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ABSTRACT 34 

Background: Clinical data suggest that BMI and gestational weight gain (GWG) are strongly 35 

interconnected phenotypes, however the genetic basis of the latter is rather unclear. Here we 36 

aim to find genes and genetic variants which influence BMI and/or GWG. Methods: We have 37 

genotyped 316 type 1 diabetics using Illumina Infinium Omni Express Exome-8 v1.4 arrays. 38 

The GIANT, ARIC and T2D-GENES summary statistics were used for TWAS (performed 39 

with PrediXcan) in adipose tissue. Next, the analysis of association of imputed expression 40 

with BMI in the general and diabetic cohorts (Analysis 1 and 2) or GWG (Analysis 3 and 41 

4) was performed, followed by variant association analysis (1Mb around identified loci) with 42 

the mentioned phenotypes. Results: In Analysis 1 we have found 43 

175 BMI associated genes and 19 variants (p<10-4) which influenced GWG, with the 44 
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strongest association for rs11465293 in CCL24 (p=3.18E-06). Analysis 2, with diabetes 45 

included in the model, led to discovery of 1812 BMI associated loci and 207 variants (p<10-4) 46 

influencing GWG, with the strongest association for rs9690213 in PODXL (p=9.86E-07). In 47 

Analysis 3, among 648 GWG associated loci, 2091 variants were associated with BMI 48 

(FDR<0.05). In Analysis 4, 7 variants in GWG associated loci influenced BMI in the ARIC 49 

cohort. Conclusions: Here, we have shown that loci influencing BMI might have an impact 50 

on GWG and GWG associated loci might influence BMI, both in the general and T1DM 51 

cohorts. The results suggest that both phenotypes are related to insulin signaling, glucose 52 

homeostasis, mitochondrial metabolism, ubiquitinoylation and inflammatory responses. 53 

 54 

Keywords: obesity, BMI, gestational weight gain (GWG), Transcriptomic-wide association 55 
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INTRODUCTION 106 

In the recent years, a significant attention was paid to transcriptomic-wide association 107 

studies (TWAS), which enable the prediction of gene-level associations between the 'imputed 108 

expression based on genetic data' and complex phenotypes (Gamazon et al., 2015). This is 109 

possible, since it was shown that a proportion of GWAS risk variants co-localize with genetic 110 

variants, which regulate gene expression (i.e. expression quantitative trait loci, eQTL) 111 

(Hormozdiari et al., 2016). The prediction of gene expression based on genotype removes the 112 

noise created by environmental factors as well as the potential reverse causation (when the 113 

trait affects gene expression), therefore the TWAS analysis not only increases the statistical 114 
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power, but also enables to focus on regions for which finding a functional interpretation of the 115 

associations is often easier (B. Li et al., 2018; Mancuso et al., 2017). 116 

Gestational weight gain (GWG) has been extensively studied over the last several 117 

years as it was suggested that it’s inadequacy may lead to adverse both maternal 118 

(preeclampsia, hypertension, obesity later in life, cesarean section) and neonatal (preterm 119 

birth, stillbirth, inadequate neonatal weight – small or large for gestational age, obesity later in 120 

life) outcomes (Influ. Pregnancy Weight Matern. Child Heal., 2007; Kominiarek & 121 

Peaceman, 2017; Voerman et al., 2019). Simultaneously, clinicians tried to optimize 122 

pregnancy care for women with type 1 diabetes whose pregnancy outcomes (including 123 

developmental abnormalities, spontaneous abortions, neonatal hyperglycemia, neonatal 124 

hyperinsulinemia, maternal retinopathy, maternal nephropathy, preeclampsia) are far worse 125 

than in women from the general population (Celia et al., 2016). For a long time it was 126 

believed that it stemmed from maternal hyperglycemia, however, even though glycemic goals 127 

for these women have been achieved (HbA1c < 6.0%) still large for gestational age (LGA) or 128 

macrosomic neonates are born more frequent than in general population (Bashir, Naem, Taha, 129 

Konje, & Abou-Samra, 2019; Dori-Dayan et al., 2020; Scifres, Feghali, Althouse, Caritis, & 130 

Catov, 2014). Thus, there must be other potential contributors to adverse maternal and fetal 131 

outcomes (Mastella et al., 2018; Rys, Ludwig-Slomczynska, Cyganek, & Malecki, 2018; 132 

Secher et al., 2014). Among them are also those which affect the general population - 133 

maternal body lipids, pre-pregnancy BMI and GWG (McWhorter et al., 2018).  134 

Even though GWG can have an impact on the health of future generations, to date, 135 

most of the performed studies are retrospective or observational and their main goal was to 136 

assess the relationship between GWG and environmental factors (Nunnery, Ammerman, & 137 
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Dharod, 2018; Siega-Riz, Bodnar, Stotland, & Stang, 2020), while the genetic risks for 138 

inadequate GWG have been scarcely analyzed. In a recent paper, the authors show that 43% 139 

and 26% of the variation in GWG can be explained by genetic factors in the first pregnancy 140 

and second pregnancy, respectively (Andersson et al., 2015). The first GWAS study on GWG 141 

in the general, multiethnic cohort was performed in 2018. The study has shown that 20% of 142 

the variability in GWG can be explained by maternal genetic variants. Unfortunately, it did 143 

not find significant associations of GWG with any genomic loci (Warrington et al., 2018). 144 

Since, both environmental and genetic data show that there is a correlation between 145 

pre-pregnancy BMI and GWG (Luecke et al., 2018) we took the TWAS approach to study the 146 

genetic correlation between BMI and GWG - in particular, to find loci and variants which are 147 

associated with GWG and BMI, or (on the contrary) only with GWG. We find this 148 

particularly important, as the reports on the overlap of genes and/or variants which influence 149 

both phenotypes appear to be conflicting (Kawai, Nwosu, Kurnik, Harrell, & Stein, 2019; 150 

Lawlor et al., 2011). 151 

In this study, we aimed to investigate the genetic factors associated with GWG from 152 

the perspective of the genetics of obesity. To this aim, we performed TWAS analyses on the 153 

