementary Table 59). The interactions 

between these drug target proteins and the glycaemic SARS-CoV2 prey proteins were 

investigated once more using STRING, with only interactions scoring > 0.75 considered. 

 

Code and data availability 

All data are publicly available from the references described in the manuscript. Code related 

to this study can be found at the following link: 

https://github.com/Williamreay/Lung_function_drug_repurposing_manuscript 
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