GIANT cohort representing the general population and two diabetic cohorts - T2D-GENES 154 

and ARIC to find genes associated with BMI. The ARIC and T2D-GENES cohorts were used 155 

since diabetes mellitus itself might influence BMI and creates a special metabolic context, 156 

while no cohort with patients with type 1 diabetes was available. Only regions which were 157 

associated with BMI in these cohorts were subjected to the analysis of association with GWG 158 

in T1DM patients. Secondly, we also searched for reverse associations and checked whether 159 

genes in TWAS associated with GWG in T1DM cohort might affect BMI in ARIC or GIANT 160 
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cohorts. If so, we decided to search for genes which imputed expression correlated with BMI 161 

in order to restrict the analysis of genetic association with GWG to these genes only and 162 

conversely, to check whether the genes which correlate with GWG (at the imputed expression 163 

level) do influence BMI. Thus, this work comprises 4 different analyses, as presented in 164 

Figure 1. 165 

 166 

METHODS 167 

Patients: Patients were recruited either in Department of Metabolic Diseases University 168 

Hospital in Krakow or in Division of Reproduction Department of Obstetrics, Gynecology 169 

and Gynecological Oncology, Poznan University of Medical Sciences. All patients enrolled in 170 

the study were women with type 1 diabetes (T1D) and treated with insulin. Pre-pregnancy 171 

weight was based either on women self-report or weight measurement (if the women 172 

were/was under antenatal care). Only singleton pregnancies were included. Pregnancies that 173 

resulted in a miscarriage or stillbirth were excluded. Total GWG was defined as the difference 174 

between last gestational weight before delivery and pre-pregnancy weight. Whole blood 175 

samples were drawn and stored at -80C. This study was approved by the Bioethical 176 

Committees of the Jagiellonian University and Poznan University of Medical Sciences and 177 

performed according to the Helsinki Declaration. Written informed consent was collected 178 

from all patients. 179 

Genotyping: DNA was extracted from whole blood with the use of automated nucleic acid 180 

extraction system Maxwell (Promega). Five hundred twenty-seven samples were genotyped 181 

on Illumina Infinium Omni Express Exome-8 v1.4 arrays. Only in term life births with 182 
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information regarding age, pre-pregnancy BMI, GWG, diabetes duration, treatment method 183 

and daily insulin dose available were included in the final analysis. 184 

Data processing and imputation: The detailed protocol of the data processing, QC analysis 185 

and imputation is presented in (Ludwig-Slomczynska et al., 2018). 186 

Genotype Data and the analysis of genetic variants 187 

The GWAS analysis on the T1DM cohort was performed on a group of 316 females with 188 

complete data on: age, parity, insulin dose prior pregnancy, pre-pregnancy BMI and GWG. 189 

The mixed-effects model approach was used as implemented in the package GENESIS in R. 190 

The random effect was associated with the individual ID and the genetic relatedness matrix 191 

was estimated via the PCARelate method in package GENESIS in R. The 'null' mixed effects 192 

model was considered as: 193 

GWG~age+parity+pre-pregnancy_BMI+pre-pregnancy_InsDose+OriginOfSample+(1|ID), 194 

where the OriginOfSample is an indicator of the sample being collected in Division of 195 

Reproduction Department of Obstetrics, Gynecology and Gynecological Oncology, Poznan 196 

University of Medical Sciences. To the aim of testing significance of the (additive) effect of 197 

the genotype the Wald's test statistics was used. 198 

The summary statistics for BMI tested in the GIANT Consortium cohort were downloaded 199 

from https://portals.broadinstitute.org/collaboration/giant/images/1/15/SNP_gwas_mc_merge200 

_nogc.tbl.uniq.gz 201 

The genotype and phenotype data for the ARIC cohort (GENEVA study) were accessed via 202 

dbGaP. As far as the genotype data is concerned, the imputed data for participants of 203 

European ancestry were used as deposited under the phg000248.v1 code. Per-chromosome 204 
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genotype probability data were transformed to dosages. From these dosages, genotype 205 

relatedness matrices were estimated on a per-chromosome basis and merged with the aid of 206 

the SNPRelate package in R. For the GWAS analysis the GENESIS package was used. As far 207 

as the phenotype files are concerned, these were accessed under the phs000090.v3 study code. 208 

The 'null' mixed effects model was defined as: 209 

BMI~age+sex+diabetes_status+(1|ID) 210 

As GENEVA is a longitudinal study, for diabetic participants, we used the BMI and age 211 

measurement at the first time when the status of the participant was 'diabetic', whereas for the 212 

non-diabetic participants we used the measurements at the study entry. 213 

The T2Dgenes genotype files were accessed via dbGaP under the phg000573.v1 code. The 214 

raw vcf files were transformed to dosages prior analysis. The phenotype data were accessed 215 

from the phs000462.v2 study code. Similarly to the data analysis in the ARIC cohort, we 216 

recorder BMI and age at the first time when the diabetic status was positive or at the study 217 

entry, otherwise. 218 

The TWAS analysis was performed via the PrediXcan and MetaXcan software with Adipose 219 

as the tissue of interest. For the GIANT Cohort data, the MetaXcan framework was 220 

implemented based on the GTEx.v7 models. For the ARIC, T2Dgenes and T1DM cohorts the 221 

PrediXcan software was used also with GTEx.v7 models. In the TWAS analyses in the ARIC 222 

and T1DM cohorts the same independent variables were used as with the GWAS models 223 

defined above – with the exception that the classical linear models were used as implemented 224 

in the limma package (with no random effects). For the T2Dgenes TWAS analysis, from the 225 

'predicted expression' matrix the principal components were first estimated and the first 226 

component was added to the models as it did not correlate with any independent variable – 227 
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and it differ between families (as tested with the Kruskal-wallis test). As before the target 228 

analysis in the T2Dgenes cohort was performed with the aid of linear models as implemented 229 

in the limma package. 230 

The FUMA analysis was performed through the webserver at fuma.ctglab.nl 231 

The COJO and fast-BAT software were used as implemented by in the GTCA framework. 232 

The LD structure was estimated via the 1000 genomes data. 233 

GO enrichment analysis was performed as implemented in the topGO package in R. 234 

 235 

RESULTS 236 

Gestational weight gain analysis in T1DM cohort 237 

Our analysis comprised 316 women with T1DM for whom full phenotype data were 238 

available. The basic characterization of patients included in the analysis is presented in Table 239 

1. 240 

Table 1. The clinical characteristics of the T1DM cohort. 241 

 Med; IQR 

Age [years] 29; (25.75, 32) 

Pre-pregnancy BMI [kg/m2] 23.41; (21.09, 26.2) 

GWG [kg] 14; (10.5, 18) 

Diabetes duration [years] 12; (6, 18) 
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Treatment method – CSII [%] 0.55 

Daily insulin dose before pregnancy [U] 38; (28, 50) 

Parity 1; (1, 2) 

 242 

PrediXcan was used to impute gene expression in subcutaneous and visceral adipose 243 

tissue based on imputed genotype data and the gene-based search for associations with GWG 244 

and BMI was performed using a linear model approach. Due to small cohort size, genes 245 

nominally significantly associated with GWG (442 genes in subcutaneous and 328 in visceral 246 

adipose tissue) and BMI (416 genes in subcutaneous and 326 in visceral adipose tissue) were 247 

considered for further analysis. It is worth noting that only sixty genes overlapped between 248 

the two phenotypes (Table S1). We further explored this phenomenon by looking at the 249 

strength of the association between gene expression for these two traits. We found a negative 250 

correlation between logFCs of genes associated with GWG and BMI. This is consistent with 251 

clinical recommendations as patients with high pregestational BMI are advised to restrict their 252 

GWG, however, we believe that the genetic background might also play a role.  253 

 254 

PrediXcan analysis on BMI in the general population (GIANT cohort) and variant 255 

associations with GWG in T1DM cohort - Analysis 1 256 

Gene expression prediction in visceral and subcutaneous adipose tissue in the GIANT 257 

cohort (234069 patients, (Locke, Kahali, Berndt, Justice, & Pers, 2015)) as performed using 258 

PrediXcan software. One hundred seventy-five genes significantly associated (p < 1E-04) 259 

with BMI in the adipose (subcutaneous and visceral combined) tissue were found (Table S2). 260 
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The Venn diagram of genes which affected BMI, GWG or both phenotypes is presented in 261 

Table S3. Only 15 genes influenced both phenotypes, 160 influenced only BMI, while 633 262 

had an impact on GWG only (Figure 2). 263 

We further analyzed the loci of interest and searched for variants (within the 1Mb 264 

window around the gene) which influence BMI and/or GWG. We first mapped variants in 175 265 

BMI associated genes (+/- 500000 bp) and applied these restricted variant panels to the 266 

analysis of the association with GWG in the T1DM cohort. We filtered the results by MAF < 267 

5% and p-value < 1E-04 and found an association with GWG for 19 variants in the T1DM 268 

cohort (Table 2). 269 

Table 2. The list of variants localized to genes associated with BMI in the GIANT cohort 270 

which associate with GWG. 271 

SNP ID chr 
MAF 

[%] 
B p-value Gene/ nearest gene localization/type 

rs11465293 7 5.7 4.46 3.18E-06 CCL24 missense 

rs1978202 7 8.7 3.51 4.53E-06 CCL26 intergenic 

rs9347707 6 35.1 1.94 4.74E-05 PACRG intron 

rs72849841 17 17.1 -2.19 1.25E-04 RNF213 missense 

rs11807240 1 10.4 2.58 1.61E-04 FUBP1 intron 

rs9659938 1 10.4 2.58 1.61E-04 NEXN204 intron 

rs13340504 7 14.4 2.32 2.29E-04 CCL24 intergenic 

rs1541725 2 46.0 1.61 3.95E-04 AC009502.4 intergenic 

rs2136682 1 9.3 2.54 4.25E-04 GIPC2 intron 
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rs4329088 6 46.2 1.63 4.33E-04 PACRG intron 

rs886131 12 41.0 -1.60 4.78E-04 RPL29P25 
noncoding 

transcript 

rs11037234 11 33.1 1.66 5.34E-04 RP11-111A24.2 intergenic 

rs8122282 20 45.7 -1.49 6.44E-04 C20orf166 intron 

rs4808209 17 6.9 3.00 7.13E-04 ZNF101 start loss 

rs9352745 6 26.1 1.70 7.27E-04 LCA5 intron 

rs876373 12 43.4 1.50 7.29E-04 RPL29P25 intron 

rs6062267 20 45.3 -1.49 7.94E-04 C20orf166 intron 

rs7961894 12 8.5 2.75 8.88E-04 WDR66 intron 

rs7564856 2 34.5 -1.59 9.62E-04 SPEG intergenic 

 272 

The FUMA GWAS method further prioritized the variants obtained in the analysis. 273 

Twelve leading SNPs were detected. Three of them (rs7564856, rs11465293 and rs7961894) 274 

were associated with several traits in GWAS Catalog, mainly blood parameters, but, none 275 

significantly with metabolic outcome. At the same time however, these were also associated 276 

at the level of significance p-value < 1E-03 with LDL cholesterol levels, nonalcoholic fatty 277 

liver disease, body mass index, mean arterial pressure or metabolite levels. These variants 278 

were eQTLs for 40 genes in several tissues, while rs9659938, rs11807240, rs2136682 (NEXN, 279 

NEXN-AS1), rs7564856 (SPEG), rs9352745 (SH3BGRL2), rs13340504 (CCL24), rs11465293 280 

(CCL24), rs886131 (RPL29P25) influenced gene expression in both subcutaneous and 281 

visceral adipose. Thus, we conclude that there is a subset of genes which influence both BMI 282 

and GWG as well as genetic variants associated with GWG which co-localize to these loci. 283 
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Next, we tried to determine, whether the signals for the two traits in the genes of interest 284 

are correlated, thus we checked whether the genetic variants associated with BMI and GWG 285 

are in linkage disequilibrium or they belong to different haplotypes. We performed the 286 

analysis of LD for all genes with variants significantly associated with GWG, however, below 287 

we present only the most interesting examples. In the gene GPN3, we have found 2 bins of 288 

eQTLs which are not in LD either with BMI or GWG variants. Variants associated with BMI 289 

also create a cluster, which is separate from a small cluster of 2 variants associated with 290 

GWG. One of GWG associated variants (rs876373) is in moderate LD with the BMI cluster 291 

(Figure S1a). In another gene, PMS2P3, we found a cluster of 3 variants which are associated 292 

with GWG, all in LD with one eQTL (rs707395). At the same time, variants associated with 293 

BMI form a separate, bin which is in moderate LD with a subset of eQTLs for this gene. This 294 

cluster is not in LD with the GWG bin or rs707395 (Figure S1b). The third example is the 295 

STAG3L1 gene in which three clusters - GWG associated variants, BMI associated variants 296 

and eQTLs can be seen (r^2), however, in each, few members of any cluster are in LD with 297 

members of other clusters (D’) making them rather dependent on each other (Figure S1c). 298 

 299 

PrediXcan analysis on BMI in the diabetic cohorts (ARIC and T2D-GENES) and variant 300 

associations with GWG in T1DM cohort - Analysis 2 301 

Since it is known that diabetes and its treatment might impact BMI, we searched for 302 

variants that might affect BMI in the context of diabetes status. Since no T1DM cohort was 303 

available, we used T2D patients’ cohorts – T2D-GENES (590 patients) and ARIC (8746 304 

patients) (being aware that the two phenotypes obesity and diabetes are interconnected and 305 

T2D patients are predisposed to obesity, while T1DM patients not). After adjusting for 306 

diabetes, we found that 1812 genes were associated with BMI p < 0.05 (Table S4). Among 307 
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them 135 influenced both phenotypes, 1677 influenced only BMI and 513 influenced GWG 308 

(Table S5, Figure 3). 309 

Again, we mapped variants to 1812 BMI associated genes (+/- 500000bp) and used this 310 

panel to look for associations with GWG in T1DM cohort. When filtered by MAF < 5% and 311 

p-value < 1E-04 the analysis has shown that GWG correlates with 207 variants (Table S6). 312 

Table 3 shows 20 variants which were significant at the level of p-value < 1E-05. 313 

Table 3. The list of variants localized to genes associated with BMI in T2D-GENES and 314 

ARIC cohorts which associate with GWG. 315 

SNP ID chr 
MAF 

[%] 
B p-value Gene/ nearest gene localization/type 

rs9690213 7 18.4 2.66 9.86E-07 PODXL 
regulatory region 

variant 

rs11465293 7 5.7 4.46 3.17E-06 CCL24 missense 

rs9393623 6 31.0 2.18 4.11E-06 CMAHP intron 

rs4796675 17 22.2 2.38 4.40E-06 LINC00974 
noncoding transcript 

exon variant 

rs1978202 7 8.7 3.51 4.53E-06 CCL26 intergenic 

rs8080053 17 23.1 2.33 5.57E-06 LINC00974 
noncoding transcript 

exon variant 

rs12534221 7 17.7 2.55 5.85E-06 PODXL intergenic 

rs6747327 2 35.6 2.04 1.35E-05 CAPN13 intron 

rs4742339 9 37.8 1.97 2.97E-05 KANK1 intergenic 
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rs11714248 3 43.0 -1.86 4.40E-05 TRANK1 intron 

rs9347707 6 35.1 1.94 4.74E-05 PACRG intron 

rs1398095 3 25.6 2.15 4.85E-05 CAPDS intron 

rs9940705 16 6.2 3.61 6.91E-05 FAM92B intron 

rs2421052 5 43.1 -1.86 7.63E-05 AC008691 intron 

rs6815557 4 39.2 1.82 8.24E-05 LOC107986225 intergenic 

rs12788347 11 10.8 2.92 8.72E-05 AL137224 intron 

rs11235519 11 24.2 -2.02 8.93E-05 AP005019.4 intergenic 

rs6546217 2 11.7 2.64 9.89E-05 AC118345.1 intergenic 

rs7609526 2 11.1 2.68 9.97E-05 AC118345.1 intergenic 

 316 

Most of the variants which influenced both GWG and BMI (p-value < 1E-05) were 317 

eQTLs associated with the expression of 13 genes (LRRFIP2, MLH1, GOLGA4, CCL26, 318 

RHBDD2, AC004980, POR, CCL26, GTF2IRD2, UPK3B, ART2P, LINC00974, KTP15, 319 

KRT17) in 14 tissues (Thyroid, Skeletal Muscle, Whole Blood, Artery, Cultured Fibroblasts, 320 

Tibial Nerve, Testis, Skin (Unexposed), Visceral Adipose Tissue, Minor Salivary Gland, 321 

Small Intestine, Colon, Brain (several regions).  322 

FUMA analysis showed that among variants significant for association with GWG (p-value < 323 

1E-04), 18 were listed for associations with multiple phenotypes in the GWAS Catalog. The 324 

KEGG analysis showed enrichment for autoimmunological disease systemic lupus 325 

erythematosus (adj. p-value = 3.32E-7) and taste transduction (adj. p-value = 2.18E-2). In the 326 

molecular functions GO enrichment analysis we found these variants to be responsible, 327 

among others, for carbohydrate binding (adj. p-value = 3.15E-8), bitter taste receptor activity 328 
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(adj. p-value = 4.51E-5), trace amine receptor activity (adj. p-value = 9.69E-5) and taste 329 

receptor activity (adj. p-value = 9.04E-4) (FigureS2). 330 

Finally, when comparing the lists of variants obtained in Analyses 1 and 2, we found a 331 

significant overlap, what supports our hypothesis that loci associated with BMI, both in the 332 

general population and diabetic cohorts may also associate with GWG. Several SNPs - 333 

rs7564856 (SPEG), rs1541725 (AC009502.4), rs9347707 (PCARG), rs4329088 (PCARG), 334 

rs1978202 (CCL26), rs13340504 (CCL24), rs11465293 (CCL24), rs11037234 (RP11-335 

111A24.2), rs876373 (RPL29P25), rs886131 (RPL29P25), rs7961894 (WDR66), rs4808209 336 

(ZNF101) were found to influence GWG in T1DM, ARIC, T2D-GENES and GIANT cohorts. 337 

We conclude, that despite the relatively large overlap between traits at the gene level, the 338 

genetic variants which localize with these loci most often are linked to a single phenotype 339 

only. 340 

Next, we aimed to study the “reverse association” - i.e. we asked whether genes 341 

associated with GWG influence BMI as well. 342 

 343 

PrediXcan analysis on GWG in T1DM cohort and variant associations with BMI in the 344 

general population (GIANT cohort) - Analysis 3 345 

Variants were mapped to 648 GWG associated genes (+/- 500000 bp) (Table S1) and a 346 

search for associations with BMI in the GIANT cohort was performed. Among 394149 347 

variants analyzed, 2091 were significantly associated with BMI (at FDR < 0.05). These 348 

significant SNPs encompassed 0.53% of the whole list of variants analyzed. In comparison, 349 

the significant SNPs in the analysis of BMI in the GIANT cohort make up 0.41%, what means 350 

that genes which influence GWG are significantly enriched in the association test for BMI. 351 
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We used the FUMA tool to prioritize these 2091 variants. Twelve lead SNPs and 12 352 

genomic risk loci were found. Not surprisingly, the GWAS Catalog analysis has shown a 353 

significant enrichment for genes associated with BMI, body fat distribution, attendance to 354 

gym or sport groups, sleep duration, height, lipoprotein levels, low HDL-level cholesterol etc. 355 

as presented in Figure 4 and Table S7. 356 

Thus, we find a significant enrichment of variants associated with BMI in the general 357 

population within loci associated with GWG.  358 

 359 

PrediXcan analysis on GWG in T1DM cohort and variant associations with BMI in the 360 

diabetic cohort (ARIC) - Analysis 4 361 

A GWAS analysis on BMI in the ARIC cohort was performed. Due to a large number of 362 

variants in the analysis we searched for lead SNPs using LD score regression. COJO analysis 363 

has returned 15 variants statistically significantly associated with the trait of interest (Table 364 

4A). 365 

Table 4. The list of variants localized to genes associated with BMI (A) and GWG (B) in 366 

ARIC cohort. 367 

SNP ID chr 
MAF 

[%] 
B p-value 

Gene/ nearest 

gene 
localization/type 

A. 

rs138445632 2 7.92 -2.88 4.54E-12 AC021851,2 intron 

rs73646471 9 11.40 -5.59 2.60E-10 LOC105375974 intergenic 

rs72703233 9 8.47 -1.57 1.31E-07 DMRT2 noncoding transcript 
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exon variant 

rs78231573 2 6.14 -6.02 2.62E-07 LOC105373643  intergenic 

rs144768710 2 5.40 2.77 3.30E-07 CHN1 intron 

rs73419031 11 5.72 -6.34 6.96E-07 SOX6 intron 

rs6456353 6 90.25 42.14 7.10E-07 E2F3 intron 

rs1486942 5 8.15 -2.66 1.61E-06 LOC112267929  intergenic 

rs74036632 14 7.05 -2.85 3.69E-06 NYNRIN 3’UTR 

rs77346003 1 10.58 -17.55 4.12E-06 ADIPOR1 intergenic 

rs73382735 9 5.68 4.49 4.28E-06 LOC105375955  intergenic 

rs12685009 9 8.42 -8.94 7.74E-06 SLC24A2 intergenic 

rs34427781 22 19.46 -2.54 8.47E-06 TCF20 intron 

rs13359900 5 15.98 -27.84 8.95E-06 MCTP1 intron 

rs4131847 12 5.86 44.27 9.31E-06 CCDC60  intergenic 

B. 

rs7875240 9 10.53 -3.08 1.21E-06 PTPRD intron 

rs1486942 5 8.15 -2.66 1.61E-06 LOC112267929  intergenic 

rs74036632 14 7.05 -2.85 3.69E-06 NYNRIN 3’UTR 

rs34427781 22 19.46 -2.54 8.47E-06 TCF20 intron 

 368 

Only 4 variants from this list were in GWG associated genes in PrediXcan, three of 369 

which overlapped with those associated with BMI (Table 4B). None of the variants were 370 

reported in GWAS Catalog or PheWas for the association with any trait. 6 variants were 371 

eQTLs - two for genes in which they were localized rs13359900 and rs73419031 for MCTP1 372 
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and SOX6, respectively; rs144768710 for ATP5G3, rs74036632 for ZFHX2-AS1, rs4131847 373 

for HSPB8, while rs34427781 for several genes all localized 200000bp upstream or 374 

downstream from the variant. 375 

Since the COJO analysis was performed on loci associated with GWG (+/- 500000bp 376 

around the gene), it was possible that the most important variants influencing BMI were 377 

located outside those windows. Thus, we used a different tool, fastBAT, to find genes 378 

associated with BMI. The analysis revealed 8 genes which nominally associate with the trait 379 

of interest (Table 5). 380 

Table 5. The list of variants localized to genes associated with BMI in ARIC cohort and 381 

associated with GWG as shown by fast-BAT. 382 

Gene/nearest 

gene 
chr localization 

# of 

SNPs 
p-value Top SNP p-value Top SNP 

HLD-DQB 6 intergenic 4654 0.016 1.02E-06 rs115258523 

GATAD2 19 intron 1256 0.017 6.23E-05 rs145702982 

AC099791.3 1 intron 1800 0.020 8.85E-05 rs2485748 

LINC01141 1 intron 1501 0.027 9.95E-05 rs12027661 

HLA-DRB 6 intergenic 9354 0.029 1.89E-05 rs139964305 

HLA-B 6 stop gained 4017 0.044 2.11E-04 rs149512147 

LHFPL6 13 intron 1648 0.047 3.34E-06 rs6563700 

 383 

Again, none the of variants was previously mentioned to be significantly associated with 384 

any trait in GWAS Catalog or PheWas. Two were eQTLs - rs6563700 for LHFPL6, while 385 

rs12027661 for CAMK2N1. 386 
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 387 

DISCUSSION 388 

In this work we performed TWAS as well as single variant associations to determine 389 

the loci related to GWG and/or BMI. About 15% of loci overlap between BMI and GWG at 390 

the TWAS level. In the general population (GIANT cohort) the pathway analysis has shown 391 

that loci which contribute to both phenotypes affect mainly energy metabolism. Among the 392 

enriched pathways are regulation of mitochondrion (GO:1903749, GO:1903747, 393 

GO:0010822, GO:0070585, GO:0010821, GO:0006839) and Golgi apparatus (GO:0051683, 394 

GO:0048313, GO:0051645). There are also few pathways which affect transcription, 395 

polyadenylation or methylation of RNA (GO:1903311, GO:0016071, GO:1900363, 396 

GO:0080009). The analysis of the loci which TWAS associates with GWG only leads to 397 

necrosis (GO:0070266, GO:0097300, GO:0070265), protein kinases signaling (GO:0046330, 398 

GO:0043507, GO:0032874, GO:0070304, GO:0043506, GO:0007256) and metabolism of 399 

sugars (GO:0034033, GO:0034030, GO:0033866,GO:0009226). The BMI associated loci 400 

enrich cell cycle progression pathways (GO:0010972,GO:1902750) host to pathogen 401 

signaling (GO:0043921, GO:0052312, GO:0052472) and macromolecule metabolism 402 

(GO:0010604, GO:0034641, GO:0006139, GO:0009308, GO:0046483) and insulin signaling 403 

(GO:0046626, GO:1900076).  The results of the GO enrichment analysis are presented in 404 

Supplementary Table S8 and Figures S3a, b. 405 

The analysis of the overlap between BMI and GWG associated loci in the ARIC 406 

cohort and T1DM cohort respectively showed enrichment in the TGFβ signaling pathway 407 

(GO:0071559, GO:0071560), regulation of stem cell differentiation (GO:1901532, 408 

GO:1902036, GO:0060218, GO:2000736) and polyol pathway (GO:0019751, GO:0046173). 409 

Pathways associated with GWG were similar to those enriched in general population, 410 
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however the important contribution of genes which affect antigen presentation could be seen 411 

(GO:0002495, GO:0002504, GO:0019886). The pathways characteristic for BMI associated 412 

loci were very much involved into response to environmental stimuli i.e. temperature 413 

(GO:0009266, GO:0009408), oxygen levels (GO:0070482, GO:0001666, GO:0036293) and 414 

sensory perception (GO:0050954, GO:0007600). The results of the GO enrichment analysis 415 

are presented in Supplementary Table S9 and Figures S4a, b.  416 

At the genetic variant level, we detected SNPs in BMI associated loci which are 417 

related to GWG, and variants associated with both GWG and BMI (Analysis 1). At the same 418 

time, we performed a similar analysis with diabetes adjusted BMI and GWG, which led us to 419 

congruent findings (Analysis 2). These results point us towards inflammatory response, TGFβ 420 

signaling, ER stress and glucose homeostasis. Subsequently, we investigated the association 421 

of SNPs in loci which influenced GWG (based on TWAS) with BMI and found 2091 variants 422 

in the GIANT cohort (Analysis 3). A parallel analysis was done on diabetes adjusted BMI (in 423 

the ARIC cohort) – resulting in 15 variants localized to GWG associated loci (Analysis 4). 424 

The results of these analyses show an impact of lipid biosynthesis, appetite regulation, Ca2+ 425 

homeostasis (and ER stress) and inflammatory response on obesity. Our results point to the 426 

source of the genetic correlation between GWG and BMI and confirms the interconnection of 427 

the phenotypes. We compared the results of our gene focused analysis with GWAS on GWG 428 

published in 2018 (Warrington et al., 2018); even though variants from the discovery cohort 429 

did not replicate, their potential functional roles overlap with those found in our study. 430 

TMEM163 is one of the best known genes associated with obesity, LCORL was shown to 431 

associate with height, UGDH with TGFβ signaling, HLA-C with autoimmune response, 432 

HSD17B3 with fatty acids, GLRX3 with oxidative stress, RBM19 with ribosomal biogenesis, 433 

SYT4 with Ca2+ binding and pancreatic functioning, PSG5 with pregnancy development, 434 
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while NTS4 with neutrophilin signaling pathway. Our results are also congruent with those 435 

obtained in the computational search for functional annotation of 445 loci associated with 436 

obesity (Cheng et al., 2018). Therefore, we hypothesize that a further search for clinical 437 

phenotypes which affect GWG might allow identification of other loci that associate with it. 438 

Below we shed more light on the biological interpretation of our results and links between 439 

them (Fig. 5, 6). 440 

In analyses 1 and 2, the strongest association with GWG was observed for SNPs in 441 

chemokine receptor ligands - rs1978202 – CCL26 and rs13340504, rs11465293 - CCL24. 442 

Apart from variants located in these genes we identified several other (rs4742339, rs4796675, 443 

rs11235519) which serve as eQTLs for them. Chemokines are chemoattractant with the 444 

proinflammatory role. Their receptor expression was shown to correlate with BMI (being 445 

higher in obese individuals) (Ignacio, Gibbs, Lee, & Son, 2016) and BMI changes (decreased 446 

after bariatric surgery) (Gentili et al., 2016). CCL26 is also involved in adipose tissue beiging 447 

in response to cold (Finlin et al., 2017). At the same time, we find three variants rs9659938, 448 

rs11807240, rs2136682 associated with GWG in the NEXN gene (or serving as eQTL for it) 449 

also involved in the inflammatory response. Of note, the augmentation of NEXN antisense 450 

RNA (NEXN-AS1) inhibits TLR4 oligomerization and NFκB activity and leads to suppression 451 

of proinflammatory response (Hu et al., 2019). NEXN is also known for its abundant 452 

expression in striated muscles (Zhu et al., 2018) and cardiomyocytes; its expression is higher 453 

under high glucose conditions (Barbati et al., 2017) (Figure 5). 454 

Interestingly, we find GWG associated variants in genes involved in TGFβ signaling: 455 

SPEG, LINC000974, GIPC2. The GIPC2 gene (rs2136682 of which associates with GWG), 456 

belongs to the GIPC family known for regulating proliferation, cytokinesis or migration and 457 

involved in the trafficking of various transmembrane proteins. GIPC1 is necessary for cell-458 
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surface expression of transmembrane receptors, such as IGF1R and TGFβR3 (Katoh, 2013; 459 

Song et al., 2016). The inhibition of LINC000974 leads to TGFβ secretion and repression of 460 

phosphorylated SMAD2 expression (Fang et al., 2019; Tang et al., 2014). Both TGFβ and 461 

SMADs are involved in insulin expression and signaling; SMAD4 deficiency was shown to 462 

improve glucose tolerance and glucose induced insulin release (Lin et al., 2009). Of note, 463 

three GWG associated variants (rs9690213, rs9393623, rs1978202) are eQTLs for 464 

LINC000974 and four (rs8080053, rs1978202, rs4796675, rs8080053) are located in the gene 465 

itself (Figure 6). 466 

The rs7564856, negatively associated with GWG is located in SPEG, and its 467 

expression is significantly greater in endurance than power athletes (Kusić et al., 2020). Also, 468 

at the protein level, SPEG differs between muscles of high-response vs low response rat 469 

trainers. The coimmunoprecipitation experiment with SPEG in the former showed a 470 

significant number of proteins involved in JNK and TGFβ signaling (Kusić et al., 2020), 471 

which, as said before, is known to influence insulin signaling and ER stress response (Z. Liu 472 

et al., 2019) (Figure 4, 5). 473 

Two other variants - rs9347707 and rs4329088 - located in PACRG1 gene, known to 474 

be involved in the insulin pathway. In C. elegans PACRG mutants have reduced insulin 475 

signaling. Also, PCARG plays a key role in the regulation of mitophagy (Stephenson et al., 476 

2018) and ubiquitynylation (Loucks et al., 2016), its knockout leads to defective NFκB 477 

signaling (Meschede et al., 2020) and CHOP upregulation (Han et al., 2017), which in adipose 478 

tissue result in increased proinflammatory macrophage polarization (M1) and insulin 479 

resistance (Suzuki et al., 2017). Thus, we note that PACRG is also involved in ER stress. The 480 

RHBDD2 gene is also involved in this biological process, with six eQTLs (rs4742339, 481 

rs11235519, rs1978202, rs13340504, rs4796675 and rs13340504) associated with GWG. It is 482 
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worth noting that silencing of RHBDD2 leads to increased expression of ATF6, IRE1, PERK, 483 

CRT, BiP, ATF4 and CHOP (32) (Figure 4). 484 

The association of rs72849841 (in RNF213) with GWG draws our particular attention. 485 

Namely, in Akita mice (which develop diabetes spontaneously) the knockout of RNF213 486 

lowers glucose tolerance by 20% and leads to increased insulin contents in pancreases (by 487 

150%) compared to wild type animals. This is obtained via the inhibition of ubiquitinoylation 488 

(RNF213 is a ubiquitin ligase) as shown by the 30% lower percentage of CHOP positive B-489 

cells (Kobayashi et al., 2013). The depletion of RNF213 protects cells from lipotoxicity 490 

(Piccolis et al., 2019), reduces palmitate-induced cell death and modifies non-mitochondrial 491 

oxygen consumption rate. Moreover, RNF213 is targeted to lipid droplets, which are 492 

specialized for neutral lipid storage and increases their abundance and stability in cells 493 

through the elimination of adipose triglyceride lipase (ATGL) (Sugihara et al., 2019). It is 494 

interesting to note, that the latter is also negatively regulated by insulin (Kershaw et al., 2006). 495 

RNF213 variants in GWAS analyses suggestively associated (p-value ~E-03) with diabetic 496 

polyneuropathy, portal hypertension, diabetic retinopathy and abnormal glucose (Figure 4). Its 497 

expression differed between cyclic and pregnant heifers (Forde et al., 2012). 498 

We identified GWG associated loci involved in glucose homeostasis or pancreatic 499 

functioning (Figure 5) - e.g. rs11807240 in FUBP1, which upregulates the mRNA levels of 500 

the two hexokinase genes Hk1 and Hk2 - the rate limiting enzymes of glycolysis. A positive 501 

correlation between FUBP1 mRNA and both of hexokinases was found in several types of 502 

cancers (Kang, Lee, Kim, Lee, & Kim, 2019). Variants in LCA5 gene were shown to modify 503 

glucose response in a clinical trial of insulin and potassium (GIK) infusion in acute coronary 504 

syndromes (Ellis et al., 2015). The rs9352745 associated with GWG is an eQTL for 505 

SH3BRGL2, whose expression is associated with diabetes (type 1, type 2 and gestational) in a 506 
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meta-analysis study. An interaction between SH3BRGL2 SNP and total fat intake was found 507 

to affect LDL-PPD (Rudkowska et al., 2015). We identified GWG associated SNP rs7609526 508 

in KANK1 related to fasting proinsulin (Huyghe et al., 2013) and fasting plasma glucose 509 

(Hwang et al., 2015) in GWAS. CADPS (with GWG associated SNP rs1398095) plays a role 510 

in insulin secretion (Speidel et al., 2008). Cg14451730 located near CADPS is differentially 511 

methylated with HbA1c levels in the Taiwan Biobank cohort (Hsiung et al., 2019). The 512 

suggestive association with fasting plasma glucose of rs487321 in CADPS gene was found in 513 

Arabian population of T2D patients (Hebbar et al., 2020). We also found a variant correlating 514 

with GWG in RPL29P25 gene. The presence of anti-60S ribosomal protein L29 (RPL29) 515 

antibody in human serum was shown to inhibit the proliferation of pancreatic cancer cells in 516 

various cancers and it is believed to be a novel candidate for a prognostic marker for 517 

unresectable pancreatic cancer (Muro, Miyake, Kato, Tsutsumi, & Yamamoto, 2015). The 518 

knockdown of RPL29 leads to suppression of cell proliferation, induces cell arrest (at 519 

G0/G1phase), enhances cell apoptosis and decreases intracellular ROS generation (C. Li, Ge, 520 

Yin, Luo, & Chen, 2012). The rs4808209 (in ZNF1 gene) is an eQTL for LPAR2 - the 521 

receptor for a signaling lipid LPA. It is a part of the LPAR2/Gab1/PI3K/Akt pathway, which 522 

influences glucose uptake (Rodriguez-Araujo et al., 2013) and is differentially expressed in 523 

fatty vs normal liver in extreme obese cohort (DiStefano et al., 2014). Its expression correlates 524 

with the invasiveness of pancreatic cancers (Gong et al., 2012) as well as gynecological 525 

disorders (Fujii et al., 2019; Kowalczyk-Zieba et al., 2019; Wasniewski & Woclawek-526 

Potocka, 2018; X. Yu, Zhang, & Chen, 2016). 527 

In Analyses 3 and 4, we set to determine whether genes associated with GWG also 528 

impact BMI. Basing on the summary results from the GIANT cohort we show a number of 529 

such genes. Some of their SNPs were previously associated with BMI, body fat distribution, 530 
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attendance to gym or sport groups, sleep duration, height, lipoprotein levels, low HDL-level 531 

cholesterol. At the same time, in a much smaller ARIC cohort we find 15 variants associated 532 

with diabetes adjusted BMI. None of them is listed in GWAS Catalog or PheWas, however 533 

other variants in these genes were already mentioned to be associated with BMI.  534 

Our analysis shows association with rs12685009 in the SLC24A2 loci, which belongs to 535 

the family of K+ dependent Na+/Ca2+ exchanger (Schnetkamp, 2013). A member of the 536 

family, SLC4 influences MC4R dependent satiety and the loss of MC4R function leads to 537 

prolonged obesity and reduced energy expenditure, while mice lacking SLC4 display anorexia 538 

(X. F. Li & Lytton, 2014). Also, variants in SOX6, a transcription factor shown to be involved 539 

in the promotion of adipogenesis (Iguchi et al., 2005; Leow et al., 2016), were previously 540 

related to obesity (Correa-Rodríguez, Schmidt-RioValle, & Rueda-Medina, 2018; Y. Z. Liu et 541 

al., 2009). The rs77346003 in the ADIPOR1 loci - a receptor for adiponectin known to 542 

regulate glucose metabolism and fatty acid oxidation associates with BMI in our study. Its 543 

variants in GWAS are related to obesity (Beckers et al., 2013; Keustermans et al., 2017; 544 

Peters et al., 2013) as well as fetal weight (Fensterseifer, Austin, Ford, & Alexander, 2018; 545 

Muñoz-Muñoz, Krause, Uauy, & Casanello, 2018). ADIPOR1 expression correlates with 546 

improved insulin sensitivity and PGC-1A expression - a master regulator of mitochondrial 547 

gene expression (Za’don et al., 2019). Moreover, our analysis identifies eQTLs for 548 

mitochondria associated genes – ATP5G3 (rs144768710) and HSPB8 (rs4131847). ATP5G3 549 

is involved in the proton pathway and acts as an energy-driving motor (He et al., 2017; Huang 550 

et al., 2013; Spataru, Le Duc, Zagrean, & Zagrean, 2019). HSPB8 is known to prevent 551 

oxidative tissue damage and its expression in serum is used as a biomarker for virus induced 552 

type 1 diabetes (Karthik, Ilavenil, Kaleeswaran, Sunil, & Ravikumar, 2012; X. C. Li et al., 553 

2017; L. Yu et al., 2019). We also identified rs34427781 - an eQTL for several genes 554 
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(CYP2D8P, NDUFA6-AS1, CYP2D6, CCDC134, CENPM, CHADL, FAM109B, NAGA, 555 

NDUFA6, OGFRP1, OLA1P1, SEPT3, SHISA8, SLC25A5P1, SMDT1, SREBF2, 556 

TNFRSF13C, WBP2NL) to be associated with BMI. It is worth noting that a subset of these 557 

genes is involved in lipid metabolism (NAGA, SREBP) or mitochondrial signaling 558 

(SLC25A5P1, NDUFA6, SMDT1). SREBP is a master regulator of lipid and sterol 559 

biosynthesis (Düvel et al., 2010); the gene-gene interactions between variants in the INSIG-560 

SCAP-SREBP pathway are associated with risk of obesity in Chinese children (F. H. Liu et 561 

al., 2014). The SMDT1 gene builds the mitochondrial calcium uniporter subunit (mtCU) 562 

localized in the inner mitochondrial membrane and is responsible for the Ca2+ transport to the 563 

mitochondrial matrix (Pendin, Greotti, & Pozzan, 2014), while its expression was shown to 564 

associate with fetal development (Vishnyakova et al., 2019). SLC25 genes, members of SLC 565 

channels mentioned above, are known to be subunits of another complex essential for proper 566 

mitochondrial dynamics and energy production – ANC. ANC is responsible for 567 

mitochondrial/cytoplasmic ADP/ATP exchange (Clémençon, Babot, & Trézéguet, 2013) and 568 

its expression was shown to be consistently upregulated in obesity (Padilla et al., 2014). 569 

NDUFA6 is part of the first complex of the mitochondrial respiratory chain, which expression 570 

impacts oxidative stress and energy production efficacy (Fiedorczuk & Sazanov, 2018). 571 

Lastly, the TNFRSF13C (BAFF) gene regulates insulin sensitivity (Kawasaki et al., 2013) and 572 

is associated with autoimmune diseases (Moisini & Davidson, 2009).  573 

The above results are congruent with the gene-based fBAT analysis, that points us 574 

towards genes which correlate with BMI (GATAD2, LHFPL6) and immune 575 

response/autoimmunity (HLA-DQB, HLA-DRB, HLA-B). GATAD2A is involved in 576 

embryonic development (Wang et al., 2017) and associates with obesity (Saxena et al., 2012). 577 

A copy number variation of LHFPL6 associates with average daily gain in cattle (Xu et al., 578 
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2019), while its rs4073643  with systemic lupus erythematosus in the Chinese population 579 

(Zhang et al., 2016). While the association between HLA variants and T1DM is very well 580 

known (Zhao et al., 2016), HLA loci are linked to other phenotypes (Karnes et al., 2017): type 581 

2 diabetes (Ng et al., 2014), fatty liver disease (Doganay et al., 2014) as well as BMI (Shen et 582 

al., 2018) or waist-to-hip circumference (Wen et al., 2016). More importantly, these variants 583 

associate with trends in fetal birth weight (Capittini et al., 2009), level of inflammation in 584 

visceral adipose tissue in pregnant women (Eyerahi et al., 2018) and different mRNA levels in 585 

visceral omental adipose tissue of pregnant women with gestational diabetes (Deng et al., 586 

2018). The HLA-DQA1, HLADQB1 are differentially methylated in siblings born before vs 587 

after maternal bariatric surgery (Berglind et al., 2016). 588 

In this study we identified several loci which contribute to the genetic correlation 589 

between BMI and GWG. Variants identified in those loci are associated with genes linked to 590 

insulin signaling, glucose homeostasis, mitochondrial metabolism, ubiquitinylation and 591 

inflammatory responses and placenta functioning, not only in the diabetic cohorts, but also in 592 

the general population. The genetic contribution to GWG is clearly connected with BMI 593 

associated loci. 594 

 595 
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Figure 1. The scheme of the workflow. TWAS analyses to find genes associated with BMI in 

the general cohort (GIANT) and two diabetic cohorts (T2D-GENES, ARIC) as well as with 

GWG in T1DM cohort, followed by variant associations between the two phenotypes. 
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Figure 2. Venn diagram of the association of imputed gene expression which influence BMI 

in the Giant cohort, GWG in T1DM cohort and both phenotypes. 
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Figure 3. Overlap of the correlation of imputed expression of genes which influence BMI in 

ARIC and T2D-GENES cohorts, GWG in T1DM cohort and both phenotypes. 
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Figure 4. The enrichment analysis of variants localized to genes associated with GWG among 

those associated with BMI in the GIANT cohort. 
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Figure 5. The schematic representation of pathways(blue) affected by genes which variants 

associate with GWG (pink). 
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Figure 6. Genes which variants associate with GWG (pink) and that were reported to 

affect glucose levels or TGFβ signaling (blue). 
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